
Supporting Email Workflow

Gina Danielle Venolia, Laura Dabbish, JJ Cadiz, Anoop Gupta

Revised December 2001
(Original September 2001)

Technical Report

MSR-TR-2001-88

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

Supporting Email Workflow
Gina Danielle Venolia1, Laura Dabbish2, JJ Cadiz1, Anoop Gupta1
Microsoft Research—Collaboration and Multimedia Group

ABSTRACT
As more people use email at home or on the job, more people have
come to experience the pain of email that Denning first wrote about
20 years ago [5]. In this paper, we present data from a field study in
our own company to add to the existing body of research about how
people use email. We then use these data and prior literature to
outline a framework of the five main activities that we believe people
engage in when dealing with email. In particular, we focus on two
activities that we believe have been under-studied: attending to the
flow of messages as they arrive, and doing “triage” on a body of new
messages. In addition, we outline potential design directions for
improving the email experience, with a focus on email clients that
group messages and their replies together into threads. We present a
prototype of such an interface as well as results from a lab study of
the prototype.

Keywords
Email, electronic mail, asynchronous communication, personal
information management, task management, computer-mediated
communication

INTRODUCTION
In 1982, Peter Denning (then the ACM President) first wrote about
the pain of working with email, calling it “The Receiver’s Plight” and
asking, “Who will save the receivers [of email] from drowning in the
rising tide of information so generated?” [5]. Twenty years later, we
still don’t have the answer. Numerous studies have continued to
provide data outlining the plight of email users, and it seems the only
thing that’s changed is that the number of people experiencing this
pain has risen dramatically. Feelings first expressed by the ACM
President are now headlines in national newspapers: “Email overload
taxes workers and companies” [13]. Furthermore, the trend isn’t
slowing. IDC reports that in the year 2000 there were 452 million
email mailboxes and approximately 9.7 billion messages exchanged
on an average day. In 2005, the numbers are predicted to jump to 983
million mailboxes and 35 billion messages [10].

Simply put, email has become a place where many of us now live—a
“habitat” in the words of Ducheneaut and Bellotti [8]. As shown by
Whittaker and Sidner [17], this place poorly supports the tasks we
need to accomplish. As they note, email has become overloaded: The
usage and uses of email go far beyond what we could have imagined
twenty years ago, but the interfaces of mail clients have not kept

pace. In many ways, email has become a victim of its own success.

PREVIOUS EMAIL LITERATURE
Researchers have been studying email for quite some time. Much of
the early work on social and organizational aspects of email is
summed up well by Sproull and Kiesler [14]. In this paper, we’d like
to focus on identifying users’ needs and suggesting design directions
to support them.

The research on how people work with their email clients includes
both studies of current use and studies of prototype interfaces. As
noted in the previous section, Denning [5] was the first to point out
that current email clients did little to help people who received lots of
email. Denning proposed several solutions to the problem based on
two principles: First, there should always be a special path for people
to get urgent, certified, and personal messages; and second, all other
paths should be filtered.

Six years after Denning’s paper, Mackay [11] published results from
an extensive study of email (based on the Information Lens system
built by Malone et al. [12]). Her results included two primary
findings: People use email in incredibly diverse ways, and people use
email for much more than just basic communication (e.g. task
management, task delegation, time management, archiving
information for future use). She also found that people generally fell
into one of two categories when it came to handling email: archivers
or prioritizers. Archivers focused on strategies for making sure that
they would see all messages and not miss anything important;
prioritizers focused on strategies to limit the time they spent with
email so that they could get other work done. In a nutshell,
prioritizers controlled their email while archivers were controlled by
their email. Mackay also classified people based on whether they
were “overwhelmed”, “on the edge”, or “ok” when it came to
handling all their email.

Eight years after Mackay’s work, Whittaker and Sidner [17]
published their study on email use within Lotus. Like Mackay, they
found that email was being used for several tasks in addition to basic
communication, calling the phenomenon “email overload.” They also
studied how people handled email overload when it came to filing
messages and classified people as no filers (people who don’t clean
up their inbox but use searching tools to manage it), frequent filers
(people who constantly clean up their inbox), and spring cleaners
(people who cleaned up their inbox once every few months).

Five years after Whittaker and Sidner’s work, Ducheneaut and

1 One Microsoft Way, Redmond, WA 98052 USA
{ginav; jjcadiz; anoop}@microsoft.com

2 Work done while a summer intern at MSR; currently at
746 East End Ave., 1st Fl., Pittsburgh, PA 15221 USA, dabbish@cmu.edu

Bellotti [8] published their study, which examined email usage in
three organizations. Like the previous studies, they found that email
is used for a variety of tasks, such as information management,
coordination, and collaboration. In fact, they found that people used
email so often for so many tasks that they called email not just a killer
application, but a “serial killer,” writing: “It is seriously overloaded
and has been co-opted to manage a variety of tasks that it was not
originally meant to support.”

A MODEL OF EMAIL WORKFLOW
Based on our review of the literature and early attempts to design an
improved email client, we developed a conceptual model of users’
activities surrounding email. We identified five different activities:

Flow: As people are working on other tasks, they want to keep up
with the flow of incoming messages as they arrive.

Triage: After people are away from their email for a period of time,
they need to catch up and deal with all the email that accumulated
while they were away.

Task management: People often use email to remind them what they
need to do, and to help them get tasks done.

Archive: People store email so they can refer to it later.

Retrieve: After archiving messages, people need a method of
retrieving messages.

While the latter three activities are often discussed in the literature,
less attention has been paid to the first two.

To validate this model and understand its intricacies, we collected
data using three methods, described in the next section. We then
discuss a detailed understanding of the model and suggest a number
of user interface improvements, both based on analysis of the data
and information from previous literature. Conversational threads are a
recurring theme in the UI improvements; they are discussed next. We
then sketch out a design integrating the various user interface
improvements. The design sketch centers around a thread-based email
browser, which we prototyped and tested; the results are described
last.

DATA COLLECTION
The model described above made intuitive sense to us, but that, of
course, is a poor basis for a design. To validate the model and
understand it in depth, we studied employees in our company using
three methods: interviews, analysis of message archives, and a
survey.

Structured Interviews
We interviewed ten individuals for the first part of our study.
Participants included a systems engineer, a television studio engineer,
an encyclopedia editor, a sales representative, an administrative
assistant, a game tester, two project managers, and two training
coordinators. All interviews were scheduled for one hour in the
participant’s office, to occur after a period of absence from the
computer—first thing in the morning or after a meeting—so there
would likely be some new messages waiting. In addition, participants

were asked beforehand to refrain from reading new messages for the
day prior to the interview.

Part of the interview was conducted as a contextual inquiry, where
participants worked with their mail while thinking aloud. For the
remainder of the interview the participants were asked a variety of
questions, such as how often participants checked their mail, their
folder hierarchies, how they handled each message, what they liked
and disliked about the email experience, and so on.

Message Archives
We used a tool to collect ten message archives for the second part of
our study. Seven of the archives were collected from our interview
participants (technical difficulties prevented us from collecting
archives from the other three interviewees) and three of the archives
were from members of the authors’ workgroup. The tool collected all
the information in users’ email archive including thread structure of
messages, folder hierarchy, where messages were filed, whom
messages were sent to, etc. The only information that wasn’t
collected was subject lines and bodies of messages.

Survey of Email Use
The last method we used in our study was a web survey. Based on our
interview findings, we developed a survey asking a variety of
questions about what makes a message important or unimportant,
how people handle messages when they arrive, how people use email
as a task planning tool, how people file messages, and how people
retrieve older messages. This survey was sent to approximately 1,500
people via general-interest discussion lists, resulting in 406
completed surveys. The majority of the questions were answered
using a 5-point Likert scale where 1 = “strongly disagree” and 5 =
“strongly agree.”

The Participants
It’s important to note that we work for a software company, thus our
study participants are arguably above average when it comes to
technical expertise. At the same time, we were careful to include a
wide variety of job roles. In may be that the email culture inside our
company is a bellwether, predicting aspects of society in general as
dependence on email increases.

All of our participants used Microsoft’s Outlook 2000 or Outlook XP
as their email client. While Outlook has its particular quirks, it is
generally representative of the dominant commercial email clients.

THE EMAIL WORKFLOW MODEL IN DEPTH
This section discusses each of the five activities associated with email
in depth. For each we discuss evidence for the existence of the
activity, details about how people use Outlook to approach the
activity, problems that they are having, and suggestions for user
interface enhancements that might mitigate those problems.

Flow Activity
As stated by [8], email has now become a habitat that many of us live
in. However, as much as we might like to, we can’t live in email all
the time. Eventually people have to do other work on their computers,
and while they do, they like to keep track of incoming messages as
they arrive, an activity we call keeping up with the “flow.” This

desire to be aware of message arrival was clearly indicated in our
survey responses. The median response to the statement, “When I’m
at my computer and a message arrives, I immediately look at it” was
4 or “agree” (avg=3.7, sd=0.9).

Unlike the other four activities we discuss, the flow activity is
typically a secondary, background activity that is unrelated to the
primary task being performed (writing a document, reading a web
page, etc.). Thus, when users receive a new message, a series of tasks
is triggered revolving around evaluating the message and deciding
what action to take.

Outlook provides three methods of being notified of new mail:
playing a sound, displaying an icon in the Windows task bar, or
briefly changing the mouse pointer. When users are notified of a new
message, they have to stop what they’re doing, switch to Outlook,
and read the message in order to determine if they need to do
anything. When finished, they have to remember what they were
doing before and switch back to it. This context switching can be very
painful. In fact, several of our interview participants said that when
they were stressed or deeply involved in a task, they would ignore
Outlook when a new message arrived, turn off new mail notifications,
or shut down Outlook altogether.

In addition to the simple notification, another way that people use
Outlook to support the flow activity is by keeping the inbox visible
on the screen. The majority of survey respondents (61%) indicated
that they keep Outlook visible two-thirds of the time or more.

By default Outlook generates the same notification for all incoming
messages. Some survey respondents indicated that they used rules to
give a different sound based on various aspects of the message (the
survey didn’t ask about this directly, but some used the narrative
response fields to describe this customization).

UI to Support the Flow Activity
To support the flow activity, the client should provide enough
information to decide an appropriate action. One way to do this is to
pop up a window and play a sound when the message is received.
Microsoft’s Messenger service already does this with new Hotmail
messages, but a similar feature doesn’t exist for Outlook.
Interestingly, when a prototype (unrelated to this project) that
provided this feature for Outlook, shown in Figure 1, was distributed
within our company, the data indicated that this was one of the most
popular features, even though it was a relatively minor part of the
prototype [4].

Of course the contents of that pop-up notification window must be
designed to provide the appropriate information. Hotmail’s
notifications display sender and subject line, but as Table 1 shows,

people may benefit from
seeing additional
information so they can
decide whether to deal with
the message.

When the notification
appears, the user may read it
and choose to act on the
message. There may be
enough information in the
notification window for the
user to take decisive action:
mark the message as “read,”
delete it, or initiate
composing a reply to it. Or
there may be only enough
information to warrant
opening the message to
investigate it further. If no
action is taken the message
is left “unread” in the inbox,
to be dealt with in the triage
activity.

There is a constant tension
between attending to the
primary task and the flow
activity. It may be
appropriate to suppress the notification under some circumstances.
This may be as simple as identifying some email discussion lists as
low-priority. Bälter and Sidner [1] suggest a message prioritization
scheme for sorting the inbox which could be extended to control
which messages generate notification. Horvitz et al [9] suggest a
more involved approach where an intelligent agent infers over time
what makes a message important to a user and dynamically estimates
the interruptability of the user. These factors are used to adjust the
salience and timing of notification.

Triage Activity
People often spend blocks of time going through their mail and
deciding what to do with all their messages. We call this activity
“triage.”

Triage can be triggered by several events. First, nearly all our survey
respondents indicated that they performed the triage activity on their
inbox after being away form their mail for a while. The median
response to, “When I get to work in the morning, the first thing I do is
check my inbox” was 5 or “strongly agree” (avg=4.8, sd=0.4). The
median response to “When I get back from a meeting, the first thing I
do is check my inbox” was also 5 (avg=4.7, sd=0.6). Triage may also
be triggered by a full inbox (median=4 (“agree”), avg=4.1, sd=1.1) or
by the arrival of an important message (median=4, avg=3.9, sd=1.1).
Note that performing triage on a single message as soon as it arrives
is essentially the “flow” activity discussed in the previous section.

Figure 1: A prototype email notification. This window appeared briefly
when a message arrived. Clicking in the window opened the message.

Factor Mean

Reply to my message 4.3

From Manager 4.2

I'm on TO line 4.1

"High Importance" flag 4.1

From project member 4.0

From direct report 3.9

From management chain 3.7

From peer 3.7

Interesting auto-preview 3.6

Interesting subject line 3.6

To fewer than five 3.5

From family member 3.4

I'm on CC line 3.2

From friend 3.2

Important DL on TO line 3.1

From administrator 3.1

To fewer than ten 3.0

From other person in org 2.9

Important DL on CC line 2.6

To more than ten 2.6

From unknown sender 2.1
Table 1: Factors in message
importance. Mean responses to survey
questions of the form, “A message is
particularly important if…”

In our interviews we observed two dominant strategies for
approaching the Triage activity: serial (3 of 10 interviewed
participants) or prioritized (7 of 10). Participants who used the serial
strategy read messages in the order of arrival, while those who used
the prioritized strategy either skipped around picking out interesting
senders or subject lines, or used sorting to group messages by sender.
The dominance of the prioritized strategy was supported in the
survey: The median response to “When I have a lot of mail to read
through, I skip around to find important messages” was 5 (avg=4.2,
sd=1.0).

We believe two reasons underlie the use of the prioritized strategy.
First, people have a greater need to keep aware of things that are
important to them and that have potential of greater impact on their
life. Second, people may not be able to finish the triage task before
they have to attend to some other task, thus people want to deal with
the most important messages first.

UI to Support the Triage Activity
Thus, the key UI challenge for the triage activity is providing
sufficient, relevant information for identifying important new
messages. Bälter and Sidner [1] describe a prototype that divides the
inbox into several distinct categories, arranged in rough order of
importance by some simple, easily-customized rules. Another
important aspect of the design is displaying the message
characteristics (as in Table 1) that are associated with important
messages.

Another strategy that may be employed in the design is to list
conversational threads, rather than individual messages, in the inbox.
This serves two purposes: The total number of items in the inbox is
reduced, and messages are shown in their conversational context. We
discuss a prototype thread-oriented message browsing in a later
section.

Task Management Activity
It’s clear that people rely heavily on their email clients to help them
keep track of what they need to do. Mackay [11] found this,
Whittaker and Sidner [17] found this, Ducheneaut and Bellotti [8]
found this, and we found this in our study. Six of our 10 interview
participants used email messages as their to-do lists, and on our
survey, the median response to “I keep messages as reminders for
later action when I owe a response” was 4 or “agree” (avg=4.3,
sd=0.7). People also kept messages that they needed read later
(median=4, avg=4.1, sd=0.8) and messages for which they were
expecting a response from someone else (median=4, avg=3.9,
sd=1.0).

However, the problem we observed is that there’s no single
successful method provided by Outlook for handling tasks. Although
Outlook provides a separate Task list tool, only three of our interview
participants used this feature. Furthermore, on our survey, we asked,
“If a message needs action but I can’t do it right away, I move it to
the Outlook Task list”. The median response was 2 or “disagree”
(avg=2.4, sd=1.3).

In addition to the Task list, Outlook also provides several low-level
methods for handling messages that need future action: leave in
inbox, mark as unread, mark with a flag icon for follow-up, move to a
specific to-do/project folder, move to calendar, and so on. As shown
in Figure 2, by far the most popular strategy is keeping everything in
the inbox. This strategy was so prevalent that in our interviews, we
even observed the same thing Ducheneaut and Bellotti found: People
place non-email related tasks in their inbox by sending themselves
mail.

One benefit of keeping tasks in the inbox is that, since the inbox is
often visible, pending tasks are visible. Of course, the problem with
keeping everything in the inbox is that the inbox can quickly become
swamped with messages, making it difficult to figure out what needs
to be done. When we asked, “I can easily tell which messages I have
kept as reminders,” the median response was 3 or “neutral” (avg=3.2,
sd=1.3). Whittaker and Sidner [17] also found this problem and made
two suggestions for improving the interface to better support the
activity of task management: Group messages by thread, and allow
people to flag messages such that the system would remind them later
about the message. Outlook supports the latter suggestion, but it
doesn’t appear to be widely used: When we asked, “If a message
needs action but I can’t do it right away, I use the ‘Flag for Follow
Up’ feature” the median response was 2 or “disagree” (avg=2.7,
sd=1.4). It’s unclear whether the lukewarm use of this feature is due
to inherent limitations or to other UI issues, e.g. the rather cryptic
dialog box that appears in response to the “Flag for Follow Up”
command. In a later section we discuss Whittaker and Sidner’s other
suggestion—grouping messages into threads.

1

2

3

4

5

Le
av

e
in

 In
bo

x

M
ar

k
U

nr
ea

d

"F
la

g
fo

r
F

ol
lo

w
up

"

P
ap

er
-b

as
ed

 to
-d

o
lis

t

M
ov

e
to

 p
ro

je
ct

 fo
ld

er

M
ov

e
to

 T
as

k
Li

st

P
os

t-
It

no
te

s

M
ov

e
to

 C
al

en
da

r

P
ap

er
 s

cr
ap

C
om

pu
te

r-
ba

se
d

to
-d

o
lis

t
M

ov
e

to
 g

en
er

al
 a

ct
io

n
ite

m
s

fo
ld

er

M
ea

n
 R

es
p

o
n

se

Figure 2: Users task management strategies. Average Likert scale
ratings for various mechanisms for turning a message into a task reminder.

UI to Support the Task Management Activity
Whittaker and Sidner identify reasons an old message may be kept in
the inbox:

1. “To dos,” reminders that the user needs to take action;
2. “To reads,” long documents need to be read at some later time;
3. Ongoing correspondence where the user may owe or be owed a

response; and
4. Messages of indeterminate status.
We suggest providing pending flags in the user interface that map
onto these:

1. Pending—Action required
2. Pending—To be read
3. Pending—Need to respond and Pending—Owed a response
4. Pending (unspecified)

The user needs access to pending messages. Whittaker and Sidner
point out that people keep task messages in their inbox simply
because it’s visible, and that hiding the pending messages in a
different view leads to them being “out of sight, out of mind.” Thus
we propose that threads that contain messages flagged as pending
appear clustered in the inbox, below the clusters of active threads.

While the cluster of threads with pending messages may keep
reminders accessible and allow simple operations such as scanning
for the next task and marking a task as completed, it may not be the
correct information design for deeper task management operations.
We envision that a separate application would allow in-depth task
management, including prioritizing, treeing, clustering, ordering, etc.

Archive Activity
Some messages may have long-term value, so mail users retain them.
They often develop rich folder hierarchies to associate related saved
messages. We call the activity of marking messages to facilitate later
retrieval the “archive” activity.

It’s clear that archiving messages is very common. In our survey,
when we asked, “I organize saved mail into folders,” the median
response was 5 or “strongly agree” (avg=4.5, sd=0.7). However, the
frequency with which people archived messages varied: According to
our survey data, 67% of respondents filed daily or weekly, 23%
monthly, and 10% rarely or never, corresponding to frequent filers,
spring cleaners, and no filers categories discussed in [17].

Using Folders
Outlook, like most other popular email clients, provides folders as the
dominant means of archiving of messages. Previous research has
examined users’ folder structures, and we did the same. For the 10
people whose archives we studied, the average number of folders was
104 folders (min 11, max 309). These folders were organized in a
hierarchy with a typical depth of 2 or 3, but one had 5 levels. Overall,
these data indicate that the complexity of folder structures has
increased since Whittaker and Sidner’s [17] study in 1996 when on
average no filers had 11 folders, spring cleaners had 61 folders, and
frequent filers had 71 folders. Our numbers are also higher than the
numbers reported by Mackay in 1988 [11] where the average number
of folders was 33.

Not surprisingly, having so many folders can lead to problems,
including folders having too many or too few messages to be useful
[17], mail clients enforcing alphabetical ordering of folders, which
isn’t what users always want [8], having many folders that are no
longer useful, and having so many folders that filing often requires
scrolling through a long list of folders [11] [17]. Interestingly, users
don’t perceive a problem finding a place for messages to go. In our
survey when we asked, “When filing a message, I know exactly
where it should go,” the median response was 4 or “agree” (avg=3.9,
sd=1.0).

However, just because people know where to file every message
doesn’t mean that every message belongs in just one folder. Outlook
(like most other popular email clients) allows a message to be stored
in only one folder. The problem becomes more acute when dealing
with entire threads of messages. In our analysis of message archives,
we found that 23% of all message threads were spread across two or
more folders, mostly because of Outlook’s habit of automatically
placing one’s replies in the “sent items” folder, which guarantees that
it’s in stored in a different folder than its parent message.

The single-folder-per-message problem is complicated by the fact
that the inbox itself is considered a folder. Thus archiving a
message—i.e. moving it to a folder—removes it from the inbox. As a
result the archive task interferes with triage and task management.
This unnecessarily increases the number of times that the user must
understand the meaning of a message.

As an aside, we should note that Outlook does allow users to
associate multiple category labels with messages, which can be a way
around the limitation of only being able to store mail in one folder.
However, both the UI to attach and retrieve messages using
categories is cumbersome, and they are not used: The median
response to “I use the Categories feature in Outlook” was 2 or
“disagree” (avg=2.1, sd=1.2).

Mail without Filing
Filing takes time and today’s systems allow messages to be marked
with only a single label. However, one system developed by
researchers at the Compaq SRC labs called Pachyderm [1] introduces
a system that solves both of these problems. Pachyderm is based on
the notion that there should be no folders (in form of separate storage
buckets) and all messages should reside in a single conceptual store.
However, users can create folders using standing queries (search
commands that are continuously updated). Thus, instead of creating a
folder for all mail about project “Gresham”, I can create a standing
query for all messages sent to the “Gresham” distribution list and all
messages containing the word “Gresham” in the subject or body.
Users’ collections of standing queries can be represented just like the
folder hierarchy, with the advantages that no filing is required, and
messages can exist in the results from several standing queries.
Similar issues have been explored in the document management
space by Dourish et al. [7].

Reasons for Saving Messages
As shown in Figure 3, people archive messages for a variety of
reasons. Clearly the information content of the message is important:
The median response to “I try to keep a message easy to find when I
may want the information it contains later” was 4 or “agree”
(avg=4.3, sd=0.7), but we also found that people tend to file messages
when they have objects in them that may be of future use (files, file
pointers, web links, etc.). The second most popular reason for
keeping a message is because of the attachments it contains.
Ducheneaut and Bellotti [8] reported similar findings, noting that
email is now the main method of exchanging documents.

Outlook provides a search feature that supports finding messages that
contain particular words and finding messages that contain (or don’t
contain) attachments, but does not support searching for file paths or
URLs categorically (though text matching can be used if part of the
string is known).

Folder Types
There is a vast range of organization schemes that people use for
grouping messages. The survey asked about three types of folders: for
projects, by discussion list, and by sender. The median response to, “I
have folders where I keep mail regarding a particular project,” was 5
or “strongly agree” (avg=4.4, sd=0.8). The median response to, “I
have folders where I keep mail from particular discussion lists,” was
4 or “agree” (avg=4.1, sd=1.1). The median response to, “I have
folders where I keep mail from particular people,” was 4 (avg=3.6,
sd=1.3). Narrative survey responses to, “What other folders to you
have for old mail?” indicate that people have folders for a number of
other reasons as well. Among the most common are folders for
administrative, personal, and technical reference emails. A number of
respondents file their old mail by date.

UI to Support the Archive Activity
A user interface to support the archive activity would improve the
nature of labels, the process of applying them, and provide tools for
managing labels. We propose two changes to the nature of labels. The
first and most obvious is to move beyond the rather odd restriction
that a message must live in a single folder, no more, no less. Instead,
an arbitrary number of labels may be associated with an item. The

second proposal addresses the problem of threads becoming spread
across multiple folders: Labels should be associated with threads
instead of messages. A beneficial side effect of this is that fewer
objects need labeling, reducing the amount of work to be done in the
archive activity.

There are several ways that the process of applying labels can be
improved. The views that support the triage and task management
should show active threads and threads with pending messages
whether those threads are labeled or not. While some threads will be
filed during triage, others will be done in bulk. To support the latter,
it should be easy for the user to determine which threads are
unlabeled, e.g. via a filter for unlabeled threads. Finally, as
demonstrated by Segal and Kephart [14] it may be helpful if the
interface were to suggest a few labels that are likely to apply to the
thread being considered, e.g. by similarity of contents or participants.

It may be appropriate too to provide some high-level tools for
managing labels, such as identifying underused labels that may be
candidates for elimination, overused labels that may be split, pairs of
labels that are similar and may be merged, etc.

As described in the preceding section, people have folders for by
sender, by discussion list, and by date. There is no reason for the user
to have the responsibility of filing based on these criteria since it can
easily be extracted from the message header. Thus we can shift this
burden from the archive activity to the retrieve activity, described
next.

Retrieve Activity
People archive messages because they want to be able to recover
them later. Thus clearly another main activity people need to do with
their email clients is retrieve older messages. Just as with archiving
messages, retrieval is a very common activity: When we asked the
question, “I never access old messages,” the median response was 1
or “strongly disagree” (avg=1.6, sd=0.8).

Clearly the archiving strategy affects the retrieving strategy, as
explored by Bälter [1]. If the folder hierarchy is well-formed and
well-used, retrieving messages should be easy. When we asked,
“When I need to access an old message, I look in one of the folders
I’ve created,” the median response was 4 or “agree” (avg=4.4,
sd=0.6). Furthermore, people didn’t think they had many problems
knowing which folder to look in. When we asked, “When I need to
access an old message, I know the folder that I filed the message in,”
the median response was 4 (avg=3.9, sd=0.9). It’s doubtful that
people are as successful as they claim—during observation in the
interviews, some participants had great difficulty when attempting to
recall the folder where a message resided.

One surprising aspect of the data was the extent to which people look
for messages in their “sent items” folder. When we asked, “When I
need to access an old message, I first look in the Sent Items folder”,
the median response was 4 (avg=3.6, sd=1.1). This was consistent
with the strategy of one interview participant who always deleted
messages as soon as he responded to them. He figured that if a
message was important enough to look for again, he likely had
responded to it, thus there would be a copy in the “sent items” folder.

1

2

3

4

5

C
on

te
nt

s

A
tta

ch
m

en
t

F
ile

 p
at

h

U
R

L

E
-m

ai
l

ad
dr

es
s

A
dd

re
ss

ee
s

M
ea

n
 R

es
p

o
n

se

Figure 3: Reasons for filing. Mean responses to survey questions of the
form, “I try to keep a message easy to find when I may later want…”

(However, this participant also admitted that he felt comfortable with
this strategy because others in his group were extremely good at
keeping copies of all important mail, thus he could always ask them
for an old message if he couldn’t find it. Note that the strategy of
depending on others to be good archivers has been found to exist with
archives of important paper documents [16].)

Another interesting finding from our survey with respect to retrieval
was the age of messages that tended to be retrieved. As Figure 4
shows, survey respondents believed that as a message got older, the
chances of them needing to retrieve the message declined. The
implication is that day-old messages are still within the first screen of
the inbox, thus a visual scan suffices and no search is needed.

People employed a variety of strategies to access their message
archives using Outlook. According to survey responses, they use their
archive folders (median=4, avg=4.4, sd=0.6) or the Sent Items folder
(median=4, avg=3.6, sd=1.1); they sort by sender (median=4,
avg=4.1, sd=0.8), date (median=4, avg=3.5, sd=1.1), or subject
(median=4, avg=4.5, sd=1.1); or they use the Advanced Find dialog
(median=4, avg=3.5, sd=1.3). A number of narrative responses to,
“What other methods do you use to access old messages?” mentioned
searching or sorting for messages with attachments. Sorting by sender
or subject must be considered a crude form of filtering, since the user
must scroll to find the sender or subject of interest. The fact that
people use sorting instead of searching may be explained by the huge
difference in system response time between the two operations.

UI to Support the Retrieve Activity
To support the retrieve activity the user interface should provide
facile, quick tools for refining a query. Important filters include label,
sender, discussion list, date, and attachments. In addition to these
filters, full-text searches should be provided.

As noted above, people may save a message for the URL, file path, or
email address it contains. These items should be programmatically
recognized. Retrieving for one of these nuggets of information may
be facilitated in two ways. First, filters can be provided to match only
messages containing the nuggets. Second, the nuggets within the
query results may be displayed in a separate pane.

Finally, we noted above that a message may be meaningful only in
the context of the thread that contains it. Viewing a particular
message from the result set should present it as part of its thread.

CONVERSATIONAL THREADS
At several points in the previous section, we noted that grouping
messages together that were part of the same reply tree would help
alleviate some of the pain experienced by the users of email. This
recurrent theme of threading deserves more discussion.

We believe providing a threaded email client has the potential to help
users in three main ways. First, displaying a message along with all
the replies above and below it in the chain provides better local
context, which can help users better understand conversations that
occur via email. Although this context is somewhat preserved by
current email programs when they automatically include the text of
all previous messages in replies, this method breaks down when
multiple people reply to the same message, creating a complex,
branching reply tree. Subsequent replies are another important part of
a message’s local context.

Second, by making the thread the main unit of display, more items
can be shown at the same time, providing greater global context. As
noted in previous sections, users’ strategies often depend on how
many messages they can view at once in the inbox. Thus, by
collecting messages into threads, sets of messages that normally
would have been displayed on several lines can be displayed on just
one line, allowing people to view more items at once.

Third, when users work primarily with threads instead of individual
messages, the interface can provide valuable global operations.
Currently, if I receive five messages that are all part of the same
thread, I have to perform five sets mouse and keyboard actions to
work with all the messages (read, file, delete, etc.). However, if all
the messages are grouped together, I only have to perform one set of
mouse and keyboard actions. While this may seem like a small
benefit, multiplied over the large number of email messages, the
benefit translates to a significant saving. In our analysis of user’s
email archives, we found that 54% (sd=26%) of messages occur in
threads of two or more messages (although this may be an
underestimate given that people likely delete messages that are parts
of threads). In addition, higher-level operations are also possible. For
instance, if you start receiving messages on a topic that you’re really
not interested in, you could “unsubscribe” from the thread such that
all current messages would be deleted, as well as all future messages
on the same topic.

A thread-based interface is only as good as the underlying data that
relates individual messages into threads. In the best of circumstances
a field is provided in the message header that identifies the message
being replied to. For example, the Standard for the Format of ARPA
Internet Text Messages [5] defines such field, IN-REPLY-TO. Such a
field may be used to construct the thread trees over a body of
messages. To increase robustness, we can combine this kind of field
with other information, such as matches in subject line, quoting of the
original message, and similarity of addressing.

1

2

3

4

5

Day Week Month Year Older

M
ea

n
 R

es
p

o
n

se

Figure 4: Age of retrieved items. Mean responses to survey questions of
the form, “I frequently need to access messages that are a ___ old.”

A SKETCH OF THE CLIENT USER INTERFACE
In the preceding sections we suggested UI improvements to benefit
each of the five activities in our model. Many of our suggestions are
not novel. We believe that our approach, however, will lead to a
significantly improved email client for two reasons. First, we believe
that no single technique will be the “silver bullet” that results in the
degree of improvement we seek; rather that it is a synergy among the
solutions that is required. Second, the activity model provides a
structure that guides the user interface design process, so that its
result supports tasks in an appropriate organization and at a
reasonable level of abstraction. This section sketches out the mail
client user interface design that follows from the activity model.

This mail client consists of two components: an application and a
notification window. The application window is divided into two
panes, like the prototype shown in Figure 5: The left pane shows the
list of threads, and selecting a thread displays it in the right pane.
Each entry in the thread list shows a number of attributes of the
thread: a thumbnail of the thread tree, the sender, the subject, the time
of the most recent message, and a line with sender and subject per
unread message (up to three). A thread tree thumbnail appears to the
left of each thread that contains two or more messages. This compact
visual representation gives users a high-level sense of the structure of
the thread, as well as which parts haven’t yet been read by the user.
Among the commands that may be applied to the selected thread are
the top three labels suggested for the thread.

The order of the threads in the thread list is controlled so that active
threads (those with unread messages) appear at the top, followed by
threads with pending (but not unread) messages, followed by
recently-active threads. The active threads are clustered and arranged
as suggested by Bälter and Sidner [1], so that threads likely to be
important appear toward the top. Threads with pending messages are
clustered by the type of pending flag (e.g. Pending—Action required,
etc.). Finally, the recently-active threads are organized with the most-
recent at the top, clustered by day.

A variety of filters may be applied to the thread list: label, sender,
discussion list, date, attachments, “important” flag, etc. Multiple
filters may be applied simultaneously. A few selections for likely
labels, people, and discussion lists are chosen automatically based on
the evolving result set and presented as shortcuts to the user.

The right pane, which we call the thread browser, consists of a
header and a list of messages. The header shows the sender of the
first message in the thread, others who have sent messages, others
who have received messages in the thread, the title of the original
thread message, and the date of the most recent message in the thread.
The message list is sorted by message date (oldest to newest), and
grouped by day. Each entry in the message list shows an icon
indicating its read/unread status, the sender, the subject (if different
from the previous), the first few words of the body, and the time. The
selected message is expanded inline, showing sender, subject, “to”

Figure 5: Thread-based mail browser. Messages that are replies to each other are grouped together into one item and displayed on the left. Clicking on
one of these items displays all the messages inside the thread on the right. Messages are displayed in one-line preview format on the right, and clicking
the message displays the entire message. In both the left and right panes, a thread tree is displayed to help the user determine what the structure of the
thread is and how the messages relate to each other.

addressees, “cc” addresses and the complete body. Just to the left of
list is a parallel depiction of the messages as a thread tree so that
users can see how the individual messages relate to each other.

One design decision to note is the departure from indenting messages
to signify replies. Most Usenet browsers display messages in a thread
as an indented tree. First, the tree display has a couple of flaws: Deep
trees, the typical shape for email conversations, result in substantial
indenting, wasting valuable display space. Second, the newest
messages are distributed almost randomly through the list of
messages, making it difficult to perform the triage activity. Finally,
when writing mail, it is not uncommon to refer to any prior message,
not limited to the ancestors in the tree. The tree display destroys the
temporal order, making the complete message context difficult for the
reader to understand. We chose instead to sort the message list in the
thread browser by date, avoiding all three problems, while retaining
information about the reply structure in the tree drawn in the margin.
In addition, it allows grouping by day, helping to give a sense of the
temporal characteristics of the conversation.

The notification happens in a separate window, much like the one
shown in Figure 1, which appears briefly when a message arrives.
The contents of the window are much like an entry in the thread list.
The user may invoke commands to mark as “read,” delete, open or
reply to the message. These commands may be invoked by a mouse
click in the window or by speech recognition.

The thread list and browser together directly support triage, basic task
management, and basic archiving. Using filters, the thread list
supports the retrieve activity. The notification window supports the
flow activity. Secondary applications, not described here, are
provided to support in-depth task management and archiving.

TESTING A THREADED EMAIL CLIENT
In the previous section, we described how a thread list and thread
browser combined to form the bulk of the email client application
user interface. In this section we discuss an early prototype of an
interface we developed to facilitate the use of threads, along with
results from a lab study that tested this interface.

To explore benefits of a threaded email client, we built an early
prototype using Visual Basic. To begin, we wanted the prototype to
support just one of the five email activities. We chose the triage
activity: We wanted to see how a threaded email client could help
people process a very large amount of unread messages. This
prototype is shown in Figure 5.

This prototype was a subset of the user interface described in in the
previous section. The most notable difference is that the prototype’s
thread list is categorized only by day. Also, there are no commands in
the prototype for labeling threads or filtering the thread list.

To test the prototype, we recruited sixteen participants who had used
email for their job for at least 6 months and received at least 15
messages on a typical work day. Participants were asked to pretend
that they were a journalist who had just returned from vacation. Their
goal was to go through 200 email messages that had accumulated and
enter all the tasks they had to do in a spreadsheet (the email messages

were generated by the experimenters). Participants were given 25
minutes to complete the task. Half the participants were randomly
assigned to use the thread interface while the other half used the same
interface with threading turned off (the left pane of the interface
shown in Figure 5 just showed the list of all 200 messages, and
clicking on a message displayed it in the right pane).

In a post-test questionnaire, participants responded to a number of
questions on a 5-point Likert scale, where “strongly disagree” was 1
and “strongly agree” was 5. For the question, “I didn’t like using this
email program to read the messages,” the median response of subjects
who used the message prototype was 4 or “agree” (avg=3.6, sd=0.9)
while the median response of those who used the thread prototype
was 2 or “disagree” (avg=2.3, sd= 0.5). Analysis by a Mann-Whitney
U test found this difference to be significant (z=−2.8; p=0.007), thus
the thread prototype was preferred.

Users who used the threaded interface also commented that the
threads helped them perform their task better. One participant wrote,
“All messages referring to one idea were grouped together. Made it
easy to read & refer back.” Another participant wrote, “I could easily
see if something was resolved before I spent time on it myself.”

CONCLUDING REMARKS
In this paper we have identified five major activities surrounding how
people use email. In particular, we’ve highlighted two activities—
keeping up with the flow of incoming messages, and triaging existing
messages—that we believe are important, but haven’t been widely
covered by previous studies. For each activity we have discussed the
mismatch between user needs and what one commercial mail client
interface supports, how the problems have changed (or not) during
the past decade, and possible solution directions. It is quite amazing
how the majority of problems have remained unchanged and
unaddressed. Finally, we’ve presented an early prototype of a thread-
based email client, as well as results from a lab study evaluation. The
results demonstrate clear benefits for a thread-oriented display for the
triage activity.

Our investigation and discussion has centered on a particular email
client: Microsoft Outlook. We believe that our results are broadly
applicable for two reasons. First, Outlook is typical among mail
clients in its design and the services that it offers. Second and more
importantly, we believe the email activity model transcends the
specific client. Other clients may have features that address the user
needs implicit in the email activity model to a greater or lesser extent,
but none to date directly and fully addresses those needs.

REFERENCES
1. Bälter, O. (2000). Keystroke Level Analysis of Email Message

Organization. Proceedings of the ACM Conference on Human
Factors in Computing Systems (CHI 2000).

2. Bälter, O. and Sidner, C. (2001). Bifrost Inbox Organizer: Giving
Users Control Over the Inbox. NADA Technical Report TRITA-NA-
P0101. Royal Institute of Technology, Stockholm, Sweden.

3. Birrell, A., Wobber, E., Schroeder, M., and Perl, S. Pachyderm,
https://pachyderm.pa-x.dec.com/. Personal communication from
Andrew Birrell.

4. Cadiz, J., Venolia, G., Jancke, G., and Gupta, A. (2001). Sideshow:
Providing Peripheral Awareness of Important Information. Microsoft
Research Tech Report MSR-TR-2001-83.

5. Crocker, D. (1982). RFC822: Standard for ARPA Internet Text
Messages. http://www.w3.org/Protocols/rfc822/.

6. Denning, P. (1982). Electronic Junk. Communications of the ACM,
25(3), March 1982.

7. Dourish, p., Edwards, K., LaMarca, A., and Salisbury, M. (1999).
Presto: An Experimental Architecture for Fluid Interactive
Documents Spaces. ACM Transactions on Computer-Human
Interaction, 6(2).

8. Ducheneaut, N. and Bellotti, V. (2001). Email as Habitat.
Interactions, September/October 2001.

9. Horvitz, E., Jacobs, A., and Hovel, D. Attention-Sensitive Alerting.
(1999). Proceedings of the Conference on Uncertainty and Artificial
Intelligence (UAI '99).

10. Levitt, M. (2000). Email Usage Forecast and Analysis, 2000-2005.
International Data Corporation, IDC Report #23011, September
2000.

11. Mackay, W. (1988). Diversity in the Use of Electronic Mail: A
Preliminary Inquiry. ACM Transactions on Office Information
Systems, 6(4), October 1988.

12. Malone, T., Grant, K., Turbak, F., Brobst, S., and Cohen, M. (1987)
Intelligent Information-Sharing Systems. Communications of the
ACM, 30(5), May 1987.

13. Schwartz, J. (2001). Email overload taxes workers and companies.
USA Today, June 26, 2001, pg A-1.

14. Segal, R. and Kephart, J. (1999). Mailcat: an intelligent assistant for
organizing email. In Proc. 3rd Int. Conf. on Autonomous Agents
(Agents 99).

15. Sproull, L. and Kiesler, S. (1991). Connections: New Ways of
Working in the Networked Organization. MIT Press: Cambridge,
Massachusetts.

16. Whittaker, S. and Hirschberg, J. (2001). The Character, Value,
and Management of Personal Paper Archives. ACM Transactions
on Computer-Human Interaction, 8(2), June 2002.

17. Whittaker, S. and Sidner, C. (1996). Email Overload: Exploring
Personal Information Management of Email. Proceedings of the
ACM Conference on Human Factors in Computing Systems (CHI
1996

