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1. Introduction and statement of results

1.1 Model and assumptions
In this paper we study the so-called parabolic Anderson model, which is the Euclidean-

time version of the Schrödinger equation with a random potential and a homogeneous initial
condition. More precisely, consider the initial problem

∂t u(t, z) = κ∆du(t, z) + ξ(z)u(t, z), (t, z) ∈ (0,∞)× Z
d,

u(0, z) = 1, z ∈ Z
d,

(1.1)

where ∂t is the time derivative, u : [0,∞) × Z
d → [0,∞) is a function, κ > 0 is a diffusion

constant, ∆d is the discrete Laplacian (∆df)(z) = (2d)−1∑
y∼z(f(y)−f(z)), and ξ = (ξ(z))z∈Zd

is a random i.i.d. potential. Let 〈 · 〉 be the expectation with respect to ξ and let Prob(·) be the
corresponding probability measure. Our main subject of interest is the large-t behavior of the
p-th moment 〈u(t, 0)p〉 for all p > 0 and the almost-sure asymptotics of u(t, 0) as t→ ∞.

It is clear that these asymptotics are determined by the upper tails of the random vari-
able ξ(0). Our principal assumption is that the potential distribution is bounded from above.
As then follows by applying a criterion derived in Gärtner and Molchanov [GM90], there is
a unique non-negative solution to (1.1) for almost all ξ. Moreover, since ξ(·) → ξ(·) + a is
compensated by u(t, ·) → eatu(t, ·) in (1.1), we assume without loss of generality that ξ(0) is a
non-degenerate random variable with

esssup ξ(0) = 0. (1.2)

Thus Prob(ξ(0) ≤ 0) = 1, and Prob(ξ(0) ≥ −ε) > 0 for every ε > 0. A priori , Prob(ξ(0) =
−∞) may be non-vanishing, but some restrictions to its size have to be imposed in order to
have an interesting almost-sure asymptotics (see Theorem 1.5).

The main representative of the distributions we shall study is

Prob
(
ξ(0) > −x) ≈ exp

{
−const. x− γ

1−γ

}
, x ↓ 0, (1.3)

where γ ∈ [0, 1) is a parameter. For γ = 0 this class of distributions includes the discrete
version of the so-called “Wiener sausage problem”, which has extensively been studied (see,
e.g., Donsker and Varadhan [DV79], Antal [A95], and Sznitman [S98]).

Our assumptions on the thickness of Prob(ξ(0) ∈ ·) at 0 will be described in terms of scaling
properties of the cumulant generating function

H(�) = log〈e�ξ(0)〉, � ≥ 0. (1.4)

Note that H is convex and, by (1.2), decreasing and strictly negative on (0,∞).
Scaling Assumption. We assume that there is a non-decreasing function t �→ αt ∈ (0,∞)
and a function H̃ : [0,∞) → (−∞, 0], H̃ �≡ 0, such that

lim
t→∞

αd+2
t

t
H

(
t

αdt
y

)
= H̃(y), y ≥ 0, (1.5)

uniformly on compact sets in (0,∞).
Note that finiteness and non-triviality of H̃ necessitate that t/αdt → ∞ and αt = O(t1/(d+2)).

In the asymptotic sense, (1.5) and non-triviality of H̃ determine the pair (αt, H̃) uniquely up



PARABOLIC ANDERSON MODEL 3

to a constant multiple resp. scaling. Indeed, if (α̂t, Ĥ) is another pair satisfying the Scaling
Assumption then, necessarily, α̂t/αt → c �= 0,∞ and Ĥ(·) = cd+2H̃(·/cd). Moreover, if t �→ α̂t
is a positive function with α̂t/αt → 0, then the limit in (1.5) equals Ĥ ≡ 0. Similarly, if
α̂t/αt → ∞, then Ĥ ≡ −∞. These assertions follow directly from convexity of H (see also
Subsection 3.2). For bounds on the growth of t �→ αt, see Proposition 1.1.

1.2 Main results

1.2.1 Power-law asymptotic scaling . Remarkably, our Scaling Assumption constrains the form
of possible H̃ to a two-parameter family and forces the scale function αt to be regularly varying.
The following claim is proved in Subsection 3.2.

Proposition 1.1 Suppose (1.2) and the Scaling Assumption hold. Then

H̃(y) = H̃(1)yγ, y > 0, (1.6)

for some γ ∈ [0, 1]. Moreover,

lim
t→∞

αpt
αt

= pν for all p > 0, and lim
t→∞

logαt
log t

= ν, (1.7)

where

ν =
1− γ

d+ 2− dγ
∈ (0, 1

d+2

]
. (1.8)

This leads us to the following concept:

Definition. Given a γ ∈ [0, 1], we say that H is in the γ-class, if there is a function t �→ αt
such that (H,αt) satisfies the Scaling Assumption and the limiting H̃ is homogeneous with
exponent γ, as in (1.6).

As is seen from (1.3), each value γ ∈ [0, 1) can be attained. Note that, despite the simplicity
of possible H̃, the richness of the class of all ξ-distributions persists in the scaling behavior
of αt = tν+o(1). For instance, the case γ = 0 includes both the distributions with an atom
at 0 and those with no atom but with a density ρ (w.r.t. the Lebesgue measure) having the
asymptotic behavior ρ(x) ∼ (−x)σ (x ↑ 0) for a σ > −1. It is easy to find that αt = t

1
d+2 [and

H̃(1) = log Prob(ξ(0) = 0)] in the first case while αt = (t/ log t)
1

d+2 in the second one. Yet
thinner a tail has ρ(x) ∼ exp(− logτ |x|−1) with τ > 1, for which αt = (t/ logτ t)

1
d+2 .

Throughout the remainder of this paper, we restrict ourselves to the case γ < 1. The case
γ = 1 is qualitatively different from that of γ < 1; for more explanation see Subsections 2.2
and 2.5.

1.2.2 Moment asymptotics. We proceed by describing the logarithmic asymptotics of the p-th
moment of u(0, t). First we introduce four classes of objects:
• Function spaces: Let

F =
{
f ∈ Cc(Rd, [0,∞)) : ‖f‖1 = 1

}
, (1.9)

and for R > 0, let FR be set of f ∈ F with support in [−R,R]d. By C+(R) (resp. C−(R)) we
denote the set of continuous functions [−R,R]d → [0,∞) (resp. [−R,R]d → (−∞, 0]). Note
that functions in FR vanish at the boundary of [−R,R]d, while those in C±(R) may not.
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• Functionals: Let I : F → [0,∞] be the Donsker-Varadhan rate functional

I(f) =

{
κ
∥∥(−∆)

1
2
√
f
∥∥2

2 if
√
f ∈ D((−∆)

1
2
)
,

∞ otherwise,
(1.10)

where ∆ is the Laplace operator on L2(Rd) (defined as a self-adjoint extension of
∑
i(∂

2/∂x2
i )

from, e.g., the Schwarz class on R
d) and D((−∆)1/2) denotes the domain of its square root.

Note that I(f) is nothing but the Dirichlet form of the Laplacian evaluated at f 1/2.
For R > 0 we define the functional HR : C+(R) → (−∞, 0] by putting

HR(f) =
∫

[−R,R]d
H̃
(
f(x)

)
dx. (1.11)

Note that for H in the γ-class, HR(f) = H̃(1)
∫
f(x)γdx, with the interpretation HR(f) =

H̃(1)|supp f | when γ = 0. Here | · | denotes the Lebesgue measure.
• Legendre transforms: Let LR : C−(R) → [0,∞] be the Legendre transform of HR,

LR(ψ) = sup
{
(f, ψ)−HR(f) : f ∈ C+(R), supp f ⊂ suppψ

}
, (1.12)

where we used the shorthand notation (f, ψ) =
∫
f(x)ψ(x) dx. If H is in the γ-class, we get

LR(ψ) = const.
∫ |ψ(x)|− γ

1−γ dx for γ ∈ (0, 1) and LR(ψ) = −H̃(1) |suppψ| for γ = 0.
For any potential ψ ∈ C−(R), we also need the principal (i.e., the largest) eigenvalue of the

operator κ∆ + ψ on L2([−R,R]d) with Dirichlet boundary conditions, expressed either as the
Legendre transform of I or in terms of the Rayleigh-Ritz principle:

λR(ψ) = sup
{
(f, ψ)− I(f) : f ∈ FR, supp f ⊂ suppψ

}
= sup

{
(ψ, g2)− κ‖∇g‖2

2 : g ∈ C∞
c (suppψ,R), ‖g‖2 = 1

}
,

(1.13)

with the interpretation λR(0) = −∞.
• Variational principles: Here is the main quantity of this subsection:

χ = inf
R>0

inf
{I(f)−HR(f) : f ∈ FR

}
(1.14)

= inf
R>0

inf
{LR(ψ)− λR(ψ) : ψ ∈ C−(R)

}
. (1.15)

where (1.15) is obtained from (1.14) by inserting (1.12) and the second line in (1.13). Note
that χ depends on γ and the constant H̃(1).

The main result of this subsection is the following theorem; for the proof see Section 4.

Theorem 1.2 Suppose (1.2) and our Scaling Assumption hold. Let H be in the γ-class for
some γ ∈ [0, 1). Then χ ∈ (0,∞) and, for every p ∈ (0,∞),

lim
t→∞

α2
pt

pt
log
〈
u(t, 0)p

〉
= −χ. (1.16)

Both (1.14) and (1.15) arise in well-known large-deviation statements: the former for an
exponential functional of Brownian occupation times, the latter for the principal eigenvalue for
a scaled version of the field ξ. Our proof addresses the first formula; an approach based on the
second formula is heuristically explained in Subsection 2.1.1.
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Formula (1.16), together with the results of Proposition 1.1, imply that

lim
t→∞

α2
t

t
log

〈u(t, 0)p〉1/p
〈u(t, 0)q〉1/q = χ

(
q−2ν − p−2ν), p, q ∈ (0,∞), (1.17)

whenever H is in the γ-class, where ν > 0 is as in (1.8). In particular, 〈u(t, 0)p〉 for p > 1
decays much slower than 〈u(t, 0)〉p. This is the type of behavior typical for intermittency (for
the definition and significance of this notion we refer to Gärtner and Molchanov [GM90] and
the monograph of Carmona and Molchanov [CM94]).

1.2.3 Lifshitz tails. Based on Theorem 1.2, we can compute the asymptotics of so-called
integrated density of states (IDS) of the operator −κ∆d − ξ on the right-hand side of (1.1), at
the bottom of its spectrum. Below we define the IDS and list some of its basic properties. For
a comprehensive treatment and proofs we refer to the book by Carmona and Lacroix [CL90].

The IDS is defined as follows: Let R > 0 and consider the operator HR = −κ∆d − ξ in
[−R,R]d ∩ {x ∈ Z

d : ξ(x) > −∞} with Dirichlet boundary conditions. Clearly, HR has a finite
number of eigenvalues that we denote Ek, so it is meaningful to consider the quantity

NR(E) = #{k : Ek ≤ E}, E ∈ R. (1.18)

The integrated density of states is then the limit

n(E) = lim
R→∞

NR(E)
(2R)d

, (1.19)

giving n(E) the interpretation as the number of energy levels below E per unit volume. The
limit exists and is almost surely constant, as can be proved using e.g. subadditivity.

It is clear that E �→ n(E) is monotone and that n(E) = 0 for all E < 0, provided (1.2) is
assumed. In the 1960’s, based on heuristic arguments, Lifshitz postulated that n(E) behaves
like exp(−const. E−δ) as E ↓ 0. This asymptotic form has been established rigorously in the
cases treated by Donsker and Varadhan [DV79] and Sznitman [S98], with δ = d/2. Here
we generalize this result to our class of distributions with γ < 1; however, in our cases the
power-law is typically supplemented with a lower-order correction. The result can be concisely
formulated in terms of the inverse function of t �→ αt:

Theorem 1.3 Suppose (1.2) and the Scaling Assumption hold. Let H be in the γ-class for
some γ ∈ [0, 1) and let α−1 be the inverse to the scaling function t �→ αt. Then

lim
E↓0

log n(E)

Eα−1(E− 1
2 )

= − 2ν
1− 2ν

[
(1− 2ν)χ

]− 1
2ν (1.20)

where χ is as in (1.14) and ν is defined in (1.8).

Invoking (1.7), Eα−1(E−1/2) = E−1/β+o(1) as E ↓ 0, where

β =
2

d+ 2 γ
1−γ

=
2ν

1− 2ν
∈ (0, 2

d

]
. (1.21)

In particular, 1/β is the Lifshitz exponent. Theorem 1.3 is proved in Subsection 4.3.
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1.2.4 Almost-sure asymptotics. The almost-sure behavior of u(t, 0) depends strongly on whether
the origin belongs to a finite or infinite component of the set C = {z ∈ Z

d : ξ(z) > −∞}. Indeed,
if 0 is in a finite component of C, then u(t, 0) decays exponentially with t. Thus, in order to
get a non-trivial almost-sure behavior of u(t, 0) as t→ ∞, we need that C contains an infinite
component C∞ and that 0 ∈ C∞ occurs with a non-zero probability. In d ≥ 2, this is guaranteed
by requiring that Prob(ξ(0) > −∞) exceed the percolation threshold pc(d) for site percolation
on Z

d. In d = 1, C is percolating if and only if Prob(ξ(0) > −∞) = 1; sufficient “connectivity”
can be ensured only under an extra condition on the lower tail of ξ(0).

Suppose, without loss of generality, that t �→ t/α2
t is strictly increasing (recall that αt = tν+o(1)

with ν ≤ 1/3). Then we can define another scale function t �→ bt ∈ (0,∞) by setting

bt
α2
bt

= log t, t > 0. (1.22)

(In other words, bt is the inverse function of t �→ t/α2
t evaluated at log t.) Let

χ̃ = − sup
R>0

sup
{
λR(ψ) : ψ ∈ C−(R), LR(ψ) ≤ d

}
. (1.23)

In our description of the almost sure asymptotics, the pair (αbt , χ̃) will play a role analogous
to the pair (αt, χ) in Theorem 1.2. It is clear from Proposition 1.1 that

bt = (log t)
1

1−2ν
+o(1) and α2

bt =
(
log t

)β+o(1)
, t→ ∞, (1.24)

where β is as in (1.21). It turns out that χ̃ can be computed from χ:

Proposition 1.4 Suppose (1.2) and our Scaling Assumption hold. Let H be in the γ-class for
some γ ∈ [0, 1). Then χ̃ ∈ (0,∞) and

χ̃ = χ
1

1−2ν (1− 2ν)
(

2ν
d

)β
, (1.25)

where χ and χ̃ are as in (1.14) and (1.23), and ν = 1−γ
d+2−dγ .

The proof of Proposition 1.4 is given in Subsection 3.3. In the special case γ = 0, the relation
(1.25) can independently be verified by inserting the explicit expressions for χ and χ̃ derived
e.g. in Sznitman [S98].

Our main result on the almost sure asymptotics reads as follows:

Theorem 1.5 Suppose (1.2) and our Scaling Assumption hold. Let H be in the γ-class for
some γ ∈ [0, 1). In d ≥ 2, suppose that Prob(ξ(0) > −∞) > pc(d); in d = 1, suppose
〈log(−ξ(0) ∨ 1)〉 <∞. Then

lim
t→∞

α2
bt

t
log u(t, 0) = −χ̃ Prob( · |0 ∈ C∞)-almost surely. (1.26)

The condition on the lower tail of the distribution of ξ(0) in d = 1 is possibly not optimal.
For more comments on this issue, see Subsection 2.5. Theorem 1.5 is proved in Section 5; for
a heuristic derivation see Subsection 2.1.2.
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2. Heuristics, literature remarks, and open problems

2.1 Heuristic derivation
The quantity u(t, 0) can be given a dynamical-system interpretation: Imagine a particle

system on Z
d with particles performing independent (continuous-time) simple random walk

in a landscape of “soft” traps. The power of each trap is described by the field ξ: particles
at site z become trapped (killed) at rate −ξ(z). For this particle system, u(t, 0) is the total
expected number of particles located at the origin at time t, provided the initial configuration
had exactly one particle at each lattice site.

It is clear from (1.2) that, by time t, the origin is not likely to be reached by any particle
from regions having distance more than t from the origin. If ut(t, 0) is the expected number
of particles at the origin at time t under the constraint that no particle from outside the box
Qt = [−t, t]d ∩ Z

d has reached the origin, then this should imply that

u(t, 0) ≈ ut(t, 0). (2.1)

The particle system in the box Qt is driven by the operator κ∆d + ξ on the right-hand side
of (1.1) with zero boundary conditions in Qt and the leading-order behavior of ut should be
governed by its principal (i.e., the largest) eigenvalue λd

t (ξ) in the sense that

ut(t, 0) ≈ etλ
d
t (ξ). (2.2)

Based on (2.2), we can give a plausible explanation of our Theorems 1.2 and 1.5.

2.1.1 Moment asymptotics. Under the expectation with respect to ξ, there is a possibility that
〈u(t, 0)〉 will be dominated by a set of ξ’s with exponentially small probability. But then the
decisive contribution to the average particle-number at zero may come from much smaller a
box than Qt. Let Rαt denote the diameter of the purported box. Then we should have〈

ut(t, 0)
〉 ≈ 〈etλd

Rαt

〉
. (2.3)

The proper choice of the scale function αt is determined by balancing the gain in λd
Rαt

(ξ) and
the loss due to taking ξ’s with exponentially small probability. Introducing the scaled field

ξ̄t(x) = α2
t ξ
("xαt#), (2.4)

the condition that these scales match for ξ̄t ≈ ψ ∈ C−(R) reads

log Prob(ξ̄t ≈ ψ) $ tλd
Rαt

(
α−2
t ψ(·α−1

t )
)
. (2.5)

By scaling properties of the continuous Laplace operator, the right-hand side is approximately
equal to (t/α2

t )λR(ψ), where λR(ψ) is defined in (1.13). On the other hand, by our Scaling
Assumption,

log Prob(ξ̄t ≈ ψ) ≈ − t

α2
t

LR(ψ), (2.6)

i.e., we expect ξ̄t to satisfy a large-deviation principle with rate t/α2
t and rate function LR.

Then the scales on both sides of (2.5) are identical and, comparing also the prefactors, we have〈
etλ

d
Rαt 1{ξ̄t ≈ ψ}〉 ≈ exp

{
t
α2

t
[λR(ψ)− LR(ψ)]

}
. (2.7)
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Now collect (2.1), (2.3) and (2.7) and maximize over ψ ∈ C−(R) and over R > 0 to obtain
formally the statement on the moment asymptotics in Theorem 1.2 for p = 1. Note that, by
the above heuristic argument, αt is the spatial scale of the “islands” in the potential landscape
that are only relevant for the moments of u(t, 0).

2.1.2 Almost-sure asymptotics. Based on the intuition developed for the moment asymptotics,
the decisive contribution to (2.2) should come from some quite localized region in Qt. Suppose
this region has size αbt , where bt is some new running time scale; for instance, divide Qt
regularly into boxes of diameter Rαbt (“microboxes”) with some R > 0. According to (2.6)
with t replaced by bt, we have for any ψ ∈ C−(R) with LR(ψ) ≤ d that

Prob(ξ̄bt ≈ ψ) ≈ exp
{− bt

α2
bt

LR(ψ)
} ≥ e−dbt/α2

bt , (2.8)

Suppose that bt obeys (1.22). Then the right-hand side of (2.8) decays as fast as t−d. Since
there are of order td microboxes in Qt, a Borel-Cantelli argument implies that for any ψ with
LR(ψ) < d, there will be a microbox in Qt where ξ̄bt ≈ ψ. As before, tλd

Rαbt
(ψ(·/αbt)/α2

bt
) ≈

(t/α2
bt
)λR(ψ), and by optimizing over ψ, any value smaller than χ̃ can be attained by λR(ψ) in

some microbox in Qt.
This suggests that u(t, ·) in the favorable microbox decays as described by (1.26). It remains

to ensure, and this is a non-trivial part of the argument, that the particles that have survived
in this microbox by t can always reach the origin within a negligible portion of time t. This
requires, in particular, that sites with ξ > −∞ form an infinite cluster containing the origin. If
the connection between 0 and the microbox can be guaranteed, u(t, 0) should exhibit the same
leading-order decay, which is the essence of the claim in Theorem 1.5. Note that, as before, αbt
is the spatial scale of the islands relevant for the random variable u(t, 0).

2.2 The case γ = 1
In the boundary case γ = 1 the relevant islands grow (presumably) slower than any polyno-

mial as t→ ∞ (i.e., αt = to(1)), and H̃ is linear. As a consequence, the asymptotic expansion of
〈u(t, 0)p〉 starts with a deterministic term exp[αdptH(pt/αdpt)]. Even though Theorem 1.2 is for-
mally satisfied in this case, no variational problem is involved at this order and no information
about the “typical” configuration of the fields is gained.

To understand which ξ dominate the moments of u(t, 0) and, in particular, u(t, 0) itself, we
have to analyze the next-order term. This requires imposing an additional scaling assumption:
We suppose the existence of a new scale function ηt = o(tα−d−2

t ) such that

lim
t→∞

1
ηt

[
H
(
t
αd

t
y
)−H

(
t
αd

t

)
y
]
= Ĥ(y) (2.9)

exists locally uniformly in y ∈ (0,∞). In analogy with Theorem 1.2, this should lead to the
asymptotic expansion of the moments〈

u(t, 0)p
〉
= exp

[
αdptH

(
pt
αd

pt

)− ηptα
d
pt

(
χ̂+ o(1)

)]
, (2.10)

where χ̂ is defined as in Subsection 1.2.2 with H̃ replaced by Ĥ. On the other hand, the almost-
sure asymptotics should solely be determined by the second-order scale. Indeed, (1.12) outputs
either value 0 or ∞, depending whether supψ ≤ H̃(1) or not. Setting ψ = H̃(1)+αd+2

t ψ�/(tηt)
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with some ψ� ∈ C−(R), (2.8) should read as Prob(ξ̄bt ≈ ψ) ≈ exp{−(bt/α2
bt
)L�R(ψ�)}, where

L�R is defined by (1.12) with H̃ replaced by Ĥ. Let b�t solve for s in ηsα
d
s = log t. Then

u(t, 0) = exp{−(t/α2
b	t
)[χ̂� + o(1)]} should hold, where and χ̂� is defined by (1.23) with H̃

replaced by Ĥ. However, we have not made any serious attempt to carry out the details.
Surprisingly, the function Ĥ takes a unique form in this case:

Ĥ(y) = σy log y, (2.11)

where σ > 0 is a parameter. To establish this, we just need to apply a couple of observations
from Proposition 1.1. For any p ∈ (0,∞), let φt(p) = αpt/αt. Then we have

H
(
pt
αd

pt
y
)− yH

(
pt
αd

pt

)
=
[
H
(
t
αd

t
pyφt(p)−d)− pyφt(p)−dH

(
t
αd

t

)]− y
[
H
(
t
αd

t
pφt(p)−d)− pφt(p)−dH

(
t
αd

t

)]
(2.12)

By dividing both sides by ηt, interpreting pt as the time variable on the left-hand side, and
recalling that φt(p) → 1 as t→ ∞ by Proposition 1.1 in this case (γ = 1), we have

ηpt
ηt

(
Ĥ(y) + o(1)

)
= Ĥ(py)− yĤ(p) + o(1), (2.13)

where we also used continuity of y �→ Ĥ(y). This proves that ηpt/ηt → φ̂(p) satisfying φ̂(p) =
[Ĥ(py)−Ĥ(p)y]/Ĥ(y) for any p, y ∈ (0,∞). Since φ̂(p) is clearly multiplicative, after some work
we find out that the pair (φ̂( · ), Ĥ( · )) must be of the form φ̂(p) = p1+κ and Ĥ(y) = σy y

κ−1
κ

for some σ > 0 and κ ∈ [−1, 0] (the cases κ < −1 violate the convexity of Ĥ; κ > 0 is
incompatible with ηt = o(t/αd+2

t )). For κ = 0, the formula reads as Ĥ(y) = σy log y. Observe
that, by differentiability of y �→ Ĥ(y), the limit in (2.9) is uniform on [0,M ] for any M > 0.

To rule out the cases with negative κ, suppose κ < 0 and note that, analogously to (1.7),
φ̂(p) = p1+κ implies ηt = t1+κ+o(1). Let yt and δt be defined by the formulas

t

αdt
yt = 1 and ηt y

δt
t = 1. (2.14)

Clearly, since yt = t−1+o(1) by the first relation and (1.7), we have δt = 1+ κ + o(1). Moreover,
by yδtt → 0 we also have H( · yt) ≤ H( · y1−δt

t )yδtt . Now insert (2.14) into the bracket in (2.9),
divide by yδtt and use the preceding observation to get that

H(1)− αdt
t
H
( t

αdt

)
≤ 1
ηt

[
H
(
t
αd

t
y1−δt
t

)−H
(
t
αd

t

)
y1−δt
t

]
= Ĥ(y1−δt

t ) + o(1), t→ ∞, (2.15)

where we used that y1−δt
t /ηt = αdt /t and invoked the uniformity of (2.9). Since limt→∞ y1−δt

t = 0,
the right-hand side vanishes as t→ ∞. But this is a contradiction, because H(1) is finite while
(αdt /t)H(t/αdt ) = α2

t [H̃(1)+o(1)] → −∞, by limt→∞ αt = ∞. Consequently, only the case κ = 0
is compatible with (1.2) and the Scaling Assumption (the cases κ < 0 vaguely correspond to
measures with the tail (1.3) but with esssup ξ(0) < 0, which implies that αt = const. ).

2.3 An application: Self-attractive random walks
One of our original source of motivation for this work have been self-attractive path mea-

sures as models for “squeezed polymers”. Consider a polymer S = (S0, . . . , Sn) of length n
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modeled by a path of simple random walk with a transformed path measure proportional to
exp[β

∑
x V (�n(x))]. Here V : Z → (−∞, 0], and �n(x) = #{k ≤ n : Sk = x} is the local time

at x. Assuming that V is convex and V (0) = 0, e.g., V (�) = −�γ with γ ∈ [0, 1), the interac-
tion has an attractive effect. A large class of such functions V (i.e., the completely monotonous
ones) are the cumulant generating functions of probability distributions on [−∞, 0], like H
in (1.4). Via the Feynman-Kac representation, this makes the study of the above path measure
essentially equivalent to the study of the moments of a parabolic Anderson model. In fact, the
only difference is that for polymer models the time of the walk is discrete.

We have no doubt that Theorem 1.2 extends to the discrete-time case. Hence, the endpoint
Sn of the polymer fluctuates on the scale αn as in our Scaling Assumption, which is αn = nν in
the V (�) = −�γ case. Since γ �→ ν is decreasing, we are confronted with the counterintuitive
feature that the squeezing effect is the more extreme the “closer” is V to the linear function.
This is even more surprising if one recalls that for the boundary case γ = 1, the Hamiltonian∑
x V (�n(x)) is deterministic, and therefore the endpoint runs on scale n1/2. Note that, on the

other hand, for γ > 1, which is the self-repellent case, it is expected in dimensions d = 2 and 3
(and known in d = 1) that the scale of the endpoint is larger than 1

2 . Hence, at least in low
dimensions, there is an intriguing phase transition for the path scale at γ = 1.

As a nice side-remark, the following model of an annealed randomly-charged polymer also
falls into the class of models considered above. Consider an n-step simple random walk S =
(S0, . . . , Sn) with weight e−βIn(S) where β > 0 and

In(S) =
∑

0≤i<j≤n
ωiωj1{Si = Sj}. (2.16)

Here ω = (ωi)i∈N0 is an i.i.d. sequence with a symmetric distribution on R having variance one.
Think of ωi as an electric charge at site i of the polymer. (For continuous variants of this model
and more motivation see e.g., Buffet and Pulé [BP97]).

If the charges equilibrate faster than the walk, the interaction they effectively induce on the
walk is given by the expectation E(e−βIn(S)) and is thus of the above type with

V (�) = − logE exp
(
(ω0 + · · ·+ ω�)2

)
, (2.17)

where E denotes the expectation with respect to ω. By the invariance principle, we have
V (�) = −(1/2 + o(1)) log � as � → ∞, which means that V satisfies our Scaling Assumption
with αn = (n/ log n)1/(d+2). Hence, we can identify the logarithmic asymptotics of the partition
function E0 ⊗ E(e−βIn) and see that the typical end-to-end distance of the annealed charged
polymer runs on the scale αn, i.e., the averaging over the charges has a self-attractive effect.

2.4 Relation to earlier work
General mathematical aspects of the problem (1.1), including the existence and uniqueness

of solutions and a criterion for intermittency (see (1.17) and the comments thereafter), were
first addressed by Gärtner and Molchanov [GM90]. In a subsequent paper [GM98] (see also
[GM96]), the same authors focused on the case of double-exponential distributions

Prob(ξ(0) > x) ∼ exp
{−ex/"}, x→ ∞. (2.18)

For 0 < 7 < ∞, it turns out that the main contribution to 〈u(t, 0)p〉 comes from islands in
Z
d of asymptotically finite size (which corresponds to a constant αt in our notation). When the
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upper tails of Prob(ξ(0) ∈ ·) are yet thicker (i.e., 7 = ∞), e.g., when ξ(0) is Gaussian, then the
overwhelming contribution to 〈u(t, 0)p〉 comes from very high peaks of ξ concentrated at single
sites. (In a continuous setting the scaling can still be non-trivial, see Gärtner and König [GK98],
and Gärtner, König and Molchanov [GKM99].) For thinner tails than double-exponential (i.e.,
when 7 = 0, called the almost bounded case in [GM98]), the relevant islands grow unboundedly
as t → ∞, i.e., αt → ∞ in our notation. The distribution (2.18) thus constitutes a certain
critical class for having a non-degenerate but still discrete spatial structure.

The opposite extreme of the tail behaviors was addressed by Donsker and Varadhan [DV79]
(moment asymptotics) and by Antal [A95] (almost-sure asymptotics), see also [A94]. The
distribution that these authors considered was ξ(0) = 0 or −∞ with probability p and 1 − p,
respectively. The analysis of the moments boils down to a self-interacting polymer problem (see
Subsection 2.3), which is essentially the route taken by Donsker and Varadhan. In the case of a
fixed field, the problem is a discrete analogue of the Brownian motion in a Poissonian potential
analyzed extensively by Sznitman in the 1990’s using his celebrated method of enlargement of
obstacles (MEO), see Sznitman [S98].

Interpret points z with ξ(z) = −∞ as a trap where the simple random walk is killed. If
O = {z ∈ Z

d : ξ(z) = −∞} denotes the trap region and TO = inf{t > 0: X(t) ∈ O} the
entrance time, then

u(t, z) = Pz(TO > t), (2.19)

i.e., u(t, z) is the survival probability at time t for a walk started at z. In his thesis [A94], Antal
derives a discrete version of the MEO and demonstrates its value in [A94] and [A95] by proving
results which are (refinements of) our Theorems 1.2 and 1.5 for γ = 0 and αt = t1/(d+2).

2.5 Discussion and open problems
(1) “Almost-bounded” cases. We gave ourselves the task to fill in the gap between the two

regimes considered in [GM98] and [DV79] resp. [A95], i.e., we wanted to study the general
case in which the diameter αt of the relevant islands grows to infinity. The present paper
investigates the case in which the field is bounded from above and αt diverges at least like a
power of t. As already noted in Subsection 2.2, in the boundary case αt = to(1) (i.e., γ = 1)
another phenomenon occurs which cannot be handled in a unified manner. We believe that
the γ = 1 case reflects the whole regime of “almost bounded” but unbounded potentials, i.e.,
those interpolating between our cases γ < 1 and the double exponential distribution. For these
reasons, we leave its investigation to future work.

(2) Generalized MEO. Our proofs closely follow Gärtner and König [GK98] and Gärtner,
König and Molchanov [GKM99]. The argument for the moment asymptotics essentially goes
back to the seminal papers by Donsker and Varadhan [DV75] and [DV79]. However, unlike
Donsker and Varadhan, we do not use folding to compactify the space, but rather a comparison
technique for Dirichlet eigenvalues in large and small boxes. This technique, which is adopted
from Gärtner and Molchanov [GM96], makes the proof of the almost-sure asymptotics coherent
with the part on moment asymptotics and it works, at least in principle, also for correlated
fields. Unfortunately, it seems to be applicable only to the leading-order term.

It would be interesting to develop an extension of the MEO for other fields in our class (in
particular, those with γ �= 0), which should allow us to go beyond the leading order term.
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However, this requires the knowledge of the shape of the field that brings the main contribution
to the moments of u(t, 0) resp. to u(t, 0) itself. While the MEO can help in controlling the
“probability part” of the statements (1.16) and (1.26), an analysis of the minimizers in (1.14)
and (1.23) is also needed. The latter is expected to be delicate in higher dimensions.

(3) Correlation structure. Another open problem concerns the asymptotic correlation struc-
ture of the random field u(t, ·), as has been analysed by Gärtner and den Hollander [GH99] in
the case of the double-exponential distribution. Also for answering this question, quite some
control of the minimizers in (1.14) and (1.23) is required. Unfortunately, the compactification
technique of [GH99] cannot be applied without additional work, since it seems to rely on the
discreteness of the underlying space in several important places.

(4) Lower-tail in d = 1. For the almost-sure asymptotics of u(t, 0), suitable conditions on
the lower tail of the distribution of ξ(0) had to be imposed in order to derive our Theorem 1.5.
In d ≥ 2, percolation of sites z with ξ(z) > −∞ turned out to be sufficient, while in d = 1 we
additionally had to assume that log(−ξ(0) ∨ 1) has the first moment. The reason for this is
that, in d = 1, no site in Z \ {0} can be reached from 0 avoiding any of the sites in-between.
As a consequence, if the lower tail of ξ(0) is too thick, the sites with large negative ξ may
screen off the favorable regions where u(·, t) is governed by the variational problem (1.23) (see
Subsection 2.1.1 for an informal explanation). It would be interesting to determine to what
extent can our condition be still relaxed and how the almost sure asymptotics of u(t, 0) depends
on the lower tail of ξ(0) when it is robustly violated.

3. Preliminaries

In this section we first introduce some necessary notation needed in the proof of Theorems 1.2
and 1.5 and then prove Propositions 1.1 and 1.4. In the last subsection, we prove a claim on
the convergence of certain approximants to the variational problem (1.14).

3.1 Feynman-Kac formula and Dirichlet eigenvalues
Our analysis is based on the link between the random-walk and random-field descriptions

provided by the Feynman-Kac formula. Let (X(s))s∈[0,∞) be the continuous-time simple random
walk on Z

d with generator κ∆d. By Pz and Ez we denote the probability measure resp. the
expectation with respect to the walk starting at X(0) = z ∈ Z

d.

3.1.1 General initial problem. For any potential V : Z
d → [−∞, 0], we denote by uV the unique

solution to the initial problem

∂tu(t, z) = κ∆du(t, z) + V (z)u(t, z), (t, z) ∈ (0,∞)× Z
d,

u(0, z) = 1, z ∈ Z
d.

(3.1)

The Feynman-Kac formula allows us to express uV as

uV (t, z) = Ez

[
exp

∫ t

0
V
(
X(s)

)
ds

]
, z ∈ Z

d, t > 0. (3.2)

Introduce the local times of the walk

�t(z) =
∫ t

0
1{X(s) = z} ds, z ∈ Z

d, t > 0, (3.3)
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i.e., �t(z) is the amount of time the random walk has spent at z ∈ Z
d by time t. Note that∫ t

0 V (X(s)) ds = (V, �t), where (·, ·) stands for the inner product on �2(Zd).
Let R > 0 and let QR = [−R,R]d ∩ Z

d. The solution of the initial-boundary value problem

∂tu(t, z) = κ∆du(t, z) + V (z)u(t, z), (t, z) ∈ (0,∞)×QR,
u(0, z) = 1, z ∈ QR,
u(t, z) = 0, t > 0, z /∈ QR,

(3.4)

will be denoted by uVR : [0,∞)× Z
d → [0,∞). Similarly to (3.2), we have the representation

uVR(t, z) = Ez

[
exp
{∫ t

0
V
(
X(s)

)
ds
}

1{τR > t}
]
, z ∈ Z

d, t > 0, (3.5)

where τR is the first exit time from the set QR, i.e.,

τR = inf
{
t > 0: X(t) /∈ QR

}
. (3.6)

Alternatively,

uVR(t, z) = Ez

[
e(V,�t)1

{
supp (�t) ⊂ QR

}]
, (3.7)

where we recalled (3.3). Note that, for 0 < r < R <∞,

uVr ≤ uVR ≤ uV in [0,∞)× Z
d, (3.8)

as follows by (3.5) because {τr > t} ⊂ {τR > t}.
Apart from uV, we also need the fundamental solution pVR(t, ·, z) of (3.4), i.e., the solution to

(3.4) with pVR(0, ·, z) = δz(·) instead of the second line. The Feynman-Kac representation is

pVR(t, y, z) = Ey

[
e(V,�t)1

{
supp (�t) ⊂ QR

}
1
{
X(t) = z

}]
y, z ∈ Z

d. (3.9)

Note that
∑
z∈QR

pVR(t, y, z) = uV (t, y).

3.1.2 Eigenvalue representations. The second crucial tool for our proofs will be the principal
(i.e., the largest) eigenvalue λd

R(V ) of the operator κ∆d + V in QR with Dirichlet boundary
condition. The Rayleigh-Ritz formula reads

λd
R(V ) = sup

{
(V, g2)− κ‖∇g‖2

2 : g ∈ �2(Zd), ‖g‖2 = 1, supp (g) ⊂ QR
}
. (3.10)

Here ∇ denotes the discrete gradient.
Let λ1 > λ2 ≥ λ3 ≥ · · · ≥ λn, n = #QR, be the eigenvalues of the operator κ∆d+V in �2(QR)

with Dirichlet boundary condition (some of them can be −∞). We also write λd,k
R (V ) = λk for

the k-th eigenvalue to emphasize its dependence on the potential and the box QR. Let (ek)k
be an orthonormal basis in �2(QR) consisting of corresponding eigenfunctions ek = ed,k

R (V ).
(Conventionally, ek vanishes outside QR.) Then we have the Fourier expansions

pVR(t, y, z) =
∑
k

etλkek(y)ek(z) (3.11)

and, by summing this over all y ∈ QR,
uVR(t, ·) =

∑
k

etλk(ek, 1)R ek(·), (3.12)
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where we used (·, ·)R to denote the inner product in �2(QR). Here and henceforth “1” is the
function taking everywhere value 1.

3.2 Power-law scaling
Proof of Proposition 1.1. Let H̃t be the function given by

H̃t( · ) =
αd+2
t

t
H

(
t

αdt
·
)
. (3.13)

By our Scaling Assumption, limt→∞ H̃t = H̃ on [0,∞). Note that both H̃t and H̃ are convex,
non-positive and not identically vanishing with value 0 at zero. Consequently, H̃t and H̃ are
continuous and strictly negative in (0,∞). Moreover, by applying Jensen’s inequality to the
definition of H, we have that y �→ H̃t(y)/y and y �→ H̃(y)/y are both non-decreasing functions.

Next we shall show that αpt/αt tends to a finite non-zero limit for all p. Let us pick a y > 0
and a p ∈ (0,∞) and consider the identity

H̃t

(
p
( αt
αpt

)d
y

)
= p

( αt
αpt

)d+2
H̃pt(y), (3.14)

which results by comparing (3.13) with the “time” parameter interpreted once as t and next
time as pt. Invoking the monotonicity of y �→ H̃t(y)/y, it follows that

p
( αt
αpt

)2
H̃pt(y) ≥ H̃t(py) whenever αt ≥ αpt. (3.15)

This implies that αpt/αt is bounded away from zero, because we have

lim inf
t→∞

(αpt
αt

)2
≥ pH̃(y)

H̃(py)
∧ 1 > 0, (3.16)

where “∧” stands for minimum. Since p ∈ (0,∞) was arbitrary, αpt/αt is also uniformly
bounded, by replacing t with t/p.

Let φ(p) be defined for each p as a subsequential limit of αpt/αt, i.e., φ(p) = limn→∞ αptn/αtn
with some (p-dependent) tn → ∞. By our previous reasoning φ(p)−1 is non-zero, finite and,
for all y > 0, it solves for z in the equation

H̃
(
pzdy

)
= pzd+2H̃(y). (3.17)

Here we were allowed to pass to the limiting function H̃ on the left-hand side of (3.14) because
H̃ is continuous and the scaling limit (1.5) is uniform on compact sets in (0,∞). But z �→
H̃(pzdy)/zd is non-decreasing while z �→ pz2H̃(y) is strictly decreasing, so the solution to
(3.17) is unique. Hence, the limit φ(p) = limt→∞ αpt/αt exists in (0,∞) for all p ∈ (0,∞).

It is easily seen that φ is multiplicative on (0,∞), i.e., φ(pq) = φ(p)φ(q). Since φ(p) ≥ 1 for
p ≥ 1, by the same token we also have that p �→ φ(p) is non-decreasing. These two properties
imply that φ(2n) = φ(2)n and that φ(2)

n
m ≤ φ(p) ≤ φ(2)

n+1
m for any p > 0, and m, n integer

such that 2n ≤ pm < 2n+1. Consequently, φ(p) = pν with ν = log2 φ(2). By plugging this back
into (3.17) and setting y = 1 we get that

H̃
(
p1−dν) = H̃(1) p1−(d+2)ν . (3.18)
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The claims (1.6) and (1.7) are thus established by putting γ(1 − dν) = 1 − (d + 2)ν, which is
(1.8). Clearly, γ ∈ [0, 1], in order to have the correct monotonicity properties of y �→ H̃(y) and
y �→ H̃(y)/y.

To prove also the second statement in (1.7), we first write

α2N = α1

N−1∏
m=0

α2m+1

α2m

(3.19)

which, after taking the logarithm, dividing by log 2N , and noting that α2m+1/α2m → φ(2) as
m→ ∞, allows us to conclude that

lim
N→∞

logα2N

log 2N
= log2 φ(2) = ν. (3.20)

The limit for general t is then proved again by sandwiching t between 2N−1 and 2N and invoking
the monotonicity of t �→ αt.

3.3 Relation between χ and χ̃

Proof of Proposition 1.4. Suppose H is in the γ-class and define ν as in Proposition 1.1. Suppose
χ �= 0,∞ (for a proof of this statement, see Proposition 3.1). The argument hinges on particular
scaling properties of the functionals ψ �→ LR(ψ) and ψ �→ λR(ψ), which enable us to convert
(1.14) into (1.23). Given ψ ∈ C−(R), let us for each b ∈ (0,∞) define ψb ∈ C−(bR) by

ψb(x) =
1
b2
ψ
(x
b

)
. (3.21)

Then we have

LbR(ψb) = b
1
ν

−2LR(ψ) and λbR(ψb) = b−2λR(ψ), (3.22)

where in the first relation we used that ψb can be converted into ψ in (1.12) by substituting
b2/(1−γ)f(·/b) in the place of f( · ); the second relation is a result of a simple spatial scaling of
the first line in (1.13). Note that 1

ν
− 2 ≥ 1 > 0.

Let ψ(n) ∈ C−(Rn) be a minimizing sequence of the variational problem in (1.15). Suppose,
without loss of generality, that LRn(ψ(n)) → L̄ and λRn(ψ(n)) → λ̄. Then we have

χ = L̄ − λ̄. (3.23)

Now pick any b ∈ (0,∞) and consider instead the sequence (ψ(n)
b ). Clearly,

χ ≤ lim
n→∞

[
LbRn(ψ

(n)
b )− λbRn(ψ

(n)
b )
]
= b

1
ν

−2L̄ − b−2λ̄ (3.24)

for all b. By (3.23), the derivative of the right-hand side must vanish at b = 1, i.e.,(
1
ν
− 2
) L̄+ 2λ̄ = 0. (3.25)

By putting (3.23) and (3.25) together, we easily compute that

L̄ = 2νχ. (3.26)
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Note that while b �→ LbR(ψb) is strictly increasing, b �→ λbR(ψb) is strictly decreasing. This
allows us to recast (1.15) as

χ = L̄+ inf
R>0

inf
{−λR(ψ) : ψ ∈ C−(R), LR(ψ) ≤ L̄} . (3.27)

Indeed, we begin by observing that “≤” holds in (3.27), as is verified by pulling L̄ inside the
bracket, replacing it with LR(ψ), and dropping the last condition. To prove the “≥” part, note
that the above sequence (ψ(n)

b ) for b < 1 eventually fulfills the last condition in (3.27) because
LbRn(ψ

(n)
b ) → b

1
ν

−2L̄ < L̄. Since λbRn(ψ
(n)
b ) → b−2λ̄, the right-hand side of (3.27) is no more

than L̄ − b−2λ̄ for any b < 1. Taking b ↑ 1 and recalling (3.23) proves the equality in (3.27).
With (3.27) in the hand we can finally prove (1.25). By using ψb instead of ψ in (3.27),

the condition LR(ψ) ≤ L̄ becomes LR(ψ) ≤ b
1
ν

−2L̄ and the factor b−2 appears in front of the
infimum. Thus, setting b

1
ν

−2L̄ = d, which by (3.26) requires that

b =
(

2νχ
d

) ν
1−2ν

, (3.28)

(note that b �= 0,∞) and invoking (3.26), we recover the variational problem (1.23). Therefore,

χ = L̄+ b−2χ̃ = 2νχ+
(

2νχ
d

)− 2ν
1−2ν

χ̃. (3.29)

From this, (1.25) follows by simple algebraic manipulations. The claim χ̃ ∈ (0,∞) is a conse-
quence of (1.25) and the fact that χ ∈ (0,∞).

3.4 Approximation variational problems
The proof of Theorem 1.2 will require some knowledge of the properties of the variational

problem (1.14). Let

χR = inf
{I(f)−HR(f) : f ∈ FR

}
, R > 0. (3.30)

In particular, we need to prove that certain approximation quantities converge to χR. Suppose
H is in the γ-class and introduce the following quantities: In the case γ ∈ (0, 1), let

χ�R(M) = inf
{I(f)−HR(f ∧M) : f ∈ FR

}
, M > 0, (3.31)

for any R > 0. For γ = 0 and any R > 0, let

χ#
R(ε) = inf

{I(f)− H̃(1)|{f > ε}| : f ∈ FR
}
, 0 < ε) R. (3.32)

The needed properties are summarized as follows:

Proposition 3.1 Let H be in the γ-class and let χ be as in (1.14). Then
(1) χ ∈ (0,∞).
(2) For γ ∈ (0, 1) and any R > 0, limM→∞ χ�R(M) = χR.
(3) For γ = 0 and any R > 0, limε↓0 χ

#
R(ε) = χR.

Proof of (1) and (2). Assertion (1) for γ = 0 is well-known. Assume that γ ∈ (0, 1) and observe
that, due to the perfect scaling properties of both f �→ I(f) and f �→ HR(f), (3.30) can
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alternatively be written as

χR = inf
{
R−2I(f)−Rd(1−γ)H1(f) : f ∈ F1

}
. (3.33)

Let (λ1, ĝ) be the principal eigenvalue resp. an associated eigenvector of −∆ in [−1, 1]d with
Dirichlet boundary condition. Then I(ĝ2) = κλ1 �= 0,∞, which means that

χR ≤ R−2κλ1 −Rd(1−γ)H̃(1)
∫

|ĝ|2γ =: χ̄R. (3.34)

Since ĝ is continuous and bounded, the integral is finite, whereby χ ≤ infR>0 χ̄R <∞.
Claim (2) and the remainder of (1) are then simple consequences of the following observation,

whose justification we defer to the end of this proof:

inf
{I(f) : f ∈ FR, ‖f1{f≥M}‖1 ≥ ε

} ≥ κ
ε

2

( M
8πd

)2/d
, R, ε > 0, M ≥ 8πddd, (3.35)

where πd is the volume of the unit sphere in R
d. Indeed, to get that χ is non-vanishing, let

R > 0 be fixed, set ε = 1/2 and choose M such that the infimum in (3.35) is strictly larger
than −H̃(1)Mγ−1/2. Let C := −H̃(1)Mγ−1/2. Then for any f ∈ FR either ‖f1{f≥M}‖1 ≥ 1/2,
which implies I(f) ≥ C, or ‖f1{f≥M}‖1 < 1/2 which implies

−HR(f) ≥ −H̃(1)
∫
fγ 1{f<M} ≥ −H̃(1)Mγ−1

∫
f 1{f<M} ≥ −H̃(1)Mγ−1/2 = C. (3.36)

Thus, in both cases, I(f)−HR(f) ≥ C > 0 independent of R. This finishes part (1).
To prove also part (2), note first that χ�R(M) ≤ χR for all M > 0. Given ε > 0, let M ≥ 1

be such that the infimum in (3.35) is larger than χ̄R in (3.34). Consider (3.31) restricted to
f ∈ FR with ‖f1{f≥M}‖1 < ε. Since for any such f

−HR(f ∧M) ≥ −H̃(1)
∫
fγ 1{f<M} ≥ −HR(f) + H̃(1)

∫
fγ 1{f≥M}

≥ −HR(f) + H̃(1)
∫
f 1{f≥M} ≥ −HR(f) + H̃(1)ε, (3.37)

the restricted infimum is no less than χR + H̃(1)ε. Therefore, χ�R(M) ≥ χ̄R ∧ (χR + H̃(1)ε),
which by ε ↓ 0 and (3.34) proves part (2) of the claim.

It remains to prove (3.35). To that end, denote the infimum by ΨR(ε,M) and note that

ΨR(ε,M) = R−2Ψ1(ε,MRd). (3.38)

Indeed, denoting f ∗( · ) = Rdf(·R) for any f ∈ FR, we have f ∗ ∈ F1, I(f ∗) = R2I(f), and
‖f ∗1{f∗≥MRd}‖1 = ‖f1{f≥M}‖1, whereby (3.38) immediately follows. Since R−2(MRd)2/d =
M2/d, it suffices to prove (3.35) just for R = 1.

Recall that the operator −∆ on [−1, 1]d with Dirichlet boundary condition has a compact
resolvent, so its spectrum σ(−∆) is a discrete set of finitely-degenerate eigenvalues. For each
k ∈ N, define the function

ϕk(x) =

{
cos
(
π
2kx

)
if k is odd,

sin
(
π
2kx

)
if k is even.

(3.39)
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Then σ(−∆) = {π2|k|22/4: k ∈ N
d}, with |k|22 = k2

1 + · · · + k2
d and the eigenvectors given as

ωk = ϕk1 ⊗ · · · ⊗ ϕkd
. Note that the latter form a (Fourier) basis in L2([−1, 1]d).

Let ε > 0 and M > 0 be fixed. Let r be such that 8πdrd = M . Note that r ≥ d. Pick a
function f ∈ F1 such that ‖f1{f≥M}‖1 ≥ ε and let g =

√
f . Let g1 resp. g2 be the normalized

projections of g onto the Hilbert spaces generated by (ωk) with |k|2 ≤ r resp. |k|2 > r. Then
g = a1g1 + a2g2 with |a1|2 + |a2|2 = 1. We claim that ‖g1‖∞ ≤ √

M/2. Indeed, g1 =
∑
k ckωk

where (ck) ∈ �2(Nd) is such that ck = 0 for all k ∈ N
d with |k|2 > r and

‖g1‖∞ ≤
∑
k

|ck|‖ωk‖∞ ≤
√

#{k : ck �= 0} ≤
√

2πdrd =
√
M/2. (3.40)

Here we used that ‖ωk‖∞ ≤ 1, then we applied Cauchy-Schwarz inequality and noted that (ck)
is normalized to one in �2(Nd), because ‖ωk‖2 = 1 for all k ∈ N

d. The third inequality follows
by the observation #{k : ck �= 0} ≤ πd(r + 1)d/2d ≤ 2πdrd implied by r ≥ d.

Let x be such that g(x) ≥ √
M . Then we have

√
M ≤ g(x) ≤ |g1(x)| + |a2||g2(x)|. Using

(3.40), we derive that |a2||g2(x)| ≥
√
M/2, whereby we have that g(x) ≤ 2|a2||g2(x)|. This

gives us the bound

ε ≤ ‖f1{f≥M}‖1 = ‖g1{g≥√
M}‖2

2 ≤ 4|a2|2‖g2‖2
2 = 4|a2|2, (3.41)

i.e., |a2|2 ≥ ε/4. On the other hand,

I(f) = κ‖∇g‖2
2 ≥ κ|a2|2‖∇g2‖2

2 ≥ κ|a2|2π
2

4
r2. (3.42)

where we used that g1⊥g2 and that g2 has no overlap with ωk such that |k|2 ≤ r. By putting
(3.41) and (3.42) together and noting that π2/16 ≥ 1/2, (3.35) for R = 1 follows.

Proof of (3). Let ε ) (2R)d and consider f ∈ FR. Let g =
√
f and define gε = (g −√

ε)1{g ≥ √
ε}. By a straightforward calculation, ‖gε‖2

2 ≥ 1 − 2ε(2R)d − 2
√
ε(2R)d. Let

fε = (gε/‖gε‖2)2. Then I(f) ≥ ‖gε‖2
2 I(fε), while |{f > ε}| = |{fε > 0}|. This implies that

χ#
R(ε) ≥ χR(1−O(

√
ε)). Since χ#

R(ε) ≤ χR, the proof is finished.

4. Proof of Theorems 1.2 and 1.3

We begin by deriving the logarithmic asymptotics for the moments of u(t, 0) as stated in
Theorem 1.2. The proof is divided into two parts: we separately prove the lower bound and
the upper bound. Whenever convenient, we write α(t) instead of αt.

4.1 The lower bound
We translate the corresponding proof of [GK98] into the discrete setting. Let u denote the

solution to (1.1), denoted by uξ in Section 3. Similarly, let uR stand for uξR for any R > 0.
Fix p ∈ (0,∞), R > 0, and consider the box QRα(pt) = [−Rα(pt), Rα(pt)]d ∩ Z

d. Note that
#QRα(pt) = eo(tα

−2
pt ) as t→ ∞. Recall that uRα(pt)(t, ·) = 0 outside QRα(pt) and that (·, ·) denotes

the inner product in �2(Zd). Our first observation is the following.

Lemma 4.1 As t→ ∞, 〈
u(t, 0)p

〉 ≥ eo(tα
−2
pt )〈(uRα(pt)(t, ·), 1)p

〉
. (4.1)
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Proof. In the case p ≥ 1, use the shift-invariance of z �→ u(t, z), Jensen’s inequality, and the
monotonicity assertion (3.8) to obtain

〈
u(t, 0)p

〉
=
〈 1
#QRα(pt)

∑
z∈QRα(pt)

u(t, z)p
〉

≥
〈( 1

#QRα(pt)

∑
z∈QRα(pt)

u(t, z)
)p〉

≥ eo(tα
−2
pt )〈(uRα(pt)(t, ·), 1)p

〉
.

(4.2)

In the case p < 1, instead of Jensen’s inequality we apply

n∑
i=1

xpi ≥
( n∑
i=1

xi

)p
, x1, . . . , xn ≥ 0, n ∈ N, (4.3)

to deduce similarly as in (4.2) that〈
u(t, 0)p

〉
= eo(tα

−2
pt )
〈 ∑
z∈QRα(pt)

u(t, z)p
〉

≥ eo(tα
−2
pt )
〈( ∑

z∈QRα(pt)

u(t, z)
)p〉

≥ eo(tα
−2
pt )〈(uRα(pt)(t, ·), 1)p

〉
.

(4.4)

The following Lemma 4.2 carries out the necessary large-deviation arguments for the case
p = 1. Lemma 4.3 then reduces the proof of arbitrary p to the case p = 1. Recall the “finite-R”
version χR of (1.14) defined in (3.30).

Lemma 4.2 Let R > 0. Then for t→ ∞,

−χR + o(1) ≤ α2
t

t
log
〈
(uRα(t)(t, ·), 1)

〉 ≤ −χ3R + o(1), (4.5)

α2
t

t
log
〈∑

k

etλ
d,k
Rα(t)(ξ)

〉
≤ −χ3R + o(1). (4.6)

Lemma 4.3 Let R > 0. Then for t→ ∞,〈
(uRα(pt)(t, ·), 1)p

〉 ≥ eo(tα
−2
pt ) 〈(uRα(pt)(pt, ·), 1)

〉
. (4.7)

Lemmas 4.1, 4.2, and 4.3 make the proof of the lower bound immediate:
Proof of Theorem 1.2, lower bound. By combining (4.1), (4.7) and the left inequality in (4.5)
for pt instead of t, we see that (α2

pt/pt) log〈u(t, 0)p〉 ≥ −χR + o(1). Since limR→∞ χR = χ,
the left-hand side of (1.16), with “lim inf” instead of “lim”, is bounded below by −χ. By
Proposition 3.1(1), χ positive, finite and non-zero.

The remainder of this subsection is devoted to the proof of the two lemmas.
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Proof of Lemma 4.2. Recall the notation of Subsection 3.1. By taking the expectation over ξ
(and using that ξ is an i.i.d. field) and recalling (3.7), we have for any z ∈ QRα(t) that〈

uRα(t)(t, z)
〉
=
〈

Ez

[
e(ξ,�t)1{τRα(t) > t}]〉 = Ez

[∏
y∈Zd

〈
e�t(y)ξ(y)

〉
1{τRα(t) > t}

]
= Ez

[
exp
{∑
y∈Zd

H
(
�t(y)

)}
1
{
supp (�t) ⊂ QRα(t)

}]
, (4.8)

Consider the scaled version �̄t : R
d → [0,∞) of the local times

�̄t(x) =
αdt
t
�t
("xαt#), x ∈ R

d. (4.9)

Let F̃ be the space of all non-negative Lebesgue almost everywhere continuous functions in
L1(Rd) with a bounded support. Clearly, F ⊂ F̃ and �̄t ∈ F̃ . Introduce the functional
H(t) : F̃ → [−∞, 0], assigning each f ∈ F̃ the value

H(t)(f) =
∫

Rd

H̃t
(
f(x)

)
dx, (4.10)

where we recalled (3.13). Substituting �̄t and H(t) into (4.8), we obtain〈
(uRα(t)(t, ·), 1)

〉
=

∑
z∈QRα(t)

Ez

[
exp
{ t

α2
t

H(t) (�̄t)}1
{
supp (�̄t) ⊂ [−R,R + α−1

t ]d
}]
. (4.11)

Using shift-invariance and the fact that H(t)(f) ≤ H(t)(f ∧M) for any M > 0, we have

E0

[
exp
{ t

α2
t

H(t) (�̄t)}1
{
supp (�̄t) ⊂ [−R,R]d

}
1{�̄t ≤M}

]
≤ 〈(uRα(t)(t, ·), 1)

〉
≤ eo(tα

−2
t )

E0

[
exp
{ t

α2
t

H(t) (�̄t ∧M)}1
{
supp (�̄t) ⊂ [−3R, 3R]d

}]
. (4.12)

It is well known that the family of scaled local times (�̄t)t>0 satisfies a weak large-deviation
principle on L1(Rd) with rate tα−2

t and rate function I defined in (1.10). This fact has been first
derived by Donsker and Varadhan [DV79] for the discrete-time random walk; for the changes
of the proof in the continuous time case we refer to Chapter 4 of the monograph by Deuschel
and Stroock [DS89]. The large-deviation principle allows us to use Varadhan’s integral lemma
to convert both bounds in (4.12) into corresponding variational formulas. Note that, if both I
and H are appropriately extended to L1([−R,R]d), all infima (3.30), (3.31) and (3.32) can be
taken over f ∈ L1([−R,R]d) with the same result. In the sequel, we have to make a distinction
between the cases γ ∈ (0, 1) and γ = 0.

In the case γ ∈ (0, 1), our Scaling Assumption implies that, for every M > 0, f �→ H(f)
is continuous and H(t) converges to H uniformly on the space of all measurable functions
[−R,R]d → [0,M ] with L∞ topology. Indeed, for any such function f and any ε > 0, the
integral (4.10) can be split into H(t)(f1{f>ε}) and H(t)(f1{0<f≤ε}). The former then converges
uniformly to H(f1{f>ε}), while the latter can be bounded as

0 ≥ H(t)(f1{0<f≤ε}
) ≥ H̃t(ε)

∣∣{0 < f ≤ ε}∣∣ ≥ (2R)dH̃t(ε), (4.13)
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where we invoked the monotonicity of y �→ H̃t(y). Taking ε ↓ 0 proves that this part is negligible
for H(t)(f) and, if t → ∞ is invoked before ε ↓ 0, it also shows that H(f1{f>ε}) → H(f)
uniformly in f as ε ↓ 0. Having verified continuity, Varadhan’s lemma (and M → ∞) readily
outputs the left inequality in (4.5), while on the right-hand side it yields a bound in terms of the
quantity χ�3R(M) defined in (3.31). By Proposition 3.1(2), χ�3R(M) tends to χ3R as M → ∞,
which proves the inequality on the right of (4.5).

In the case γ = 0, the lower bound goes along the same line, but we have to be more careful
with (4.13), since limε↓0 limt→∞ H̃t(ε) �= 0 in this case. Let us estimate

H(t)(f) = H(t)(f1{0<f≤ε}
)
+H(t)(f1{f>ε}

) ≥ H̃t(ε)
∣∣{0 < f ≤ ε}∣∣+H(t)(f1{f>ε}

)
≥ H(f)− ∣∣H(t)(f1{f>ε})−H(f1{f>ε})

∣∣− (2R)d
∣∣H̃t(ε)− H̃(ε)

∣∣, (4.14)

where we invoked the explicit form of f �→ H(f). Since both absolute values on the right-hand
side tend to 0 as t → ∞ uniformly in f ≤ M , the lower bound in (4.5) follows again by
Varadhan’s lemma and limit M → ∞. For the upper bound, the estimate and uniform limit
H(t)(f) ≤ H(t)(f1{f>ε}) → H(f1{f>ε}) give us a bound in terms of the quantity χ#

3R(ε) defined
in (3.32). By then M is irrelevant, so by invoking Proposition 3.1(3), the claim is proved by
taking ε ↓ 0.

It remains to prove (4.6). Recall the shorthand λk = λd,k
Rα(t)(ξ). By (3.11), (3.9) and analo-

gously to (4.8), we have〈∑
k

etλk

〉
=

∑
z∈QRα(t)

〈
pRα(t)(t, z, z)

〉
=
〈 ∑
z∈QRα(t)

Ez

[
e(ξ,�t)1{τRαt > t}1{X(t) = z

}]〉
. (4.15)

Noting that 1{X(t) = z} ≤ 1, we thus have 〈∑k e
tλk〉 ≤ 〈(uRα(t)(t, ·), 1)〉. With this in the

hand, (4.6) directly follows by the right inequality in (4.5).

Proof of Lemma 4.3. In the course of the proof, we use abbreviations r = Rα(pt) and λk =
λd,k
r (ξ). Recall that (ek)k denotes an orthonormal basis in �2(Qr) (with inner product (·, ·)r)

consisting of the eigenfunctions of κ∆d + ξ with Dirichlet boundary condition.
We first turn to the case p ≥ 1. Use the Fourier expansion (3.12) and the inequality( n∑

i=1

xi

)p
≥

n∑
i=1

xpi , x1, . . . , xn ≥ 0, n ∈ N, (4.16)

to obtain 〈
(ur(t, ·), 1)p

〉
=
〈(∑

k

etλk (ek, 1)2r
)p〉

≥
〈∑

k

eptλk (ek, 1)2pr
〉
. (4.17)

By Jensen’s inequality for the probability measure (l, dξ) �→ 〈∑k e
ptλk〉−1eptλlProb(dξ),

r.h.s. of (4.17) ≥
(〈∑k e

ptλk(ek, 1)2r〉
〈∑k e

ptλk〉
)p〈∑

k

eptλk

〉
≥ eo(tα

−2
pt )
〈∑

k

eptλk (ek, 1)2r
〉

= eo(tα
−2
pt )〈(ur(pt, ·), 1)〉, (4.18)
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where we recalled from the end of the proof of Lemma 4.2 that 〈∑k e
ptλk〉 ≤ 〈(ur(pt, ·), 1)〉 =

〈∑k e
ptλk(ek, 1)2r〉, inserted 1 ≥ eo(tα

−2
pt )(ek, 1)2r, and applied (3.12).

In the case p ∈ (0, 1), we apply Jensen’s inequality as follows:〈
(ur(t, ·), 1)p

〉
= (1, 1)pr

〈(∑
k

etλk
(ek, 1)2r
(1, 1)r

)p〉
≥ (1, 1)pr

〈∑
k

eptλk
(ek, 1)2r
(1, 1)r

〉
. (4.19)

Invoking that (1, 1)r = eo(tα
−2
pt ), the proof is finished by recalling (3.12) once again.

4.2 The upper bound
Recall that QR denotes the discrete box [−R,R]d∩Z

d. We abbreviate r(t) = t log t for t > 0.
For z ∈ Z

d and R > 0, we denote by λd
z;R(V ) the principal eigenvalue of the operator κ∆d + V

with Dirichlet boundary conditions in the shifted box z + QR. The main ingredient in the
proof of the upper bound in Theorem 1.2 is (the following) Proposition 4.4, which provides an
estimate of u(t, 0) in terms of the maximal principal eigenvalue of κ∆d + V in small subboxes
(“microboxes”) of the “macrobox” Qr(t).

Proposition 4.4 Let BR(t) = Qr(t)+2�R�. Then there is a constant C = C(d, κ) > 0 such
that, for any R, t > C and any potential V : Z

d → [−∞, 0],

uV (t, 0) ≤ e−t + eCt/R
2(

3r(t)
)d exp{t max

z∈BR(t)
λd
z;2R(V )

}
. (4.20)

By Proposition 4.4 and inequality (4.6), the upper bound in Theorem 1.2 is now easy:
Proof of Theorem 1.2, upper bound. Let p ∈ (0,∞). First, notice that the second term in (4.20)
can be estimated in terms of a sum:

exp
{
t max
z∈BR(t)

λd
z;2R(V )

}
≤

∑
z∈BR(t)

etλ
d
z;2R(V ). (4.21)

Thus, applying (4.20) to u(t, 0) (i.e., for V = ξ) with R replaced by Rα(pt) for some fixed
R > 0, raising both sides to the p-th power, and using (4.21) we get

u(t, 0)p ≤ 2pmax
{
e−pt, eCpt/(R

2α(pt)2)(3r(t))pd ∑
z∈BRα(pt)(t)

eptλ
d
z;2Rα(pt)(ξ)

}
. (4.22)

Next we take the expectation w.r.t. ξ and note that, by the shift-invariance of ξ, the distribution
of λd

z;2Rα(pt)(ξ) does not depend on z ∈ Z
d. Take logarithm, multiply by α2

pt/(pt) and let t→ ∞.
Then we have that

lim sup
t→∞

α2
pt

pt
log
〈
u(t, 0)p

〉 ≤ C

R2 + lim sup
t→∞

α2
pt

pt
log
〈
exp{ptλd

2Rα(pt)(ξ)}
〉
, (4.23)

where we also used that e−pt, r(t)pd, and #BRα(pt)(t) are all eo(tα
−2
pt ) as t→ ∞. Since

exp
{
ptλd

Rα(pt)(ξ)
} ≤

∑
k

exp
{
ptλd,k

Rα(pt)(ξ)
}
, (4.24)

(4.6) for pt instead of t implies that the second term on the right-hand side of (4.23) is bounded
by −χ6R. The upper bound in Theorem 1.2 then follows by letting R→ ∞.
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Now we can turn to the proof of Proposition 4.4. We begin by showing that uV (t, 0) is
very close to the solution uVr(t)(t, 0) of the initial-boundary problem (3.4), whenever the size
r(t) = t log t of the “macrobox” Qr(t) is large enough.

Lemma 4.5 For sufficiently large t > 0,

uV (t, 0) ≤ e−t + uVr(t)(t, 0). (4.25)

Proof. It is immediate from (3.2) and (3.5) with r = r(t) that

uV (t, 0)− uVr(t)(t, 0) = E0

[
exp

{∫ t

0
V
(
X(s)

)
ds

}
1{τr(t) ≤ t}

]
. (4.26)

According to Lemma 2.5(a) in [GM98], we have, for every r > 0,

P0(τr ≤ t) ≤ 2d+1 exp
{
−r
(
log

r

dκt
− 1
)}

. (4.27)

Using this for r = r(t) = t log t in (4.26), we see that, for sufficiently large t (depending only
on d and κ), the right-hand side of (4.26) is no more than e−t.

The crux of our proof of Proposition 4.4 is that the principal eigenvalue in a box Qr of size r
can be bounded by the maximal principal eigenvalue in “microboxes” z +QR contained in Qr,
at the cost of changing the potential slightly. This will later allow us to move the t-dependence
of the principal eigenvalue from the size of Qr(t) to the number of “microboxes”. The following
lemma is a discrete version of Proposition 1 of [GK98] and is based on ideas from [GM96].
However, for the sake of completeness, no familiarity with [GK98] is assumed.

Lemma 4.6 There is a number C > 0 such that for every integer R, there is a function
ΦR : Z

d → [0,∞) with the following properties:
(1) ΦR is 2R-periodic in every component.
(2) ‖ΦR‖∞ ≤ C/R2.
(3) For any potential V : Z

d → [−∞, 0] and any r > R,

λd
r (V − ΦR) ≤ max

z∈Qr+2R

λd
z;2R(V ). (4.28)

Proof. The idea is to construct a partition of unity∑
k∈Zd

η2
k(z) = 1, z ∈ Z

d, (4.29)

where ηk(z) = η(z − 2Rk) with

η : Z
d → [0, 1] such that η ≡ 1 on QR/2, supp (η) ⊂ Q3R/2. (4.30)

Then we put

ΦR(z) = κ
∑
k∈Zd

∣∣∇ηk(z)∣∣2, z ∈ Z
d, (4.31)

where ∇ is the discrete gradient. Obviously, ΦR is 2R-periodic in every component. The
construction of η such that ΦR satisfies (2) is given at the end of this proof.



24 MAREK BISKUP AND WOLFGANG KÖNIG

Assuming the existence of the above partition of unity, we turn to the proof of (4.28). Recall
the Rayleigh-Ritz formula (3.10), which can be shortened as λd

r (V ) = supGV (g), where

GV (g) =
∑
z∈Zd

(−κ|∇g(z)|2 + V (z)g2(z)
)
, (4.32)

and where the supremum is over normalized g ∈ �2(Zd) with support in Qr. Let g be such a
function, and define gk(z) = g(z)ηk(z) for k, z ∈ Z

d. Note that, according to (4.29) and (4.30),
we have

∑
k ‖gk‖2

2 = 1 and supp (gk) ⊂ 2kR +Q3R/2. Then we claim that

GV−ΦR(g) =
∑
k∈Zd

‖gk‖2
2G

V
( gk
‖gk‖2

)
. (4.33)

Indeed, invoking (4.29) and (4.31), it is easily seen that

κ
∑
k∈Zd

|∇gk|2 = κ
∑
k∈Zd

(
g2|∇ηk|2 + 1

2∇η2
k · ∇g2 + η2

k|∇g|2
)
= g2ΦR + κ|∇g|2. (4.34)

Therefore,∑
k∈Zd

‖gk‖2
2G

V
( gk
‖gk‖2

)
=
∑
k∈Zd

GV (gk) =
∑
z∈Zd

∑
k∈Zd

[
−κ∣∣∇gk(z)∣∣2 + V (z)g2

k(z)
]

=
∑
z∈Zd

[
−κ∣∣∇g(z)∣∣2 +

(
V (z)− ΦR(z)

)
g2(z)

]
= GV−ΦR(g),

(4.35)

which is (4.33). Since the support of gk is contained in 2kR+Q3R/2, the Rayleigh-Ritz formula
yields that GV (gk/‖gk‖2) ≤ λd

2kR;3R/2(V ) ≤ λd
2kR;2R(V ) whenever ‖gk‖2 �= 0 (which requires, in

particular, that 2R|k| − 3
2R ≤ r). Estimating these eigenvalues by their maximum and taking

into account that
∑
k∈Zd ‖gk‖2

2 = ‖g‖2
2 = 1, we find that the right-hand side of (4.33) does not

exceed the right-hand side of (4.28). By passing to the supremum over g on the left-hand side
of (4.33), we arrive at the claim (4.28).

For the proof to be complete, it remains to construct the functions η and ΦR with the
properties (4.29) and (4.30) and such that ‖ΦR‖∞ ≤ C/R2 for some C > 0. First, it is easily
checked that the ansatz

η(z) =
d∏
i=1

ζ(zi), z = (z1, . . . , zd) ∈ Z
d, (4.36)

reduces the construction of η to the case d = 1 (with η replaced by ζ). In order to define
z �→ ζ(z), let ϕ : R → [0, 1] be such that both

√
ϕ and

√
1− ϕ are smooth, ϕ ≡ 0 on (−∞,−1]

and ϕ ≡ 1 on [1,∞) and ϕ(−x) = 1− ϕ(x) for all x ∈ R. Then we put

ζ(z) =
√
ϕ
(

1
2 + z

R

)[
1− ϕ

(−1
2 + z

R

)]
, z ∈ Z. (4.37)

It is straightforward to verify that the functions ζ2
k(z) = ζ2(z + 2Rk) with k ∈ Z form a

partition of unity on R. Moreover, as follows by a direct computation, supz∈Z

∑
k |∇ζk(z)|2 ≤

4‖(√ϕ)′‖2
∞R

−2, which means that (2) is satisfied with C = 4d‖(√ϕ)′‖2
∞. This finishes the

construction and also the proof.
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Proof of Proposition 4.4. Having all the prerequisites, the proof is easily completed. First,∫ t

0
V
(
X(s)

)
ds ≤ t

C

R2 +
∫ t

0
(V − ΦR)

(
X(s)

)
ds, t > 0. (4.38)

by Lemma 4.6(2). Therefore, combining (3.2) with Lemma 4.5, we have that

uV (t, 0) ≤ e−t + etC/R
2
uV−ΦR

r(t) (t, 0) (4.39)

whenever t is large enough. Invoking also the Fourier expansion (3.12) w.r.t. the eigenfunctions
of κ∆d + V − ΦR in �2(Qr(t)) and the fact that (1, 1)r(t) = #Qr(t), we find that

uV−ΦR

r(t) (t, 0) ≤
∑
z∈Qr(t)

uV−ΦR

r(t) (t, z) ≤ #Qr(t) exp
{
tλd
r(t)(V − ΦR)

}
. (4.40)

Now apply Lemma 4.6 for r = r(t) = t log t to finish the proof.

4.3 Proof of Lifshitz tails
Let νR denote the empirical measure on the spectrum of HR, i.e.,

νR =
1

#QR

∑
k

δ{−λk}, (4.41)

where λk = λd,k
R (ξ) = −Ek denotes the eigenvalues of −HR. Note that νR has total mass at

most 1, because the dimension of the underlying Hilbert space is bounded by #QR. Due to
(1.2), νR is supported on [0,∞). Moreover, NR(E) in (1.18) is precisely #QR νR([0, E]), for
any E ∈ [0,∞). Let L(νR, t) be the Laplace transform of νR evaluated at t ≥ 0,

L(νR, t) =
∫
νR(dλ) e−λt =

1
#QR

∑
k

etλk . (4.42)

Adapting Theorem VI.1.1. in [CL90] to our discrete setting, the existence of the limit (1.19) is
proved by establishing the a.s. convergence of νR to some non-random ν, which in turn is done
by proving that L(νR, ·) has a.s. a non-random limit. In our case, the argument is so short that
we find it convenient to reproduce it here.

Invoking (3.11) and (3.9) for V = ξ, we have from (4.42) that

L(νR, t) =
1

#QR

∑
z∈QR

Ez

{
exp
[∫ t

0
ξ
(
X(s)

)
ds
]
1{τR > t}1{X(t) = z

}}
. (4.43)

Next, writing 1{τR > t} = 1− 1{τR ≤ t} we arrive at two terms, the second of which tends to
zero as R→ ∞ for any fixed t by the estimate

0 ≤ 1
#QR

∑
z∈QR

Ez

{
e

∫ t
0 ξ(X(s))ds1{τR ≤ t}1{X(t) = z}

}
≤ 1

#QR

∑
z∈QR

Pz(τR ≤ t), (4.44)

where we used that ξ ≤ 0. Indeed, Pz(τR ≤ t) ≤ P0(τR(z) ≤ t) with R(z) = dist(z,Qc
R),

which by (4.27) means that Pz(τR ≤ t) decays exponentially with dist(z,Qc
R). Thus, L(νR, t)

is asymptotically given by the right-hand side of (4.43) with 1{τR > t} omitted. But then the
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right-hand side is the average of an L1 function over the translates in the box QR, so by the
Ergodic Theorem,

lim
R→∞

L(νR, t) =
〈

E0

{
exp
[∫ t

0
ξ
(
X(s)

)
ds
]
1
{
X(t) = 0

}}〉
(4.45)

ξ-almost surely for every fixed t ≥ 0 (the exceptional null set is a priori t-dependent). Both
the right-hand side of (4.45) and L(νR, t) for every R are continuous and decreasing in t.
Consequently, with probability one (4.45) holds for all t ≥ 0.

The right-hand side of (4.45) inherits the complete monotonicity property from L(νR, t); it
thus equals L(ν, t) where ν is some measure supported in [0,∞). Moreover, this also implies
that νR → ν weakly as R→ ∞. In particular, we have n(E) = ν([0, E]) for any E ≥ 0.
Proof of Theorem 1.3. From (4.45) we immediately have

eo(t/α
2
t )〈etλd

Rα(t)
〉 ≤ L(ν, t) ≤ 〈u(t, 0)〉, R ≥ 0, (4.46)

where λd
Rα(t) is as in (3.10). Here, for the upper bound we simply neglected 1{X(t) = 0} in

(4.45), whereas for the lower bound we first wrote (4.45) as a normalized sum of the right-hand
side of (4.45) with the walk starting and ending at all possible z ∈ QRαt , and then inserted
1{supp (�t) ⊂ QRα(t)}, applied (3.9) and (3.11), and then recalled (4.24). The factor eo(t/α2

t )

comes from the normalization by #QRα(t) in the first step. Using subsequently (4.23) for p = 1,
the left-hand side of (4.46) is further bounded from below by e(t/α2

t )(−4C/R2+o(1))〈u(t, 0)〉. Then
Theorem 1.2 and the limit R→ ∞ enable us to conclude that

lim
t→∞

α2
t

t
logL(ν, t) = −χ. (4.47)

In the remainder of the proof, we have to convert this statement into the appropriate limit
for the IDS. This is a standard problem in the theory of Laplace transforms and, indeed,
there are theorems that can after some work be applied (e.g., de Bruijn’s Tauberian Theorem,
see Bingham, Goldie and Teugels [BGT87]). However, for the sake of both completeness and
convenience we provide an independent proof below.

Suppose that H is the γ-class. We begin with an upper bound. Clearly,

L(ν, t) ≥ e−tEn(E) for any t, E ≥ 0. (4.48)

Let tE = α−1(
√

(1− 2ν)χE−1) and insert this for t in the previous expression. The result is

log n(E) ≤ tEE + logL(ν, tE) = −tEE 2ν
1−2ν

(
1 + o(1)

)
, E ↓ 0, (4.49)

where we applied (4.47) and the definition of tE. In order to finish the upper bound, we first
remark that from the first assertion in (1.7) it can be deduced that

lim
E↓0

tE

α−1(E− 1
2 )

=
[
(1− 2ν)χ]−

1
2ν . (4.50)

Indeed, define t′E = α−1(E−1/2) and consider the quantity pE = tE/t
′
E. Clearly,

α(pEt′E) = α(t′E)
√

(1− 2ν)χ. (4.51)

Let p̃ = [(1 − 2ν)χ]−1/(2ν). Since t′E → ∞ as E ↓ 0, there is no ε > 0 such that pE ≥ p̃ + ε
for infinitely many E with an accumulation point at zero, because otherwise the left-hand
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side (4.51) would, by (1.7), eventually exceed the right-hand side. Similarly we prove that
lim infE↓0 pE cannot be smaller than p̃− ε. Therefore, pE → p̃ as E ↓ 0, which is (4.50).

Using (4.50), we have from (4.49) that

lim sup
E↓0

log n(E)

Eα−1(E− 1
2 )

≤ − 2ν
1− 2ν

[
(1− 2ν)χ]−

1
2ν . (4.52)

The lower bound is slightly harder, but quite standard. First, introduce the probability
measure on [0,∞) defined by

µE(dλ) =
e−tEλ

L(ν, tE)
ν(dλ), E ≥ 0. (4.53)

We claim that, for any ε > 0, all mass of µE gets eventually concentrated inside the interval
[E − εE,E + εE] as E ↓ 0. Indeed, for any 0 ≤ t < tE we have

µE
(
(E + εE,∞)

) ≤ L(ν, tE)−1
∫ ∞

E+εE
ν(dλ) e−tEλ+t(λ−E−εE) ≤ e−tεEL(ν, tE − t)

L(ν, tE)
e−tE. (4.54)

Pick 0 < δ < 1 and set t = δtE. Then we have

µE
(
(E + εE,∞)

) ≤ exp
{
−δεtEE − δtEE − χ tE

α(tE)2
[
(1− δ)1−2ν − 1 + o(1)

]}
, (4.55)

where we again used (4.47) and (1.7). Applying that (1− δ)1−2ν − 1 = −δ(1− 2ν)+ o(δ), using

tEE − χ(1− 2ν) tE
α(tE)2 = 0, (4.56)

and noting that α(tE)−2 = O(E), we have

µE
(
(E + εE,∞)

) ≤ exp
[−tEE(δε+ o(δ)

)]
. (4.57)

Choosing δ small enough, the right-hand side vanishes as E ↓ 0. Similarly we proceed in the
case [0, E − εE).

Now we can finish the lower bound on Lifshitz tails. Indeed, using Jensen’s inequality

ν
(
[0, E + εE]

)
= L(ν, tE)

∫ E+εE

0
µE(dλ) etEλ

≥ L(ν, tE)µE
(
[0, E + εE]

)
exp
{

tE
µE([0,E+εE])

∫ E+εE

0
µE(dλ)λ

}
.

(4.58)

But
∫∞

0 µE(dλ)λ tends to E, by what we have proved about the concentration of the mass of
µE (note that (4.57) and the similar bound for [0, E − εE) are both exponential in ε) and, by
the same token, so does

∫ E+εE
0 µE(dλ)λ. By putting all this together, dividing both sides of

(4.58) by E ′α−1((E ′)−1/2) with E ′ = E + εE, interpreting E ′ as a new variable tending to 0 as
E ↓ 0, and invoking (4.49) and the subsequent computation, we get

lim inf
E↓0

log n(E)

Eα−1(E− 1
2 )

≥ −(1 + ε)
1−2ν
2ν

2ν
1− 2ν

[
(1− 2ν)χ

]− 1
2ν , (4.59)

where we also used that tE/tE+εE → (1 + ε)1/(2ν). Since ε was arbitrary, the claim is finished
by taking ε→ 0.
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5. Proof of Theorem 1.5

Again, we divide the proof in two parts: the upper bound and the lower bound.

5.1 The upper bound
Proof of Theorem 1.5, upper bound. Let r(t) = t log t and let K ∈ (0,∞). We want to apply
Proposition 4.4 with the random potential V = ξ and with R replaced by Rα(Kbt) for some
fixed R,K > 0. (Later we shall let R→ ∞ and pick K appropriately.)

Recall the definition of BR(t) in Proposition 4.4 and abbreviate B(t) = BRα(Kbt)(t). Take
logarithms in (4.20), multiply by α2

bt
/t and use (1.7) to obtain

lim sup
t→∞

α2
bt

t
log u(t, 0) ≤ C

K2νR2 + lim sup
t→∞

[
α2
bt max
z∈B(t)

λd
z;2Rα(Kbt)(ξ)

]
, (5.1)

almost surely w.r.t. the field ξ. Thus, we just need to evaluate the almost sure behavior of the
maximum of the random variables on the right-hand side. This will be done by showing that

lim sup
R→∞

lim sup
t→∞

[
α2
bt max
z∈B(t)

λd
z;2Rα(Kbt)(ξ)

]
≤ −χ̃ (5.2)

almost surely w.r.t. the field ξ, provided K > 0 is chosen appropriately.
For any t > 0, let (λi(t))i=1,...,N(t) be an enumeration of the random variables λd

z;2Rα(Kbt)(ξ)
with z ∈ B(t). Note that N(t) ≤ 3dtd(log t)d for t large. Clearly, (λi(t)) are identically
distributed but not independent. By (4.6), the tail of their distribution is bounded by

lim sup
t→∞

α2
bt

bt
log
〈
exp{Kbtλd

2Rα(Kbt)(ξ)}
〉 ≤ −K1−2νχ6R, K,R > 0, (5.3)

where χR is defined in (3.30).
The assertion (5.2) will be proved if we can verify that, with probability one,

max
i=1,...,N(t)

λi(t) ≤ − χ̃− ε

α2(bt)
(
1 + o(1)

)
, t→ ∞, (5.4)

for any ε > 0 and sufficiently large R > 0, as t→ ∞. To that end, note first that the left-hand
side of (5.4) is increasing in t since the maps t �→ α(Kbt), R �→ λd

R(ξ) and t �→ r(t) are all
increasing. As a consequence, it suffices to prove the assertion (5.4) only for t ∈ {en : n ∈ N},
because also α(bs)−2 − α(ben)−2 = o(α(ben)−2) as n→ ∞ for any en−1 ≤ s < en. Let

pn = Prob
(

max
i=1,...,N(en)

λi(en) ≥ − χ̃− ε

α2(ben)

)
. (5.5)

Abbreviating t = en and recalling btα−2
bt

= log t = n, the exponential Chebyshev inequality and
(5.3) allow us to write for any K > 0 and n large that

pn ≤ N(en) Prob
(
eKbtλ1(en) ≥ e−Kbtα−2(bt)(χ̃−ε)

)
≤ 3dndend exp

{
Kbtα

−2(bt)(χ̃− ε)
}〈
e
Kbtλd

2Rα(Kbt)
(ξ)
〉

= exp
{
n
[−εK + d+Kχ̃−K1−2νχ6R + o(1)

]}
.

(5.6)
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Now set K to be a positive solution to Kχ̃ − K1−2νχ = −d. As follows by Proposition 1.4,
K = [(1− 2ν)χ/χ̃ ]1/(2ν) will do. Substituting this into (5.6), we obtain

pn ≤ exp
{−n[εK −K1−2ν(χ− χ6R) + o(1)

]}
, (5.7)

which is clearly summable on n provided R is sufficiently large. The Borel-Cantelli lemma then
guarantees the validity of (5.4), which in turn proves (5.2). The limit R → ∞ then yields the
upper bound in Theorem 1.5.

5.2 The lower bound
Recall the notation of Subsection 3.1. Let Qγt = [−γt, γt]d ∩ Z

d denote the “macrobox”,
where γt is the time scale defined by

γt =
t

α3
bt

, t > 0. (5.8)

We assume without loss of generality that t �→ γt is strictly increasing. Since we assumed
Prob(ξ(0) > −∞) > pc(d) for d ≥ 2, there is a K ∈ (0,∞) such that Prob(ξ(0) ≥ −K) > pc(d).
Consequently, {z ∈ Z

d : ξ(z) ≥ −K} contains almost-surely a unique infinite cluster C∗
∞.

Given a ψ ∈ C−([−R,R]d), let ψt : Z
d → (−∞, 0] be the function ψt(·) = ψ(·/α(bt))/α(bt)2.

Suppose H is in the γ-class. Abbreviate

Q(t) =

{
QRα(bt) if γ �= 0,
QRα(bt) ∩ suppψt if γ = 0.

(5.9)

The main point of the proof of the lower bound in Theorem 1.5 is the existence of a microbox
of diameter of order αbt in Qγt (which is contained in C∗

∞ for d ≥ 2) where the field is bounded
from below by ψt:

Proposition 5.1 Let R > 0 and fix a function ψ ∈ C−(R) satisfying LR(ψ) < d. Let ε > 0
and let H is in the γ-class with γ ∈ [0, 1). Then the following holds almost surely: There is a
t0 = t0(ξ, ψ, ε, R) <∞ such that for each t ≥ t0, there exists a yt ∈ Qγt such that

ξ(z + yt) ≥ 1
α2
bt

ψ

(
z

αbt

)
− ε

α2
bt

∀z ∈ Q(t). (5.10)

In addition, whenever d ≥ 2, yt can be chosen such that yt ∈ C∗
∞.

The proof of Proposition 5.1 is deferred to Subsection 5.3. In order to make use of it, we
need that the walk can get to yt + Q(t) in a reasonable time. In d ≥ 2, this will be possible
whenever the above microbox can be reached from any point in C∗

∞∩Qγt by a path in C∗
∞ whose

length is comparable to the lattice distance between the path’s end-points. Given x, z ∈ C∗
∞,

let d∗(x, z) denote the length of the shortest path in C∗
∞ connecting x and z. Let |x− z|1 be the

lattice distance of x and z. The following lemma is the site-percolation version of Lemma 2.4
in Antal’s thesis [A94], page 72. While the proof is given there in the bond-percolation setting,
its inspection shows that it carries over to our case. Therefore, we omit it.
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Lemma 5.2 Suppose d ≥ 2. Then, with probability one,

7(x) := sup
z∈C∗∞\{x}

d∗(x, z)
|x− z|1 <∞ for all x ∈ C∗

∞. (5.11)

We proceed with the proof of Theorem 1.5 in the case d ≥ 2. In d = 1, Lemma 5.2 will be
substituted by a different argument.
Proof of Theorem 1.5 (d ≥ 2), lower bound. Let R, ε > 0 and let ψ ∈ C−(R) be twice continu-
ously differentiable with LR(ψ) < d. If γ = 0, let suppψ be a non-degenerate ball inQR centered
at 0. Suppose that ξ = (ξ(z))z∈Zd does not belong to the exceptional null sets of the preceding
assertions. In particular, there are unique infinite clusters C∞ in {z ∈ Z

d : ξ(z) > −∞} and C∗
∞

in {z ∈ Z
d : ξ(z) ≥ −K}, and ξ satisfies the claims in Proposition 5.1 and Lemma 5.2. Clearly,

C∗
∞ ⊂ C∞. Assume 0 ∈ C∞ and pick a z∗ ∈ C∗

∞. For each t ≥ t0 choose a yt ∈ Qγt ∩ C∗
∞ such

that (5.10) holds. We assume that t is so large that z∗ ∈ Qγt .
The lower bound on u(t, 0) will be obtained by restricting the random walk (X(s))s≥0 (which

starts at 0) to be at z∗ at time 1, at yt at time γt (staying within C∗
∞ in the meantime) and to

remain in yt +Q(t) until time t. Introduce the exit times from C∗
∞ and yt +Q(t), respectively,

τ ∗
∞ = inf

{
s > 0: X(s) /∈ C∗

∞
}

and τyt,t = inf
{
s > 0: X(s) /∈ yt +Q(t)}. (5.12)

Let t ≥ t0(ξ). Inserting the indicator on the event described above and using the Markov
property twice at times 1 and γt, we get

u(t, 0) ≥ I× II× III, (5.13)

where the three factors are given by

I = E0

[
exp
{∫ 1

0
ξ
(
X(s)

)
ds
}

1
{
X(1) = z∗}],

II = Ez∗
[
exp
{∫ γt−1

0
ξ
(
X(s)

)
ds
}

1
{
τ ∗
∞ > γt − 1, X(γt − 1) = yt

}]
,

III = Eyt

[
exp
{∫ t−γt

0
ξ
(
X(s)

)
ds
}

1
{
τyt,t > t− γt

}]
.

(5.14)

Clearly, the quantity I is independent of t and is non-vanishing because 0, z∗ ∈ C∞. Our next
claim is that II ≥ eo(tα

−2
bt

) as t→ ∞. Indeed,

II ≥ e−KγtPz∗
(
τ ∗
∞ > γt − 1, X(γt − 1) = yt

)
, (5.15)

since there is at least one path connecting z∗ to yt within C∗
∞ (recall that the field ξ is bounded

from below by −K on C∗
∞). Denote by dt = d∗(z∗, yt) the minimal length of such a path and

abbreviate 7(z∗) = 7, where 7(z∗) is as in (5.11). Then, for t ≥ t0,

dt ≤ 7|z∗ − yt|1 ≤ 2d7γt ≤ 3d7(γt − 1), (5.16)

by Lemma 5.2 and the fact that the both z∗, yt ∈ Qγt . Hence, using also that dt! ≤ ddt
t ,

Pz∗
(
τ ∗
∞ > γt − 1, X(γt − 1) = yt

) ≥ e−(γt−1) (γt − 1)dt

dt!
(2d)− dt

≥ e−γt exp
[− dt log(2d dt /(γt − 1))

] ≥ exp
[−γt(1 + 3d7 log(6d27)

)]
. (5.17)
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In order to see that II ≥ eo(tα
−2
bt

), recall that γt = o(tα−2
bt

) as t → ∞ by (5.8) and that z∗ does
not depend on t.

We turn to the estimate of III. By spatial homogeniety of the random walk, we have

III = E0

[
exp
{∫ t−γt

0
ξ
(
yt +X(s)

)
ds
}

1{τ0,t > t− γt}
]
, (5.18)

where τ0,t is the first exit time from Q(t). Using (5.10), we obtain the estimate

III ≥ e−ε(t−γt)α−2
bt E0

[
exp
{∫ t−γt

0
ψt
(
X(s)

)
ds
}

1{τ0,t > t− γt}
]
, (5.19)

By invoking (3.5) and (3.12), the expectation on the right-hand side is bounded from below by

exp
{
(t− γt)λd(t)

}
et(0)2, (5.20)

where λd(t) resp. et denote the principal Dirichlet eigenvalue resp. the �2-normalized principal
eigenfunction of κ∆d + ψt in Q(t). For et(0) and λd(t) we have the following bounds, whose
proofs will be given subsequently:

Lemma 5.3 We have

lim inf
t→∞

α2
bt

t
log et(0)2 ≥ 0, (5.21)

lim inf
t→∞

α2
btλ

d(t) ≥ λR(ψ). (5.22)

Summarizing all the preceding estimates and applying (5.21) and (5.22), we obtain

lim inf
t→∞

α2
bt

t
log u(t, 0) ≥ λR(ψ)− ε, (5.23)

where we also noted that t − γt = t(1 + o(1)). In the case γ > 0, let ε ↓ 0, optimize over
ψ ∈ C−(R) with LR(ψ) < d (clearly, the supremum in (1.23) may be restricted to the set of
twice continuously differentiable functions ψ ∈ C−(R) such that LR(ψ) < d) and let R→ ∞ to
get the lower bound in Theorem 1.5. In the case γ = 0, recall that LR(ψ) = const. |{ψ < 0}|.
It is classical (see, e.g., [DV75], Lemma 3.13, or argue directly by Faber-Krahn’s inequality)
that the supremum (1.23) can be restricted to ψ whose support is a ball. The proof is therefore
finished by letting ε ↓ 0, optimizing over such ψ and letting R→ ∞.

Proof of Lemma 5.3. We begin with (5.21). Recall that et is also an eigenfunction for the
transition densities of the random walk in Q(t) with potential ψt−λd(t). Using this observation
at time 1, we can write

et(0) = E0

[
exp
{∫ 1

0

[
ψt
(
X(s)

)− λd(t)
]
ds
}

1{τ0,t > 1}et
(
X(1)

)]
, (5.24)

Since λd(t) is nonpositive and ψ is bounded from below, we have

et(0) ≥ exp
[
α(bt)−2 inf ψ

] ∑
z∈Q(t)

P0
(
τ0,t > 1, X(1) = z

)
et(z). (5.25)
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Using the same strategy as in (5.17), we have P0(τ0,t > 1, X(1) = z) ≥ e−O(α(bt) logα(bt)). Since
et is nonnegative and satisfies ‖et‖2 = 1, we have

∑
z et(z) ≥ ‖et‖2

2 = 1. From these estimates,
(5.21) is proved by noting that α(bt) logα(bt)) = o(t/α(bt)2).

In order to establish (5.22), we shall restrict the supremum in (3.10) to a particular choice
of g. Let QR(ψ) = [−R,R]d if γ �= 0 and QR(ψ) = suppψ if γ = 0. Let ĝ : [−R,R]d → [0,∞)
be the L2-normalized principal eigenfunction of the (continuous) operator κ∆ + ψ on QR(ψ)
with Dirichlet boundary conditions. Let us insert ĝt(z) = ĝ(z/α(bt))/α(bt)d/2 into (3.10) in the
place of g. Thus we get

α(bt)2λd(t)(ψt) ≥ α(bt)−d∑
z∈Q(t)

[
(ψĝ2)

(
z

α(bt)

)− κα(bt)2
∑
y : y∼z

(
ĝ
(

z
α(bt)

)− ĝ
(

y
α(bt)

))2]
, (5.26)

where y ∼ z denotes that y and z are nearest neighbors.
Since ψ is smooth, standard theorems guarantee that ĝ is continuously differentiable on

QR(ψ) and, hence, ‖∇ĝ‖∞ < ∞. (This fact is derived using regularity properties of Green’s
function of the Poisson equation, see, e.g., Theorem 10.3 in Lieb and Loss [LL96].) Then

ĝ
(
z/α(bt)

)− ĝ
(
y/α(bt)

)
= α(bt)−1(y − x) · ∇ĝ(zη/α(bt)), z, y ∈ Q(t), (5.27)

where zη = ηz + (1 − η)y for some η ∈ [0, 1]. For the pairs z ∼ y with y �∈ Q(t) we only
get a bound |ĝ(z/α(bt)) − ĝ(y/α(bt))| ≤ (1 + ‖∇ĝ‖∞)/α(bt) (note that ĝ(y/α(bt)) = 0 in this
case). Since the total contribution of these boundary terms to (5.26) is clearly bounded by
(1 + ‖∇ĝ‖∞)/α(bt), we see that the right-hand side of (5.26) converges to (ψ, ĝ2)− κ‖∇ĝ‖2 as
t→ ∞. By our choice of ĝ, this limit is equal to the eigenvalue λR(ψ), which proves (5.22).

Proof of Theorem 1.5 (d = 1), lower bound. Suppose that 〈log(−ξ(0)∨ 1)〉 > −∞. This implies
that C∞ = Z almost surely and, by the law of large numbers,

Kξ := sup
y∈Z\{0}

1
|y|

|y|∑
x=0

log
(−ξ(x) ∨ 1

)
<∞ almost surely. (5.28)

Suppose that ξ = (ξ(z))z∈Z does not belong to the exceptional sets of (5.28) and Proposition 5.1.
For sufficiently large t, let yt ∈ Qγt be such that (5.10) holds.

Let rx = (−1/ξ(x))∧ 1. The strategy for the lower bound on u(t, 0) is that the random walk
performs |yt| steps toward yt, resting at most time rx at each site x between 0 and yt, so that
yt is reached before time γt. Afterwards the walk stays at yt until γt. Use E(t) to denote the
latter event. Then u(t, 0) ≥ II× III, where III is as in (5.14) and II = E0

[
e

∫ γt
0 ξ(X(s)) ds1E(t)

]
.

The lower bound on III is identical to the case d ≥ 2. To estimate the term II, suppose that
yt > 0 (clearly, if yt = 0 no estimate on II is needed; yt < 0 is handled by symmetry) and
abbreviate |yt| = n+ 1. Using the shorthand [s]n = s0 + · · ·+ sn, we have

II =
∫ r0

0
ds0 · · ·

∫ rn

0
dsn

∫ γt−[s]n

0
dsn+1 exp

{
−
n+1∑
x=0

sx
(
κ− ξ(x)

)}
≥ eO(γt)

n∏
x=0

[
rx exp

(
rxξ(x)

)] ≥ eO(γt) exp
{
−

n∑
x=0

log
(−ξ(x) ∨ 1

)}
. (5.29)
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Indeed, in the first line we noted that [s]n ≤ γt because rx ≤ 1. Then we took out the terms
exp(−κsx) as well as exp(sn+1ξ(yt)), recalling that ξ(yt) ≥ inf ψt = inf ψ/α(bt)2 = O(1) and
that |yt| = O(γt). The last inequality follows by the fact that rx exp(rxξx) ≥ rx/e. Invoking
(5.28), the sum in the exponent is bounded above by Kξ|yt| = O(γt), whereby we finally get
that II ≥ e−O(γt).

5.3 Technical claims
For the proof of Proposition 5.1, we need to introduce some notation and prove two auxiliary

lemmas. For y ∈ Z
d, define the event

A(t)
y = {y +Q(t) ⊂ C∗

∞} ∩
⋂
z∈Q(t)

{
ξ(y + z) ≥ ψt(z)− ε

2α(bt)2

}
. (5.30)

Note that the distribution of A(t)
y does not depend on y. By ∂(Q) we denote the outer boundary

of a set Q ⊂ Z
d. To estimate Prob(A(t)

y ), it is convenient to begin with the first event on the
right-hand side of (5.30).

Lemma 5.4 Let d ≥ 2 and let ψ ∈ C−(R) be such that ψ �≡ 0. Then there is a c ∈ (0,∞)
such that, for t large enough,

Prob
(
∂Q(t) ∩ C∗

∞ = ∅) ≤ e−cα(bt). (5.31)

Proof. Since ψ �≡ 0 is continuous, there is a ball Bα(bt) of radius of order α(bt) such that
Bα(bt) ⊂ Q(t). If t is so large that ψt ≥ inf ψ/α(bt)2 ≥ −K, then Bα(bt) ⊂ {z : ξ(z) ≥ −K}
and the left-hand side of (5.31) is bounded from above by Prob(∂Bα(bt) ∩ C∗

∞ = ∅). The proof
now proceeds in a different way depending whether d ≥ 3 or d = 2. In the following, the
words “percolation”, “infinite cluster”, etc., refer to site-percolation on Z

d with parameter
p = Prob(ξ(0) > −K). Recall that p > pc(d) by our choice of K.

Let d ≥ 3. Then, by equality of pc(d) and the limit of slab-percolation thresholds, there is
a width k such that the slab Sk = Z

d−1 × {1, . . . , k} contains almost surely an infinite cluster.
Pick a lattice direction and decompose Z

d into a disjoint union of translates of Sk. There
is c′ > 0 such that, for t large, at least "c′α(bt)/k# slabs are intersected by ∂Bα(bt). Then
{∂Bα(bt) ∩ C∗

∞ = ∅} is contained in the event that in none of the slabs intersecting ∂Bα(bt) the
respective infinite cluster reaches ∂Bα(bt). Let P∞(k) be minimum probability that a site in Sk
belongs to an infinite cluster. Combining the preceding inclusions, we have

Prob(∂Bα(bt) ∩ C∗
∞ = ∅) ≤ P∞(k)c

′α(bt)/k. (5.32)

Now the claim follows by putting c = −c′k−1 logP∞(k).
In d = 2, suppose without loss of generality that Bα(bt) is centered at the origin. Recall

that x and y are ∗-connected if their Euclidean distance is not more than
√

2. On the event
{∂Bα(bt) ∩ C∗

∞ = ∅}, the origin is encircled by a ∗-connected circuit of size at least cα(bt) for
some c > 0, not depending on t. Denote by x the nearest point of this circuit in the first
coordinate direction. Call sites z with ξ(z) ≥ −K “occupied”, the other sites are “vacant”.

Note that percolation of occupied sites rules out percolation of vacant sites, e.g., by the
result of Gandolfi, Keane, and Russo [GKR88]. Moreover, using the site-perolation version of
the famous “pc = πc” result (see e.g., Grimmett [G89]), the probability that a given site is



34 MAREK BISKUP AND WOLFGANG KÖNIG

contained in a vacant ∗-cluster of size n is bounded by e−σ(p)n, where σ(p) > 0 since p > pc(d).
If the ball Bα(bt) has diameter at least rα(bt), then by taking the above circuit for such a cluster
we can estimate the probability of its occurrence:

Prob
(
∂Q(t) ∩ C∗

∞ = ∅) ≤ ∞∑
n=�rα(bt)�

ne−σ(p)n ≤ e−σ(p)rα(bt)/2, (5.33)

for t large enough. Here “n” in the sum accounts for the possition of the circuit’s intersection
with the positive part of the first coordinate axes. The minimal size of the circuit is at least
"rα(bt)#, since it has to stay all outside Bα(bt). The claim follows by putting c = rσ(p)/2.

Lemma 5.5 For any ε > 0,

Prob(A(t)
0 ) ≥ t−LR(ψ)+o(1), t→ ∞. (5.34)

Let H be in the γ-class. Let ψ �≡ 0 (otherwise there is nothing to prove because LR(0) = ∞).
Consider the event

Ã(t) =
⋂
z∈Q(t)

{
ξ(z) ≥ ψt(z)− ε

2α(bt)2

}
. (5.35)

Note that both events on the right-hand side of (5.30) are increasing in the partial order ξ . ξ′

⇔ ξ(x) ≥ ξ′(x) for all x. Therefore, by the FKG-inequality,

Prob(A(t)
0 ) ≥ Prob

({y +Q(t) ⊂ C∗
∞})Prob(Ã(t)) ≥ Prob(0 ∈ C∗

∞) Prob(Ã(t)). (5.36)

Hence, we only need to prove the assertion for A(t)
0 replaced by Ã(t). The proof proceeds in

three steps, depending on γ and on whether there is an atom at 0.
Proof for γ ∈ (0, 1). Let f ∈ C+(R) be the solution to ψ− 3

8ε = H̃ ′ ◦ f and let ft : Z
d → (0,∞)

be its scaled version: ft(z) = (bt/α(bt)d)f(z/α(bt)). Define the tilted probability measure

Probt,z( · ) =
〈
eft(z)ξ(z)1{ξ(z) ∈ · }〉e−H(ft(z)). (5.37)

We denote expectation with respect to Probt,z by 〈 · 〉t,z. Consider the event

Dt(z) =
{
− ε

4α(bt)2
≥ ξ(z)− ψt(z) ≥ − ε

2α(bt)2
}
. (5.38)

Then Prob(Ã(t)) can be bounded as

Prob
(
Ã(t)) ≥ ∏

z∈Q(t)

[
eH(ft(z))

〈
e−ft(z)ξ(z)1{Dt(z)}

〉
t,z

]
. (5.39)

Applying the left inequality in (5.38), we obtain

Prob
(
Ã(t)) ≥ exp

{ ∑
z∈Q(t)

[
H(ft(z))− ft(z)

(
ψt(z)− ε

4α(bt)2
)]} ∏

z∈Q(t)

Probt,z
(
Dt(z)

)
. (5.40)
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Since γ > 0 and f is continuous and bounded, we can use our Scaling Assumption and the fact
that btα(bt)−2 = log t to turn the sum over z ∈ Q(t) into a Riemann integral over [−R,R]d:

Prob(Ã(t)) ≥ t−
∫

[fψ−H̃◦f ]+ ε
4

∫
f+o(1)

∏
z∈Q(t)

Probt,z
(
Dt(z)

)
. (5.41)

where we also used that Q(t) = QRα(bt) in this case. In order to finish the proof of the lower
bound in (5.34), we thus need to show that∫ [

fψ − H̃ ◦ f] ≤ LR(ψ), (5.42)

and that ∏
z∈Q(t)

Probt,z
(
Dt(z)

) ≥ to(1), t→ ∞. (5.43)

Let us begin with (5.42). For simplicity, we restrict ourselves to the case when H̃(1) = −1.
Then LR(ψ) = γ1/(1−γ)(γ−1 − 1)

∫ |ψ|−γ/(1−γ) and f = γ1/(1−γ)|ψ − 3
8ε|−1/(1−γ). Hence,∫ [

fψ − H̃ ◦ f]− LR(ψ) = γ
1

1−γ

∫
|ψ|− γ

1−γ ζγ

(∣∣ ψ

ψ− 3
8 ε

∣∣ 1
1−γ

)
, (5.44)

where ζγ(x) = 1− x− 1
γ
(1− xγ). Since ζγ(x) ≤ 0 for any x ≥ 0, (5.42) is proved.

In order to prove (5.43), note that

Probt,z
(
Dt(z)

) ≥ 1− Probt,z
(
ξ(z) ≥ ψt(z)− ε

4α(bt)2
)

− Probt,z
(
ξ(z) ≤ ψt(z)− ε

2α(bt)2
)
. (5.45)

We concentrate on estimating the second term; the first term is handled analogously. By the
exponential Chebyshev inequality, we have for any gt(z) ∈ (0, ft(z)) that

Probt,z
(
ξ(z) ≤ ψt(z)− ε

2α(bt)2
)

≤ e−H(ft(z))
〈
exp
{
ft(z)ξ(z)− gt(z)

[
ξ(z)− ψt(z) + ε

2α(bt)2
]}〉

= exp
{
H
(
ft(z)− gt(z)

)−H
(
ft(z)

)
+ gt(z)ψt(z)− gt(z)

ε

2α(bt)2
}
.

(5.46)

Note that H̃ ′
t → H̃ ′ (recall (3.13)) as t → ∞ uniformly on compact sets in (0,∞). Also

note that f is bounded away from 0. Choose gt(z) = δtft(z), where δt ↓ 0 is still to be chosen
appropriately. Then the exponent in the third line of (5.46) can be bounded from above by

− δt
bt

α(bt)d+2f
( z

α(bt)

){
H̃ ′
t

[
f
( z

α(bt)

)
(1− δt)

]
− ψ

( z

α(bt)

)
+
ε

2

}
= −δt bt

α(bt)d+2f
( z

α(bt)

)[ε
8

+ o(1)
]
, (5.47)
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where we replaced H̃ ′
t by H̃

′ +o(1) and used the definition relation for f . Pick δt = (αd+2
bt
/bt)1/2

for definiteness. Taking the product over z ∈ Q(t) in (5.45) and using that [ ε8 + o(1)]f ≥ C > 0,
we obtain for t large that∏
z∈Q(t)

Probt,z
(
Dt(z)

) ≥ [1− 2 exp
{
−Cδt bt

α(bt)d+2

}]#Q(t)

≥ exp
{
−4#Q(t) exp

{
−Cδt bt

α(bt)d+2

}}
= t

−C′(αd+2
bt

/bt) exp
(

−Cδt bt
α(bt)d+2

)
, (5.48)

where also used that btα(bt)−2 = log t and #Q(t) ≤ α(bt)dC ′/4 for some C ′ as t → ∞. By our
choice of δt, (5.43) is clearly satisfied, which finishes the proof in the case γ ∈ (0, 1).

Proof for γ = 0, atom at 0. Suppose Prob(ξ(0) ∈ ·) has an atom at 0 with mass p > 0. Then,
noting that Q(t) are only the sites with ψt < 0, we have

Prob(Ã(t)) ≥ Prob
(
ξ(0) = 0

)#Q(t)

= exp
{
α(bt)d(|suppψ|+ o(1)) log p

}
, t→ ∞. (5.49)

Since αt = t1/(d+2) and H̃(1) = log p, we have LR(ψ) = −H̃(1)|suppψ| and α(bt)d = log t,
whereby (5.34) immediately follows.

Proof for γ = 0, no atom at 0. Suppose γ = 0 and Prob(ξ(0) = 0) = 0. Set ft = btα(bt)−d and
consider the probability measure Probt(ξ(0) ∈ ·) with density exp[ftξ(0)−H(ft)] with respect
to Prob(ξ(0) ∈ ·). Invoking that ξ(0) ≤ 0, we obtain

Prob(Ã(t)) ≥ Prob
(
ξ(0) ≥ − ε

2α(bt)2
)#Q(t)

≥ e#Q
(t)H(ft) Probt

(
ξ(0) ≥ − ε

2α(bt)2
)#Q(t)

. (5.50)

Now use the Scaling Assumption and the fact that #Q(t) = α(bt)d(|suppψ| + o(1)) as t → ∞
to extract the term t−LR(ψ) from the exponential on the right-hand side (here we recalled that
LR(ψ) = −H̃(1)|suppψ|). Moreover, by an argument similar to (5.46), the last term on the
right-hand side is no smaller than to(1) as t → ∞. To that end we noted that our choice of
ft corresponds to f ≡ 1 and then we used again that limt→∞ btα(bt)−(d+2) = ∞, which follows
from the fact that ξ(0) has no atom at zero.

Proof of Proposition 5.1. Fix R > 0 and ψ ∈ C−(R) with LR(ψ) < d. Recall the notation (5.9)
and (5.30). Let t1 = t1(ψ, ε, R) be such that for all t ≥ t1 and for all s ∈ [0, e)

ψet(z)− ε

2α(bet)2
≥ ψst(z)− ε

α(bst)2
, z ∈ Q(st). (5.51)

Such a t1 < ∞ indeed exists, since α(bst)/α(bet) → 1 as t → ∞ and since ψ is uniformly
continuous on [−R,R]d. This implies that to prove Proposition 5.1 it suffices to find an almost-
surely finite n0 = n0(ξ, ψ, ε, R) such that for each n ≥ n0 there is a yn ∈ Qγen for which the
event A(en+1)

yn occurs. Indeed, for any t = sen with n ≥ n0 and s ∈ [0, e) we have that Qγen ⊂ Qγt

and yn+QRα(bt) ⊂ yn+QRα(ben+1 ), as follows by monotonicity of the maps t �→ γt and t �→ α(bt)
and, consequently, ⋂

z∈Q(t)

{
ξ(yn + z) ≥ ψt(z)− ε

α(bt)2
} ⊃ A

(en+1)
yn , (5.52)
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by invoking (5.51). Then Proposition 5.1 would follow with the choice t0 = t1 ∨ en0 .
Based on the preceding reduction argument, let t ∈ {en : n ∈ N} for the remainder of the

proof. Let Mt = Qγt ∩ "3Rα(bet)#Zd. We claim that, to prove Proposition 5.1 for t ∈ {en : n ∈
N}, it suffices to show the summability of

pt = Prob
(∑
y∈Mt

1
A

(et)
y

≤ 1
2#Mt Prob

(
A

(et)
0

))
, t ∈ {en : n ∈ N}. (5.53)

Indeed, since #Mt ≥ td+o(1) we have by Lemma 5.5

#Mt Prob(A(et)
0 ) ≥ td−LR(ψ)+o(1), t→ ∞. (5.54)

Since we assumed LR(ψ) < d, summability of pt would imply the existence of at least one site
y ∈ Qγt (in fact, at least td−LR(ψ)+o(1) sites) with A(et)

y satisfied.
To prove a suitable bound on pt we invoke Chebyshev’s inequality to find that

pt ≤ 4

#Mt Prob(A(et)
0 )

+
4maxy �=y′ cov(A(et)

y , A
(et)
y′ )

Prob(A(et)
0 )2

. (5.55)

As follows from (5.54), the first term on the right-hand side is summable on t ∈ {en : n ∈ N}.
In order to estimate cov(A(et)

y , A
(et)
y′ ) for y �= y′, let H and H

′ be two disjoint half spaces in R
d

which contain y + Q(et) and y′ + Q(et), respectively, including the outer boundaries. By our
choice of Mt, H can be chosen such that dist(y + Q(et)),Hc) ≥ Rα(bt)/3, and similarly for H

′.
We introduce the event Fy that the outer boundary of y + Q(et) is connected to infinity by a
path in C∗

∞ ∩ H, and the analogous event Fy′ with y′ and H
′ instead of y and H. By splitting

A
(et)
y into A(et)

y ∩ Fy and A(et)
y ∩ F c

y (and analogously for y′) and invoking the independence of
A

(et)
y ∩ Fy and A(et)

y′ ∩ Fy′ we see that

cov
(
A(et)
y , A

(et)
y′
)
= cov

(
A(et)
y ∩ F c

y , A
(et)
y′
)
+ cov

(
A(et)
y ∩ Fy, A(et)

y′ ∩ F c
y′
)

≤ Prob
(
Ã(et))2[Prob(F c

y ) + Prob(F c
y′)
]
,

(5.56)

where we recalled (5.35) for the definition of Ã(et).
In order to estimate the last expression, let us observe that

F c
y ⊂

{
∂(y +Q(et)) ∩ C∗

∞ = ∅} ∪ ⋃
x∈∂(y+Q(et))

Gx (5.57)

where Gx is the event that x is in a finite component of {z : ξ(z) ≥ −K} ∩H which reaches up
to H

c. By Lemma 5.4, the probability of the first event is bounded by e−cα(bt)/2 and, as is well
known (see, e.g., Grimmett [G89], proof of Theorem 6.51), Prob(Gx) is exponentially small in
dist(x,Hc), which is at least Rα(bt)/3. Since #∂(y +Q(et)) = O(α(bt)d−1), we have

Prob(F c
y ) ≤ e−c∗α(bt) (5.58)

for some c∗ > 0. Since α(bt) = nν/(1−2ν)+o(1) for t = en, also the second term is thus summable
on t ∈ {en : n ∈ N}, because by Lemma 5.4, Prob(Ã(et)) ≤ (1 + o(1))Prob(A(et)). Combining
all the preceding reasoning, the proof of Proposition 5.1 is finished.
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