
Dependency Networks for Inference, Collaborative

Filtering, and Data Visualization

David Heckerman, David Maxwell Chickering, Christopher Meek,

Robert Rounthwaite, Carl Kadie

heckerma,dmax,meek,robertro,carlk@microsoft.com

February 2000 (Revised May 2000 and October 2000)

Technical Report

MSR-TR-00-16

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

Published in Journal of Machine Learning Research, 1:49-75, 2000.

Abstract

We describe a graphical model for probabilistic relationships|an alternative to the

Bayesian network|called a dependency network. The graph of a dependency network,

unlike a Bayesian network, is potentially cyclic. The probability component of a de-

pendency network, like a Bayesian network, is a set of conditional distributions, one for

each node given its parents. We identify several basic properties of this representation

and describe a computationally e�cient procedure for learning the graph and prob-

ability components from data. We describe the application of this representation to

probabilistic inference, collaborative �ltering (the task of predicting preferences), and

the visualization of acausal predictive relationships.

Keywords: Dependency networks, Bayesian networks, graphical models, probabilistic infer-

ence, data visualization, exploratory data analysis, collaborative �ltering, Gibbs sampling

1 Introduction

The Bayesian network has proven to be a valuable tool for encoding, learning, and reasoning

about probabilistic relationships. In this paper, we introduce another graphical representa-

tion of such relationships called a dependency network. The representation can be thought

of as a collection of regressions or classi�cations among variables in a domain that can be

combined using the machinery of Gibbs sampling to de�ne a joint distribution for that do-

main. The dependency network has several advantages and disadvantages with respect to

the Bayesian network. For example, a dependency network is not useful for encoding causal

relationships and is di�cult to construct using a knowledge-based approach. Nonetheless,

there are straightforward and computationally e�cient algorithms for learning both the

structure and probabilities of a dependency network from data; and the learned model is

quite useful for encoding and displaying predictive (i.e., dependence and independence)

relationships. In addition, dependency networks are well suited to the task of predicting

preferences|a task often referred to as collaborative �ltering|and are generally useful for

probabilistic inference, the task of answering probabilistic queries.

In Section 2, we motivate dependency networks from the perspective of data visualization

and introduce a special case of the graphical representation called a consistent dependency

network. We show, roughly speaking, that such a network is equivalent to a Markov network,

and describe how Gibbs sampling is used to answer probabilistic queries given a consistent

dependency network. In Section 3, we introduce the dependency network in its general form

and describe an algorithm for learning its structure and probabilities from data. Essentially,

the algorithm consists of independently performing a probabilistic classi�cation or regression

for each variable in the domain. We then show how procedures closely resembling Gibbs

1

sampling can be applied to the dependency network to de�ne a joint distribution for the

domain and to answer probabilistic queries. In addition, we provide experimental results on

real data that illustrate the utility of this approach, and discuss related work. In Section 4,

we describe the task of collaborative �ltering and present an empirical study showing that

dependency networks are almost as accurate as and computationally more attractive than

Bayesian networks on this task. Finally, in Section 5, we describe a data visualization tool

based on dependency networks.

2 Consistent Dependency Networks

For several years, we used Bayesian networks to help individuals visualize predictive rela-

tionships learned from data. When using this representation in problem domains ranging

from web-tra�c analysis to collaborative �ltering, these individuals expressed a single, com-

mon criticism. We developed dependency networks in response to this criticism. In this

section, we introduce a special case of the dependency-network representation and show

how it addresses this complaint.

Consider Figure 1a, which contains a portion of a Bayesian-network structure describing

the demographic characteristics of visitors to a web site. We have found that, when shown

graphs like this one and told they represent causal relationships, an untrained person often

gains an accurate impression of the relationships. In many situations, however, a causal in-

terpretation of the graph is suspect|for example, when one uses a computationally e�cient

learning procedure that excludes the possibility of hidden variables. In these situations, the

person only can be told that the relationships are \predictive" or \correlational." In these

cases, we have found that the Bayesian network becomes confusing. For example, untrained

individuals who look at Figure 1a will correctly conclude that Age and Gender are predictive

of Income, but will wonder why there are no arcs from Income to Age and to Gender|after

all, Income is predictive of Age and Gender. Furthermore, these individuals will typically

be surprised to learn that Age and Gender are dependent given Income.

Of course, people can be trained to appreciate the (in)dependence semantics of a Bayesian

network, but often they lose interest in the problem before gaining an adequate understand-

ing; and, in almost all cases, the mental activity of computing the dependencies interferes

with the process of gaining insights from the data.

To avoid this di�culty, we can replace the Bayesian-network structure with one where

the parents of each variable correspond to its Markov blanket|that is, a structure where the

parents of each variable render that variable independent of all other variables. For example,

the Bayesian-network structure of Figure 1a becomes that of Figure 1b. Equally important,

2

Age Gender

Income

Age Gender

Income

(a) (b)

Figure 1: (a) A portion of a Bayesian-network structure describing the demographic char-

acteristics of users of a web site. (b) The corresponding consistent dependency-network

structure.

we do not change the feature of Bayesian networks wherein the conditional probability

of a variable given its parents is used to quantify the dependencies. In our experience,

individuals are quite comfortable with this feature. Roughly speaking, the resulting model

is a dependency network.

2.1 De�nition and Basic Properties

We now describe dependency networks more formally. To do so, we begin with some

notation. We denote a variable by a capitalized token (e.g., X;Xi;�, Age), and the state

or value of a corresponding variable by that same token in lower case (e.g., x; xi; �, age).

We denote a set of variables by a bold-face capitalized token (e.g., X;Xi;Pai). We use a

corresponding bold-face lower-case token (e.g., x;xi;pai) to denote an assignment of state

or value to each variable in a given set. We use p(xjy) to denote the probability that

X = x given Y = y. We also use p(xjy) to denote the probability distribution for X given

Y . Whether p(xjy) refers to a probability or a probability distribution will be clear from

context. In this paper, we shall limit our discussion to domains where all variables are

discrete and �nite valued and where the joint distribution is positive|that is, where all

assignments of the domain variables have a non-zero probability. Although much of what

we develop can be extended to more general circumstances, the extensions are tedious and

we omit them.

Given a domain of interest having a set of �nite variables X = (X1; : : : ; Xn) with a

positive joint distribution p(x), a consistent dependency network for X is a pair (G;P)

where G is a (cyclic) directed graph and P is a set of conditional probability distributions.

Each node in G corresponds to a variable in X. We use Xi to refer to both the variable and

its corresponding node. The parents of node Xi, denoted Pai, correspond to those variables

3

Pai � (X1; : : : ; Xi�1; Xi+1; : : : ; Xn) that satisfy

p(xijpai) = p(xijx1; : : : ; xi�1; xi+1; : : : ; xn) = p(xijx n xi): (1)

The distributions in P are the local probability distributions p(xijpai); i = 1; : : : ; n. The

dependency network is consistent in the sense that each local distribution can be obtained

(via inference) from the joint distribution p(x). In the next section, we relax this condition.

The independencies in a dependency network are precisely those of a Markov network

with the same adjacencies. A Markov network forX, also known as an undirected graphical

model or Markov random �eld for X, is a pair (U ;�) where U is an undirected graph and

� = (�1; : : : ; �c) is a set of potential functions, one for each of the c maximal cliques in U ,

such that joint distribution has the form

p(x) =
cY

i=1

�i(x
i); (2)

where Xi are the variables in clique i, i = 1; : : : ; c (e.g., see Lauritzen, 1996). The following

theorem shows that consistent dependency networks and Markov networks have the same

representational power.

Theorem 1: The set of positive distributions that can be encoded by a consistent depen-

dency network with graph G is equal to the set of positive distributions that can be encoded

by a Markov network whose structure has the same adjacencies as G.

The two graphical representations are di�erent in that Markov networks quantify dependen-

cies with potential functions, whereas dependency networks use conditional probabilities.

We have found the latter to be signi�cantly easier to interpret.

The proof of Theorem 1 appears in the Appendix, but it is essentially a restatement of the

Hammersley-Cli�ord theorem (e.g., Besag, 1974). This correspondence is no coincidence.

As is discussed in Besag (1974), several researchers who developed the Markov-network

representation did so by initially investigating a graphical representation that �ts our de�-

nition of consistent dependency network. In particular, several researchers including L�evy

(1948), Bartlett (1955, Section 2.2), and Brook (1964) considered lattice systems where each

variable Xi depended only on its nearest neighbors Pai, and quanti�ed the dependencies

within these systems using the conditional probability distributions p(xijpai). They then

showed, to various levels of generality, that the only joint distributions mutually consistent

with each of the conditional distributions also satisfy Equation 2. Hammersley and Cli�ord,

in a never published manuscript, and Besag (1974) considered the more general case where

each variable could have an arbitrary set of parents. They showed that, provided the joint

4

distribution for X is positive, any graphical model specifying the independencies in Equa-

tion 1 must also satisfy Equation 2. One interesting point is that these researchers argued

for the use of conditional distributions to quantify the dependencies. They considered the

resulting potential form in Equation 2 to be a mathematical necessity rather than a natural

expression of dependency. As we have just discussed, we share this view.

The equivalence of consistent dependency networks and Markov networks suggests a

straightforward approach for learning a consistent dependency network from exchangeable

(i.i.d.) data. Namely, one learns the structure and potentials of a Markov network (e.g.,

Whittaker, 1990), and then computes (via probabilistic inference) the conditional distribu-

tions required by the dependency network. Alternatively, one can learn a related model

such as a Bayesian network, decomposable model, or hierarchical log-linear model (see,

e.g., Lauritzen, 1996) and convert it to a consistent dependency network. Unfortunately,

the conversion process can be computationally expensive in many situations. In the next

section, we extend the de�nition of dependency network to include inconsistent dependency

networks and provide algorithms for learning such networks that are more computationally

e�cient than those just described. In the remainder of this section, we apply well known

results about probabilistic inference to consistent dependency networks. This discussion

will be useful for our further development of (general) dependency networks.

2.2 Probabilistic Inference

Given a graphical model for X, we often wish to answer probabilistic queries of the form

p(yjz), where Y (the \target" variables) and Z (the \input" variables) are disjoint subsets

of X. This task is known in the graphical modeling community as probabilistic inference.

An important special case of probabilistic inference is the determination of p(x) for given

instances x ofX|a key component of density estimation, which has numerous applications.

Given a consistent dependency network for X, we can perform probabilistic inference

by converting it to a Markov network, triangulating that network (forming a decompos-

able graphical model), and then applying one of the standard algorithms for probabilistic

inference in the latter representation|for example, the junction tree algorithm of Jensen,

Lauritzen, and Olesen (1990). Alternatively, we can use Gibbs sampling (e.g., Geman and

Geman, 1984; Neal, 1993; Besag, Green, Higdon, and Mengersen, 1995; Gilks, Richardson,

and Spiegelhalter, 1996), which we examine in some detail.

First, let us consider the use of Gibbs sampling for recovering the joint distribution

p(x) of a consistent dependency network for X. In one simple version of Gibbs sampling,

we initialize each variable to some arbitrary value. We then repeatedly cycle through each

variable X1; : : : ; Xn, in this order, and resample eachXi according to p(xijxnxi) = p(xijpai).

5

We call this procedure an ordered Gibbs sampler. As described by the following theorem,

this ordered Gibbs sampler recovers the joint distribution for X.

Theorem 2: An ordered Gibbs sampler applied to a consistent dependency network forX,

where each Xi is �nite (and hence discrete) and each local distribution p(xijpai) is positive,

de�nes a Markov chain with a unique stationary joint distribution for X equal to p(X) that

can be reached from any initial state of the chain.

Proof: Let xt be the sample of x after the tth iteration of the ordered Gibbs sampler.

The sequence x1;x2; : : : can be viewed as samples drawn from a homogenous Markov chain

with transition matrix P having elements Pij = p(xt+1 = jjxt = i). The matrix P is the

product P1 �P2 � : : :�Pn, where Pk is the \local" transition matrix describing the resampling

of Xk according to the local distribution p(xkjpak). The positivity of local distributions

guarantees the positivity of P, which in turn guarantees the irreducibility of the Markov

chain. Consequently, there exists a unique joint distribution that is stationary with respect

to P. The positivity of P also guarantees that this stationary distribution can be reached

from any starting point. That this stationary distribution is equal to p(x) is proved in the

Appendix. 2

After a su�cient number of iterations, the samples in the chain will be drawn from the

stationary distribution for X. We use these samples to estimate p(X). There is much

written about how long to run the chain before keeping samples (the \burn in") and how

many samples to use to obtain a good estimate (e.g., Gilks, Richardson, and Spiegelhalter,

1996). We do not discuss the details here.

Next, let us consider the use of Gibbs sampling to compute p(yjz) for particular instances

y and z whereY and Z are arbitrary disjoint subsets ofX. A naive approach uses an ordered

Gibbs sampler directly. During the iterations, only samples of X where Z = z are used to

compute the conditional probability. An important di�culty with this approach is that if

either p(yjz) or p(z) is small (a common occurrence when Y or Z contain many variables),

many iterations are required for an accurate probability estimate.

A well-known approach for estimating p(yjz) when p(z) is small is to �x Z = z during

ordered Gibbs sampling. It is not di�cult to generalize the proof of Theorem 2 to show

that this modi�ed ordered Gibbs sampler has a stationary distribution and yields the correct

conditional probability given a consistent dependency network.

When y is rare because Y contains many variables, we can use the independencies

encoded in a dependency network along with the law of total probability to decompose the

inference task into a set of inference tasks on single variables. For example, consider the

6

dependency network [X1 X2 $ X3]. Given the independencies speci�ed by this network,

we have

p(x1; x2; x3) = p(x1) p(x2) p(x3jx2);

and can obtain p(x1; x2; x3) by computing each term separately. The determination of the

�rst term requires no Gibbs sampling|the distribution can be read directly from the local

distribution for X1 in the dependency network. The second two terms can be determined

using modi�ed ordered Gibbs samplers each with a singleton target (x2 and x3, respectively).

Note that this approach has the additional advantage that some terms may be obtained by

direct lookup, thereby avoiding some Gibbs sampling.

In general, given a consistent dependency network for X and disjoint sets of variables

Y � X and Z � X, we can obtain p(yjz) for a particular instance of y and z as follows:

Algorithm 1:

1 U := Y (* the unprocessed variables *)

2 P := Z (* the processed and conditioning variables *)

3 p := z (* the values for P *)

4 While U 6= ;

5 Choose Xi 2 U such that Xi has no more parents in U than any variable in U

6 If all the parents of X are in P

7 p(xijp) := p(xijpai)

8 Else

9 Use a modi�ed ordered Gibbs sampler to determine p(xijp)

10 U := U�Xi

11 P := P+Xi

12 p := p+ xi

13 Return the product of the conditionals p(xijp)

The key step in this algorithm is step 7, which bypasses Gibbs sampling when it is not

needed. This step is justi�ed by Equation 1.

3 General Dependency Networks

As we have discussed, consistent dependency networks and Markov networks are inter-

changeable representations: given one, we can compute the other. In this section, we

consider a more general class of dependency networks and part company with Markov net-

works.

7

Our extension of consistent dependency networks is motivated by computational con-

cerns. For domains having a large number of variables and many dependencies among

those variables, it is computationally expensive to learn a Markov network from data and

then convert that network to a consistent dependency network. As an alternative, we start

with the observation that the local distribution for variable Xi in a dependency network is

the conditional distribution p(xijx n xi), which can be estimated by any number of proba-

bilistic classi�cation techniques (or regression techniques, if we were to consider continuous

variables) such as methods using a probabilistic decision tree (e.g., Buntine, 1991), a gen-

eralized linear model (e.g., McCullagh and Nelder, 1989), a neural network (e.g., Bishop,

1995), a probabilistic support-vector machine (e.g., Platt, 1999), or an embedded regres-

sion/classi�cation model (Heckerman and Meek, 1997). This observation suggests a simple,

heuristic approach for learning the structure and probabilities of a dependency network from

exchangeable (i.i.d.) data. Namely, for each variable Xi in domain X, we independently

estimate its local distribution from data using a classi�cation algorithm. Once we have

all estimates for the local distributions, we then construct the structure of the dependency

network from the (in)dependencies encoded in these estimates.

or example, suppose we wish to construct a dependency network for the domain

X = (X1; X2; X3). To do so, we need to estimate three conditional probability distri-

butions: p(x1jx2; x3), p(x2jx1; x3), and p(x3jx1; x2). First, we use prior knowledge to decide

how each distribution is to be modeled. We may decide, for example, that a logistic re-

gression, a multilayer neural net, and a probabilistic decision tree are appropriate models

for p(x1jx2; x3), p(x2jx1; x3), and p(x3jx1; x2), respectively. (There is no requirement that

each distribution be chosen from the same model class.) In addition, for each estimation,

we may choose to use a feature-selection algorithm that can discard some of the inputs.

Next, we apply the estimation/learning procedures. For the sake of illustration, suppose

we discover that X1 is not a signi�cant predictor of X3 and that X3 is not a signi�cant

predictor of X1. Finally, we construct the dependency network structure|in this case,

X1 $ X2 $ X3|and populate the local distributions with the conditional-probability

estimates. Note that feature selection in the classi�cation/regression process governs the

structure of the dependency network.

This algorithm will be computationally e�cient in many situations where learning a

Markov network and converting it to a dependency network is not. Nonetheless, this proce-

dure has the drawback that, due to|for example|heuristic search and �nite-data e�ects,

the resulting local distributions are likely to be inconsistent in that there is no joint dis-

tribution p(x) from which each of the local distributions may be obtained via the rules

of probability. For example, in the simple domain X = (X1; X2) it is possible that the

8

estimator of p(x1jx2) discards X2 as an input whereas the estimator of p(x2jx1) retains X1

as an input. The result is the structural inconsistency that X1 helps to predict X2, but

X2 does not help to predict X1. Numeric inconsistencies are also likely to result. Nonethe-

less, in situations where the data set contains many samples, strong inconsistencies will be

rare because each local distribution is learned from the same data set, which we assume is

generated from a single underlying joint distribution. In other words, although dependency

networks learned using our procedure will be inconsistent, they will be \almost" consis-

tent when learned from data sets with large sample sizes. This observation assumes that

the model classes used for the local distributions can closely approximate the conditional

distributions consistent with the underlying joint distribution. For example, probabilistic

decision trees, which we shall use, satisfy this assumption for variables with �nite domains.

Because a dependency network learned in this manner is almost consistent, we can

imagine|as a heuristic|using procedures resembling Gibbs sampling to extract a joint

distribution and to answer probabilistic queries. In the remainder of this section, we for-

malize these ideas and evaluate them with experiments on real data.

3.1 De�nition and Basic Properties

Given a domain of interest having a set of �nite variables X = (X1; : : : ; Xn), let P =

(p1(x1jx n x1); p2(x2jx n x2); : : : ; pn(xnjx n xm)) be a set of conditional distributions, one

for each variable in X. In normal use, these distributions are intended to correspond to

classi�cations/regressions learned from a single data set but, formally, they can be any set

of conditional distributions. We do not require that these distributions be consistent|that

is, we do not require that they can be obtained via inference from a single joint distribution

p(x). A dependency network for X and P is a pair (G;P 0) where G is a (usually cyclic)

directed graph and P 0 is a set of conditional probability distributions satisfying

pi(xijpai) = pi(xijx n xi)

for every pi in P . Again, we call the set of conditional distributions pi(xijpai); i = 1; : : : ; n

the local probability distributions for the dependency network.

In most graphical modeling research, a graphical model is used to de�ne a joint distri-

bution for its variables. We do the same using a dependency network. In particular, the

procedure of the ordered Gibbs sampler described in the previous section, when applied to

a dependency network, yields a joint distribution for the domain. The result holds whether

or not the local distributions in the dependency network are consistent. More formally, we

have the following theorem, which is established by tracing the proof of Theorem 2 given in

the previous section and noting that it does not rely on the consistency of the distributions.

9

Theorem 3: The procedure of an ordered Gibbs sampler applied to a dependency network

for X and P , where each Xi is �nite (and hence discrete) and each local distribution in P

is positive, de�nes a Markov chain with a unique stationary joint distribution for X that

can be reached from any initial state of the chain.

Technically speaking, the procedure of Gibbs sampling applied to an inconsistent depen-

dency network is not itself a Gibbs sampler, because there is no joint distribution consistent

with all the local distributions. Consequently, we call this procedure an ordered pseudo-

Gibbs sampler.

One rather disturbing property of this procedure is that it produces a joint distribution

that is likely to be inconsistent with many of the conditional distributions used to produce

it. Nonetheless, as we have suggested and shall examine further, when each of the local

distributions of a dependency network are learned from the same data, these distributions

should be almost consistent with the joint distribution.

Another disturbing observation is that the joint distribution obtained will depend on

the order in which the pseudo-Gibbs sampler visits the variables. For example, consider

the dependency network with the structure X1 ! X2, saying that X2 depends on X1 but

X1 does not depend on X2. If we draw sample-pairs (x1; x2)|that is, x1 and then x2|

then the resulting stationary distribution will have X1 and X2 dependent. In contrast,

if we draw sample-pairs (x2; x1), then the resulting stationary distribution will have X1

and X2 independent. Due to the near consistency of the local distributions, however, the

joint distributions obtained from di�erent orderings will be close. If we indeed discover the

dependency-network structure X1 ! X2 in practice, then X1 and X2 must be \almost"

independent.

Given a graphical model for a domain and an ordered Gibbs sampler that extracts a joint

distribution from that model, we can apply the rules of probability to this joint distribution

to answer probabilistic queries. Alternatively, we can apply Algorithm 1 directly to a given

dependency network. Such an application may yield di�erent answers than those computed

from the joint distribution obtained from the dependency network, but can be justi�ed

heuristically due to near consistency. In Sections 3.3 and 3.4, we examine the issue of near

consistency more carefully. In the remainder of this section, we mention two basic properties

of dependency networks.

First, let us consider the distributions that can be represented by a general dependency-

network structure. Unlike the situation for consistent dependency networks, a general

dependency-network structure and a Markov network structure with the same adjacencies do

not represent the same distributions. In fact, a dependency network with a given structure

de�nes a larger set of distributions than a Markov network with the same adjacencies. As

10

an example, consider the dependency-network structure X1 $ X2 $ X3. In a simple

experiment, we sampled local distributions for this structure from a uniform distribution.

We then computed the stationary distribution of the Markov chain de�ned by a pseudo-

Gibbs sampler with variable order (X1; X3; X2). In all runs, we found that X1 and X3 were

conditionally dependent given X2 in the stationary distribution. In a Markov network with

the same adjacencies, X1 and X3 must be conditionally independent given X2.

Second, let us consider a simple necessary condition for consistency. We say that a

dependency network for X is bi-directional if Xi is a parent of Xj if and only if Xj is a

parent of Xi, for all Xi and Xj in X. In addition, let paji be the j
th parent of node Xi.

We say that a consistent dependency network is minimal if and only if, for every node Xi

and for every parent paji , Xi is not independent of pa
j
i given the remaining parents of Xi.

With these de�nitions, we have the following theorem, proved in the Appendix.

Theorem 4: A minimal consistent dependency network for a positive distribution p(x)

must be bi-directional.

3.2 Probabilistic Decision Trees for Local Distributions

When learning a dependency network from data, a variety of classi�cation/regression tech-

niques may be used to estimate the local distributions. We have used methods based on

probabilistic decision trees (e.g., Buntine, 1991) and probabilistic support vector machines

(e.g., Platt, 1999). For simplicity, we limit our discussion in this paper to the use of prob-

abilistic decision trees.

In this approach, for each variable Xi in X, we learn a probabilistic decision tree where

Xi is the target variable and X n Xi are the input variables. Each leaf is modeled as a

multinomial distribution. To learn the decision-tree structure, we use a simple hill-climbing

approach in conjunction with a Bayesian score (posterior probability of model structure)

as described by Friedman and Goldszmdit (1996) and Chickering, Heckerman, and Meek

(1997). To learn a decision-tree structure for Xi, we initialize the search algorithm with a

singleton root node having no children. Then, we replace each leaf node in the tree with a

binary split on some variable Xj in X nXi, until no such replacement increases the score

of the tree. Our binary split on Xj is a decision-tree node with two children: one of the

children corresponds to a particular value of Xj , and the other child corresponds to all

other values of Xj . Our Bayesian scoring function uses a uniform prior distribution for the

parameters of all multinomial distributions, and a structure prior proportional to �f , where

� > 0 is a tunable parameter and f is the number of free parameters in the decision tree. In

studies that predated those described in this paper, we have found that the setting � = 0:1

11

yields accurate predictions over a wide variety of datasets. We use this same setting in the

experiments described in this paper.

3.3 Probabilistic Inference With Real Data

We have suggested that, because the local distributions learned from data sets of adequate

size will be close to the true underlying distribution and hence almost consistent, the pro-

cedures for extracting a joint distribution from a dependency network and for answering

probabilistic queries should yield fairly accurate results. Nonetheless, there is a concern. It

could be that the application of pseudo-Gibbs sampling ampli�es the inconsistencies. That

is, it could be that small perturbations from the true conditional distributions p(xijx n xi)

could lead to large perturbations from the true joint distribution p(x). If this phenomenon

did occur, it is likely that predictions of new data rendered by a dependency network would

be inaccurate. In this section, we compare the predictions of dependency networks and

Bayesian networks on real data sets as a �rst examination of this concern.

We use four datasets: (1) Sewall/Shah, data from Sewall and Shah (1968) regarding the

college plans of high-school seniors, (2) Women and Mathematics (WAM), data regarding

women's preferences for a career in Mathematics (Fowlkes, Freeny, and Landwehr, 1988),

(3) Digits, images of handwritten digits made available by the US Postal Service O�ce for

Advanced Technology (Frey, Hinton, and Dayan, 1995), and (4)Nielsen, data about whether

or not users watched �ve or more minutes of network TV shows aired during a two-week

period in 1995 (made available by Nielsen Media Research). In each of these datasets, all

variables are �nite. For the digits data, we report results for only two (randomly chosen)

digits, \2" and \6". Additional details about the datasets are given in Table 1.

To evaluate the accuracy of dependency networks on these datasets, we randomly parti-

tion each dataset into a training set and a test set used to learn models and evaluate them,

respectively. We measure the accuracy of each learned model on the test set (x1; : : : ;xN)

using the log score:

Score(x1; : : : ;xN jmodel) = �

PN
i=1 log2 p(xijmodel)

nN
; (3)

where n is the number of variables inX. This score can be thought of as the average number

of bits needed to encode the observation of a variable in the test set. Note that we measure

how well a dependency network predicts an entire case. We could look at predictions of

particular conditional probabilities, but because Algorithm 1 uses products of queries to

produce a prediction on a full case, we expect comparisons on individual queries to be

similar.

12

In our experiments, we determine the probabilities p(xjmodel) in Equation 3 from a

learned dependency network using Algorithm 1. For each pseudo-Gibbs sampler invoked

in Algorithm 1, we average 5000 iterations after a 10-iteration burn-in. For each data set,

these Gibbs-sampling parameters yield scores with a range of variation of less than 0.1%

across 10 runs starting with di�erent (random) initial states.

For comparison, we measure the accuracy of two additional model classes: (1) a Bayesian

network, and (2) a Bayesian network with no arcs|a baseline model. When learning the

non-baseline Bayesian network, we use the algorithm described in Chickering, Heckerman,

and Meek (1997) wherein each local distribution consists of a decision tree with binary

splits. We use the same parameter and structure priors as used in the learning of depen-

dency networks. We determine p(xjmodel) from a Bayesian network using the law of total

probability|pseudo-Gibbs sampling is not needed. Probability estimates obtained from

both Bayesian networks and dependency networks correspond to the a posteriori mean of

the (multinomial) parameters.

The results are shown in Table 1. The Bayesian networks produce density estimates that

are better than those of dependency networks, but only slightly so. In particular, consider

the summary score in the second row from the bottom of the table, 2Score(DN)�Score(BN),

which is the geometric mean of p(xjBN)=p(xjDN) averaged over all cases in a dataset. For

Digit2, the data set having the worst dependency-network performance, the dependency

network assigns a probability to a case, on (geometric) average, that is only 3% lower than

that assigned by the Bayesian network.

That dependency networks are (slightly) less accurate than Bayesian networks is not

surprising. In each domain, the number of parameters in the Bayesian network are fewer

than the number of parameters in the corresponding dependency network. Consequently,

the dependency-network estimates should have higher variance. This explanation is consis-

tent with the observation that, roughly, di�erences in accuracy are larger for the data sets

with smaller sample size.

Because dependency networks produce joint probabilities via pseudo-Gibbs sampling

whereas Bayesian networks produce joint probabilities via multiplication, non-convergence

of sampling is another possible explanation for the greater accuracy of Bayesian networks.

The small variances of the pseudo-Gibbs-sampler estimates across multiple runs, however,

makes this explanation unlikely.

Overall, our experiments suggest that Algorithm 1 applied to inconsistent dependency

networks learned from data yields accurate joint probabilities.

Finally, let us consider issues of computation. Joint estimates produced by dependency

networks require far more computation than do those produced by Bayesian networks.

13

Table 1: Details for datasets and Score (bits per observation) for a Bayesian network (BN),

dependency network (DN), and baseline model (BL) applied to these datasets. The lower

the Score, the higher the accuracy of the learned model.

Dataset

Sewall/Shah WAM Digit2 Digit6 Nielsen

Number of variables 5 6 64 64 203

Training cases 9286 790 700 700 1637

Test cases 1032 400 399 400 1637

Score(BN) 1.274 0.907 0.542 0.422 0.188

Score(DN) 1.277 0.911 0.584 0.454 0.189

Score(BL) 1.382 0.930 0.823 0.752 0.231

Score(DN)-Score(BN) 0.002 0.004 0.042 0.033 0.001

Score(BL)-Score(BN) 0.107 0.022 0.281 0.330 0.044

2Score(DN)�Score(BN) 1.00 1.00 1.03 1.02 1.00
Score(DN)�Score(BN)
Score(BL)�Score(BN) 0.02 0.16 0.15 0.10 0.02

For example, on a 600 MHz Pentium III with 128 MB of memory running the Windows

2000 operating system, the determination of p(x) for a case in the Nielsen dataset takes

on average 2.0 seconds for the dependency network and 0.0006 seconds for the Bayesian

network. Consequently, one should use a Bayesian network in those situations where it

is known in advance that joint probabilities p(x) are needed. Nonetheless, in situations

where general probabilistic inference is needed, exact inference in a Bayesian network is

often intractable; and practitioners often turn to Gibbs sampling for inference. In such

situations, Bayesian networks a�ord little computational advantage.

3.4 Near Consistency: Theoretical Considerations

Our concerns of the previous section were motivated by the possibility that small deviations

in the local distributions of a dependency network could be ampli�ed by the process of

pseudo-Gibbs sampling. In this section, we examine this concern more directly and from a

theoretical perspective.

Consider two dependency networks: one learned from data and another that encodes

the true distribution from which the data was sampled. Note that it is always possible

to �nd a dependency network that encodes the true distribution|for example, a fully-

connected dependency network can encode any joint distribution. Let ~P and P denote

14

the transition matrices of the Markov chains de�ned by the learned and truth-encoding

dependency networks, respectively. In addition, let ~� = (~�1; : : : ; ~�k) and � = (�1; : : : ; �k)

denote the stationary distributions corresponding to ~P and P, respectively. Our concern

about sensitivity to deviations in local distributions can now be phrased as follows: If ~P is

close to P, will ~� be close �?

There is a large literature in an area generally known as perturbation theory of stochastic

matrices that provides answers to this question for various notions of \close". Answers

usually are of the form

k~� � �k � � kEk; or (4)

j~�j � �j j � �j kEk; or (5)
�����
~�j � �j
�j

����� � �j kEk; (6)

where E = ~P�P, k�k is some norm, and � or �j are measures of sensitivity called condition

numbers. When working with probabilities, where relative as opposed to absolute errors are

often important, bounds of the form shown in Equation 6 are particularly useful. Here, we

cite a potentially useful bound of this form given by Cho and Meyer (1999). These authors

provide references to many other bounds as well.

Theorem (Cho and Meyer, 1999): Let P and ~P = P + E be transition matrices for

two homogenous, irreducible k-state Markov chains with respective stationary distributions

� and ~�. Let kEk1 denote the in�nity-norm of E, the maximum over j = 1; : : : ; k of the

column sums
Pk

i=1 jEij j. Let Mij denote the mean �rst passage time from the ith state to

the jth state in the chain corresponding to P|that is, the expected number of transitions

to move from state i to state j. Then, the relative change in the jth stationary probability

�j is given by
j~�j � �j j

�j
�

1

2
kEk1 max

i6=j
Mij : (7)

Their bound is tight in the sense that, for any P satisfying the conditions of the theorem,

there exists a perturbation E 6= 0 such that the inequality in Equation 7 can be replaced

with an equality. Nonetheless, when applied to dependency networks, the bound is typically

not tight. To illustrate this point, we computed each term in Equation 7 for a transition

matrix P corresponding to the Bayesian network learned from 790 cases from the WAM

data set, and a ~P corresponding to a dependency network learned from a random sample

of 790 cases generated from that Bayesian network. For j = 0, the state corresponding to

15

X1 = � � � = X6 = 0 in the WAM domain, we obtain the inequality

j�j�~�j j
�j

� 1
2 � kEk1 � maxi6=j Mij

0.32 � 0.5 � 0.84 � 40 = 16.8

which is far from tight.

Nonetheless, the appearance of mixing time in Equation 7 is interesting. It suggests

that that chains with good convergence properties will be insensitive to perturbations in

the transition matrix. In particular, it suggests that the joint distribution de�ned by a

dependency network is more likely to be insensitive to errors in the local distributions

of the network precisely when Gibbs sampling is e�ective. Hopefully, additional research

will produce tighter bounds that better characterize those situations in which dependency

networks can be used safely.

3.5 Related Work

Before we consider new applications of dependency networks, we review related work on the

basic concepts. As we have already mentioned, several researchers who developed Markov

networks began with an examination of what we call consistent dependency networks. For

an excellent discussion of this development as well as original contributions in this area, see

Besag (1974). Besag (1975) also described an approach called pseudo-likelihood estimation,

in which the conditionals are learned directly|as in our approach|without respecting the

consistency constraints. We use the name pseudo-Gibbs sampling to make a connection to

his work. Hofmann and Tresp (1998) describe (general) dependency networks, calling them

Markov blanket networks. They stated and proved Theorem 3, and evaluated the predictive

accuracy of the representation on several data sets using local distributions consisting of

conditional Parzen windows.

4 Collaborative Filtering

We now turn our attention to collaborative �ltering (CF), the task of predicting preferences.

Examples of this task include predicting what movies a person will like based on his or her

ratings of movies seen, predicting what news stories a person is interested in based on other

stories he or she has read, and predicting what web pages a person will go to next based

on his or her history on the site. Another important application in the burgeoning area of

e-commerce is predicting what products a person will buy based on products he or she has

already purchased and/or dropped into his or her shopping basket.

16

Collaborative �ltering was introduced by Resnick, Iacovou, Suchak, Bergstrom, and

Riedl (1994) as both the task of predicting preferences and a class of algorithms for this

task. The class of algorithms they described was based on the informal mechanisms people

use to understand their own preferences. For example, when we want to �nd a good movie,

we talk to other people that have similar tastes and ask them what they like that we haven't

seen. The type of algorithm introduced by Resnik et al. (1994), sometimes called amemory-

based algorithm, does something similar. Given a user's preferences on a series of items,

the algorithm �nds similar users in a database of stored preferences. It then returns some

weighted average of preferences among these users on items not yet rated by the original

user.

As done in Breese, Heckerman, and Kadie (1998), let us concentrate on the application

of collaborative �ltering|that is, preference prediction. In their paper, Breese et al. (1998)

describe several CF scenarios, including binary versus non-binary preferences and implicit

versus explicit voting. An example of explicit voting would be movie ratings provided by

a user. An example of implicit voting would be knowing only whether a person has or has

not purchased a product. Here, we concentrate on one scenario important for e-commerce:

implicit voting with binary preferences|for example, the task of predicting what products

a person will buy, knowing only what other products they have purchased.

A simple approach to this task, described in Breese et al. (1998), is as follows. For

each item (e.g., product), de�ne a variable with two states corresponding to whether or not

that item was preferred (e.g., purchased). We shall use \0" and \1" to denote not preferred

and preferred, respectively. Next, use the dataset of ratings to learn a Bayesian network

for the joint distribution of these variables X = (X1; : : : ; Xn). The preferences of each user

constitutes a case in the learning procedure. Once the Bayesian network is constructed,

make predictions as follows. Given a new user's preferences x, use the Bayesian network

to estimate p(xi = 1jx n xi = 0) for each product Xi not purchased. That is, estimate

the probability that the user would have purchased the item had we not known he did

not. Then, return a list of recommended products|among those that the user did not

purchase|ranked by these estimates.

Breese et al. (1998) show that this approach outperforms memory-based and cluster-

based methods on several implicit rating datasets. Speci�cally, the Bayesian-network ap-

proach was more accurate and yielded faster predictions than did the other methods.

What is most interesting about this algorithm in the context of this paper is that only

estimates of p(xi = 1jxnxi = 0) are needed to produce the recommendations. In particular,

these estimates may be obtained by a direct lookup in a dependency network:

p(xi = 1jx n xi = 0) � pi(xi = 1jpai); (8)

17

Table 2: Number of users, items, and items per user for the datasets used in evaluating the

algorithms.

Dataset

MS.COM Nielsen MSNBC

Training cases 32711 1637 10000

Test cases 5000 1637 10000

Total items 294 203 1001

Mean items per case 3.02 8.64 2.67

in training set

where pai is the instance of Pai consistent with X. Thus, dependency networks are a

natural model class on which to base CF predictions. In the remainder of this section, we

compare this approach with that based on Bayesian networks for datasets containing binary

implicit ratings.

4.1 Datasets

We evaluated dependency networks and Bayesian networks on three datasets: (1) Nielsen,

the dataset described in Section 3.3, (2) MS.COM, which records whether or not users

of microsoft.com on one day in 1996 visited areas (\vroots") of the site (available on the

Irvine Data Mining Repository), and (3) MSNBC, which records whether or not visitors to

MSNBC on one day in 1998 read stories among the most popular 1001 stories on the site.

In each of these datasets, users correspond to cases and items possibly viewed correspond

to variables. The MSNBC dataset contains 20,000 users sampled at random from the

approximate 600,000 users that visited the site that day. In a separate analysis on this

dataset, we found that the inclusion of additional users did not produce a substantial

increase in accuracy. Table 2 provides additional information about each dataset. All

datasets were partitioned into training and test sets at random. The train/test split for

Nielsen was the same as for the density-estimation experiment described in Section 3.3. The

learning algorithms for dependency networks and Bayesian networks and their parameters

described in Section 3 were used here.

18

4.2 Evaluation Criteria and Experimental Procedure

We have found the following three criteria for collaborative �ltering to be important: (1)

the accuracy of the recommendations, (2) prediction time|the time it takes to create a rec-

ommendation list given what is known about a user, and (3) the computational resources

needed to build the prediction models. We measure each of these criteria in our empiri-

cal comparison. In the remainder of this section, we describe our evaluation criterion for

accuracy.

Our criterion attempts to measure a user's expected utility for a list of recommendations.

Of course, di�erent users will have di�erent utility functions. The measure we introduce

provides what we believe to be a good approximation across many users.

The scenario we imagine is one where a user is shown a ranked list of items and then

scans that list for preferred items starting from the top. At some point, the user will stop

looking at more items. Let p(k) denote the probability that a user will examine the kth

item on a recommendation list before stopping his or her scan, where the �rst position is

given by k = 0. Then, a reasonable criterion is

cfaccuracy1(list) =
X

k

p(k) �k;

where �k is 1 if the item at position k is preferred and 0 otherwise. To make this measure

concrete, we assume that p(k) is an exponentially decaying function:

p(k) = 2�k=a; (9)

where a is the \half-life" position|the position at which an item will be seen with proba-

bility 0.5. In our experiments, we use a = 5.

In one possible implementation of this approach, we could show recommendations to a

series of users and ask them to rate them as \preferred" or \not preferred". We could then

use the average of cfaccuarcy1(list) over all users as our criterion. Because this method is

extremely costly, we instead use an approach that uses only the data we have. In particular,

as already described, we randomly partition a dataset into a training set and a test set.

Each case in the test set is then processed as follows. First, we randomly partition the user's

preferred items into input and measurement sets. The input set is fed to the CF model,

which in turn outputs a list of recommendations. Finally, we compute our criterion as

cfaccuracy(list) =
100

N

NX

i=1

PRi�1
k=0 �ik p(k)
PMi�1

k=0 p(k)
; (10)

where N is the number of users in the test set, Ri is the number of items on the recommen-

dation list for user i, Mi is the number of preferred items in the measurement set for user

19

i, and �ik is 1 if the kth item in the recommendation list for user i is preferred in the mea-

surement set and 0 otherwise. The denominator in Equation 10 is a per-user normalization

factor. It is the utility of a list where all preferred items are at the top. This normalization

allows us to more sensibly combine scores across measurement sets of di�erent size.

We performed several experiments reecting di�ering numbers of ratings available to

the CF engines. In the �rst protocol, we included all but one of the preferred items in the

input set. We term this protocol all but 1. In additional experiments, we placed 2, 5, and

10 preferred items in the input sets. We call these protocols given 2, given 5, and given 10.

The all but 1 experiments measure the algorithms' performance when given as much

data as possible from each test user. The various given experiments look at users with less

data available, and examine the performance of the algorithms when there is relatively little

known about an active user. When running the given m protocols, if an input set for a

given user had less than m preferred items, the case was eliminated from the evaluation.

Thus the number of trials evaluated under each protocol varied.

All experiments were performed on a 300 MHz Pentium II with 128 MB of memory

running the Windows NT 4.0 operating system.

4.3 Results

Table 3 shows the accuracy of recommendations for dependency networks and Bayesian net-

works across the various protocols and three datasets. For a comparison, we also measured

the accuracy of recommendation lists produced by a Bayesian network with no arcs (baseline

model). This model recommends items based on their overall popularity, p(xi = 1). A score

in boldface corresponds to a statistically signi�cant winner. We use ANOVA (e.g., McClave

and Dietrich, 1988) with � = 0:1 to test for statistical signi�cance. When the di�erence

between two scores in the same column exceed the value of RD (required di�erence), the

di�erence is signi�cant.

As in the case of density estimation, we see from the table that Bayesian networks are

more accurate than dependency networks, but only slightly so. In particular, the ratio of

(cfaccuracy(BN) { cfaccuracy(DN)) to (cfaccuracy(BN) { cfaccuracy(Baseline)) averages

4� 5 percent across the datasets and protocols. As before, the di�erences are probably due

to the fact that dependency networks are less statistically e�cient than Bayesian networks.

Tables 4 and 5 compare the two methods with the remaining criteria. Here, dependency

networks are a clear winner. They are signi�cantly faster at prediction|sometimes by

almost an order of magnitude|and require substantially less time and memory to learn.

Overall, Bayesian networks are slightly more accurate but much less attractive from a

computational perspective.

20

Table 3: CF accuracy for the MS.COM, Nielsen, and MSNBC datasets. Higher scores

indicate better performance. Statistically signi�cant winners are shown in boldface.

MS.COM

Algorithm Given2 Given5 Given10 AllBut1

BN 53.18 52.48 51.64 66.54

DN 52.68 52.54 51.48 66.60

RD 0.30 0.73 1.62 0.34

Baseline 43.37 39.34 39.32 49.77

Nielsen

Algorithm Given2 Given5 Given10 AllBut1

BN 24.99 30.03 33.84 45.55

DN 24.20 29.71 33.80 44.30

RD 0.32 0.40 0.65 0.72

Baseline 12.65 12.72 12.92 13.59

MSNBC

Algorithm Given2 Given5 Given10 AllBut1

BN 40.34 34.20 30.39 49.58

DN 38.84 32.53 30.03 48.05

RD 0.35 0.77 1.54 0.39

Baseline 28.73 20.58 14.93 32.94

21

Table 4: Number of predictions per second for the MS.COM, Nielsen, and MSNBC datasets.

MS.COM

Algorithm Given2 Given5 Given10 AllBut1

BN 3.94 3.84 3.29 3.93

DN 23.29 19.91 10.20 23.48

Nielsen

Algorithm Given2 Given5 Given10 AllBut1

BN 22.84 21.86 20.83 23.53

DN 36.17 36.72 34.21 37.41

MSNBC

Algorithm Given2 Given5 Given10 AllBut1

BN 7.21 6.96 6.09 7.07

DN 11.88 11.03 8.52 11.80

Table 5: Computational resources for model learning.

MS.COM

Algorithm Memory (Meg) Learn Time (sec)

BN 42.4 144.65

DN 5.3 98.31

Nielsen

Algorithm Memory (Meg) Learn Time (sec)

BN 3.3 7.66

DN 2.1 6.47

MSNBC

Algorithm Memory (Meg) Learn Time (sec)

BN 43.0 105.76

DN 3.7 96.89

22

5 Data Visualization

Our initial motivation for developing dependency networks concerned the visualization of

predictive relationships. In this section, we examine this application in more detail and

describe a tool developed at Microsoft Research, called DNetViewer, that employs depen-

dency networks for data visualization. For illustration, we use a real data set, provided by

Media Metrix, that contains demographic and internet-use data for about 5,000 individuals

during the month of January 1997.

Figure 2 shows DNetViewer's display of a dependency-network structure learned from

this data. After only a short inspection, an interesting relationship becomes apparent: there

are many dependencies among demographics, and many dependencies among frequency-of-

use, but there are few dependencies between demographics and frequency-of-use. We have

found numerous interesting dependency relationships such as this one across a wide variety

of datasets using dependency networks for visualization. In fact, we have given dependency

networks this name because they have been so useful in this regard.

DNetViewer allows a user to display both the dependency-network structure and the

probabilistic decision tree associated with each variable. Navigation between the views

is straightforward. To view a decision tree for a variable, a user double clicks on the

corresponding node in the dependency network. Figure 3 shows the tree for Shopping.Freq.

Note that there is an interesting relationship between the dependency-network structure

and the individual decision-tree structures. Namely, there will be a split on variable X in

the decision tree for Y if and only if there is an arc from X to Y in the dependency network.

We have found that this correspondence facilitates the process of data visualization.

Besides avoiding the sometimes confusing semantics of Bayesian networks, a dependency

network|in particular, an inconsistent dependency network|learned from data o�ers an

additional advantage for visualization over Bayesian networks. If there is an arc from X

to Y in such a network, we know that X is a signi�cant predictor of Y|signi�cant in

whatever sense was used to learn the network with �nite data. Under this interpretation,

a uni-directional link from X to Y is not confusing, but rather informative. For example,

in Figure 2, we see that Socioeconomic status is a signi�cant predictor of Sex, but not vice

versa|an interesting observation. Of course, when making such interpretations, one must

always be careful to recognize that statements of the form \X helps to predict Y " are made

in the context of the other variables in the network.

In DNetViewer, we enhance the ability of dependency networks to reect strength of

dependency by including a slider (on the left). As a user moves the slider from bottom to

top, arcs of decreasing strength are added to the graph. When the slider is in its upper-most

23

Figure 2: A dependency network for Media Metrix data. The dataset contains demographic

and internet-use data for about 5,000 individuals during the month of January 1997. The

node labeled Overall.Freq represents the overall frequency-of-use of the internet during this

period. The nodes Search.Freq, Edu.Freq, and so on represent frequency-of-use for various

subsets of the internet.

24

Figure 3: The probabilistic decision tree for Shopping.Freq obtained by double-clicking

the corresponding node in the dependency-network graph. The histograms at the leaves

correspond to probabilities of Shopping.Freq use being zero, one, and greater than one visit

per month, respectively.

25

position, all arcs (i.e., all signi�cant dependencies) are shown. There are several reasonable

methods for ranking arc strength. The one we use determines the order in which arcs would

be added during a (greedy) structure search that grows all decision trees in parallel. (In

practice, we construct the trees one after the other, but we can imagine a parallel procedure.)

At each step of this imagined construction process, we compute the increase in score (log

posterior probability) of each tree for every possible new split. We accept the split with the

largest increase in score and iterate. As the slider is moved up, we add arcs in the order in

which this procedure accepts corresponding splits.

Figure 4 shows the dependency network for the Media Metrix data with the slider at half

position. At this setting, we �nd the interesting observation that the dependence between

Sex and XXX.Freq (frequency of hits to pornographic pages) is the strongest among all

dependencies between demographics and internet use.

6 Summary and Future Work

We have described a graphical representation for probabilistic dependencies similar to the

Bayesian network called a dependency network. Like a Bayesian network, a dependency

network has a graph and a probability component. In its consistent form, the graph com-

ponent is a cyclic directed graph such that a node's parents render that node independent

of all other nodes in the network. As in a Bayesian network, the probability component

consists of the probability of a node given its parents for each node|the local distributions.

In practice, for computational reasons, we learn the structure and parameters of a depen-

dency network for a given domain by independently performing a classi�cation/regression

for each variable in the domain with inputs consisting of all variables except the target vari-

able. The parameterized model for each variable is the local distribution for that variable;

and the structure of the network reects any independencies discovered in the classi�ca-

tion/regression process (via feature selection). As a result of this learning procedure, the

dependency network is usually inconsistent|that is, it is not the case that the local dis-

tributions can be obtained via inference from a single joint distribution for the domain.

Nonetheless, because each local distribution is learned from the same data, the local dis-

tributions are \almost" consistent when there is adequate data. Consequently, as a useful

heuristic, we can apply the machinery of Gibbs sampling to this network to extract a joint

distribution for the domain and to answer probabilistic queries. Experiments on real data

show this approach to yield accurate predictions.

In addition to their application to probabilistic inference, we have shown that depen-

dency networks are useful for collaborative �ltering (the task of predicting preferences) and

26

Figure 4: The dependency network in Figure 2 with the slider set at half position.

27

for the visualization of acausal predictive relationships. In fact, Microsoft has included de-

pendency networks in two of its products|SQL Server 2000 and Commerce Server 2000|for

both the collaborative �ltering and data visualization tasks.

The intent of our paper has been to introduce the basic concepts and applications

of dependency networks. Consequently, there is signi�cant additional work to be done.

For example, many of the results described in this paper can be extended to domains

that include continuous variables. In addition, more work is needed to characterize those

situations in which the joint distribution de�ned by an (inconsistent) dependency network

is insensitive to errors in the learned local distributions. As another example, experimental

work is needed to examine the predictive accuracy of dependency networks across a variety

of domains using alternative methods for classi�cation and regression. It may also be useful

to consider pseudo-Gibbs sampling methods that resample variables in random rather than

�xed order.

Finally, we note that the representation itself can be generalized. Recall that a de-

pendency network is useful for collaborative �ltering primarily because the network stores

in its local distributions precisely the probabilistic quantities needed by the ranking algo-

rithm. In general, we can construct a \query network" that directly learns probabilities

corresponding to a set of given queries. As an illustration, suppose we have a domain con-

sisting of variables W;X; Y; and Z, and we know we will be answering the query p(w; xjy; z).

We can learn this distribution directly from data by performing a series of (independent)

classi�cations/regressions. We can construct the classi�cations/regressions p(wjx; y; z) and

p(xjy; z) and use multiplication to answer the query. Alternatively, we may construct the

classi�cations/regressions p(wjx; y; z) and p(xjw; y; z) and use a pseudo-Gibbs sampler to

answer the query. In either case, with su�cient data, the conditional probabilities learned

will be \almost" consistent with the true distribution, and are likely to produce accurate

answers to the query.

Acknowledgments

We thank Julian Besag, Oliver Downs, Reimar Hofmann, Ste�en Lauritzen, Adrian Raftery,

Volker Tresp, and the anonymous referees for comments on earlier drafts of this manuscript.

We thank David Steinkraus for his implementation of Gibbs sampling for dependency net-

works. Datasets for this paper were generously provided by Media Metrix, Nielsen Me-

dia Research (Nielsen), Microsoft Corporation (MS.COM), and Microsoft Corporation and

Steven White (MSNBC).

28

Appendix: Proofs of Theorems

Theorem 1: The set of positive distributions that can be encoded by consistent dependency

networks with graph G is equal to the set of positive distributions that can be encoded by

Markov networks whose structure have the same adjacencies as those in G.

Proof: Let p be a positive distribution de�ned by a Markov network where Ai are the

adjacencies of Xi, i = 1; : : : ; n. Construct a consistent dependency network from p by

extracting the conditional distributions p(xijxnxi); i = 1; : : : ; n. Because these probabilities

came from the Markov network, we know that p(xijx n xi) = p(xijAi); i = 1; : : : ; n so that

the adjacencies in the dependency-network structure are the same as those in the Markov

network.

Now let p be a positive distribution encoded by a consistent dependency network. By

de�nition, we have that Xi is independent of X n Xi given Pai, i = 1; : : : ; n. Because

p is positive and these independencies comprise the global Markov property of a Markov

network with Ai = Pai, i = 1; : : : ; n, the Hammersley{Cli�ord theorem (Besag, 1974;

Lauritzen, Dawid, Larsen, and Leimer, 1990) implies that p can be represented by this

Markov network. 2

Theorem 2: An ordered Gibbs sampler applied to a consistent dependency network forX,

where each Xi is �nite (and hence discrete) and each local distribution p(xijpai) is positive,

de�nes a Markov chain with a unique stationary joint distribution for X equal to p(X) that

can be reached from any initial state of the chain.

Proof: In the body of the paper, we showed that the Markov chain can be described

by the transition matrix P = P1 � : : : � Pn, where Pk is the \local" transition matrix

describing the resampling of Xk according to the local distribution p(xkjpak). We also

showed that this Markov chain has a unique joint distribution that can be reached from

any starting point. Here, we show that p(x) is that stationary distribution|that is, p(x) =
P

x
0 p(x0) Pxjx0 , where P

xjx0 = p(xt+1 = x0jxt = x). To do so, we show that for each Pi,

p(x) =
P

x
0 p(x0) Pi

xjx0 .

X

x
0

p(x0) Pi
xjx0 =

X

x
0

p(x0ijx
0 n x0i) p(x

0 n x0i) P
i
xjx0 (11)

=
X

x
0

p(x0ijx
0 n x0i) p(x

0 n x0i) p(xijpa
0
i) (12)

=
X

x
0

p(x0ijx
0 n x0i) p(x

0 n x0i) p(xijx
0 n x0i) (13)

29

=
X

x
0

p(x0ijx
0 n x0i) p(x n xi) p(xijx n xi) (14)

= p(x n xi) p(xijx n xi)
X

x
0

p(x0ijx
0 n x0i) (15)

= p(x) (16)

Equation 12 follows from Equation 11 using the de�nition of Pi. Equation 13 follows from

Equation 12 using the de�nition of a consistent dependency network. Equation 14 follows

from Equation 13 by observing that the value of x and x0 can di�er only in variable xi. The

other steps are straightforward.2

Theorem 4: A minimal consistent dependency network for a positive distribution p(x)

must be bi-directional.

Proof: We use the graphoid axioms of Pearl (1988). Suppose the theorem is false. Then,

there exists nodes Xi and Xj such that Xj is a parent of Xi and Xi is not a parent of

Xj . Let Z = Pai \ Paj , W = Pai n (Paj [fXjg), and Y = Paj nPai. From minimality,

we know that Xi??Xj jW;Z does not hold. By decomposition, Xi??Xj ;YjW;Z does not

hold. Given positivity, the intersection property holds. By the intersection property, at least

one of the following conditions does not hold: (1) Xi??Xj jW;Y;Z, (2) Xi??YjXj ;W;Z.

(If Y = ;, then condition 2 holds vacuously.)

Now, from Theorem 2, we know that Xi;W??Xj jY;Z. Using weak union, we have

that Xi??Xj jW;Y;Z|that is, condition 1 holds. Also, from Theorem 2, we know that

Xi??YjXj ;W;Z|that is, condition 2 holds, yielding a contradiction. 2

References

Bartlett, M. (1955). An Introduction to Stochastic Processes. University Press, Cambridge.

Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal

of the Royal Statistical Society, B, 36, 192{236.

Besag, J. (1975). Statistical analysis of non-lattice data. The Statistician, 24, 179{195.

Besag, J., Green, P., Higdon, D., & Mengersen, K. (1995). Bayesian computation and

stochastic systems. Statistical Science, 10, 3{66.

Bishop, C. (1995). Neural Networks for Pattern Recognition. Clarendon Press, Oxford.

Breese, J. S., Heckerman, D., & Kadie, C. (1998). Empirical analysis of predictive algorithms

for collaborative �ltering. In Proceedings of Fourteenth Conference on Uncertainty in

Arti�cial Intelligence, Madison, Wisconsin. Morgan Kaufmann.

30

Brook, D. (1964). On the distinction between the conditional probability and the joint

probability approaches in the speci�cation of nearest-neighbor systems. Biometrika,

51, 481{483.

Buntine, W. (1991). Theory re�nement on Bayesian networks. In Proceedings of Seventh

Conference on Uncertainty in Arti�cial Intelligence, Los Angeles, CA, pp. 52{60.

Morgan Kaufmann.

Chickering, D., Heckerman, D., & Meek, C. (1997). A Bayesian approach to learning

Bayesian networks with local structure. In Proceedings of Thirteenth Conference on

Uncertainty in Arti�cial Intelligence, Providence, RI. Morgan Kaufmann.

Cho, G., & Meyer, C. (1999). Markov chain sensitivity by mean �rst passage times. Tech.

rep. 112242-0199, North Carolina State University.

Fowlkes, E., Freeny, A., & Landwehr, J. (1988). Evaluating logistic models for large con-

tingency tables. Journal of the American Statistical Association, 83, 611{622.

Frey, B., Hinton, G., & Dayan, P. (1996). Does the wake-sleep algorithm produce good

density estimators?. In Touretsky, D., Mozer, M., & Hasselmo, M. (Eds.), Neural

Information Processing Systems, Vol. 8, pp. 661{667. MIT Press.

Friedman, N., & Goldszmidt, M. (1996). Learning Bayesian networks with local structure. In

Proceedings of Twelfth Conference on Uncertainty in Arti�cial Intelligence, Portland,

OR, pp. 252{262. Morgan Kaufmann.

Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian

restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 6, 721{742.

Gilks, W., Richardson, S., & Spiegelhalter, D. (1996). Markov Chain Monte Carlo in

Practice. Chapman and Hall.

Heckerman, D., & Meek, C. (1997). Models and selection criteria for regression and classi-

�cation. In Proceedings of Thirteenth Conference on Uncertainty in Arti�cial Intelli-

gence, Providence, RI. Morgan Kaufmann.

Hofmann, R., & Tresp, V. (1998). Nonlinear Markov networks for continuous variables. In

Advances in Neural Information Processing Systems 10, pp. 521{527. MIT Press.

Jensen, F., Lauritzen, S., & Olesen, K. (1990). Bayesian updating in recursive graphical

models by local computations. Computational Statisticals Quarterly, 4, 269{282.

31

Lauritzen, S. (1996). Graphical Models. Claredon Press.

Lauritzen, S., Dawid, A., Larsen, B., & Leimer, H. (1990). Independence properties of

directed Markov �elds. Networks, 20, 491{505.

L�evy, P. (1948). Chaines doubles de Marko� et fonctions aleatories de deux variables.

Academcy of Science, Paris, 226, 53{55.

McClave, J., & Dieterich, F. (1988). Statistics. Dellen Publishing Company.

McCullagh, P., & Nelder, J. (1989). Generalized Linear Models, Second Edition. Chapman

and Hall, New York.

Neal, R. (1993). Probabilistic inference using Markov chain Monte Carlo methods. Tech.

rep. CRG-TR-93-1, Department of Computer Science, University of Toronto.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufmann, San Mateo, CA.

Platt, J. (1999). Fast training of support vector machines using sequential minimal opti-

mization. In Advances in Kernel Methods|Support Vector Learning. MIT Press.

Resnik, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). Grouplens: An open

architecture for collaborative �ltering of netnews. In Proceedings of the ACM 1994

Conference on Computer Supported Cooperative Work, pp. 175{186. ACM.

Sewell, W., & Shah, V. (1968). Social class, parental encouragement, and educational

aspirations. American Journal of Sociology, 73, 559{572.

Whittaker, J. (1990). Graphical Models in Applied Multivariate Statistics. John Wiley and

Sons.

32

