
General and Specific Interfaces: Experiences with a Multimedia Platform
David Bargeron, Jonathan Grudin and Anoop Gupta

October 2, 2001

Technical Report

MSR-TR-2001-90

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052



General and Specific Interfaces:
Experiences with a Multimedia Platform

David Bargeron, Jonathan Grudin, Anoop Gupta
Microsoft Research
One Microsoft Way

Redmond, WA 98052-6399 USA
+1 425 706 0784

{davemb, jgrudin, anoop}@microsoft.com

ABSTRACT
Tradeoffs have always existed between a consistent,
widely-used interface and interfaces optimized for specific
purposes. However, the balance may be shifting toward a
focus on specialized interfaces due to increased capabilities
of software and rising expectations of users. We illustrate
these effects through the description of a multimedia
annotation system deployed in a series of laboratory and
field studies. Laboratory studies identified more generic
problems and guided general improvements. Field studies
invariably identified context-specific requirements that
presented challenges for a general interface. These studies
have implications for the designers and users of multimedia
systems and suggest a broader trend away from
applications and toward platforms.

Keywords
Multimedia, interface optimization, annotation

INTRODUCTION
The tradeoffs between a single, widely-applicable user
interface and multiple, task-specific interfaces are well
known. They occur at all levels, from enforcing “look and
feel” across the features of a single application to ensuring
brand uniformity across an entire corporate product line.
They apply to hardware as well as software.

Traditionally, software user interfaces have been aimed at
as wide an audience as possible to offset the high cost and
complexity of producing more specialized interfaces.
Today, however, software is more flexible, and users’
expectations are higher. This is tilting the balance away
from more “generic” user interfaces and toward more task-
specific interfaces. Consequently, there is more to be
gained from building platforms on which specialized user
interfaces can easily be fashioned.

The advantages to a single, widely-used interface include
lower cost of design, development, and maintenance. The
resulting uniformity is also beneficial to users, who need
learn only one interface and are often better equipped to
handle novel applications or parts of applications. Apple
users, for example, have benefited significantly from the

uniformity promulgated by the enforcement of a standard
set of interface guidelines [2].

But there are limits to how generic an interface can be
before it suffers from not meeting context-specific
requirements. For Apple, placing pull-down menus at the
upper left of the monitor worked well for the original 8”
Mac and works fine on handheld devices, but it is awkward
for multiple monitor configurations and will be
unacceptable for wall-sized displays. A simple search
capability might be perfect in a word processor, but is
insufficient for a database application, and yet another
interface will be needed for Web searches.

Despite the difficulties involved in designing a widely-
applicable user interface, many examples nonetheless exist:
The Windows and Mac operating systems, IE and Netscape
browsers, Microsoft Word, AOL Instant Messaging, Real
Audio, and so forth. On the other hand, two trends are
working to make such successes more difficult:

1. Software is attempting to do much more for people.
The closer it engages with their activities, the more it
will suffer from a lack of optimization for individual
work (and play) contexts.

2. The secret is out: Computer users know that software
is very flexible. Therefore, expectations are increasing.
People are less willing to adapt their practices to use
software when they realize that it could work better.

In light of these factors, there is a growing demand for
more flexible software platforms on which domain experts
can easily build their own task-specific user interfaces. This
trend will have significant impact on both researchers and
practitioners who wish to design useful software systems
with effective user interfaces. We illustrate the trend
through our sometimes surprising experiences developing,
deploying, and refining a multimedia annotation system.

We built the first version of the system in early 1998. It
was intended to be a widely-usable, ‘generic’ platform
enabling people to speak or type comments that are linked
to specific points or ranges in a video or audio presentation.
Annotations are stored independently and thus can
comment on any multimedia file on an intranet or on the
Web. Annotations can be private or shared with a specified



group; and they can be responded to or emailed, with email
recipients able to play the associated segment of
multimedia. We envisioned it being used to support
discussions around archived video, including taped
classroom lectures, digitized films, videotaped usability
sessions, and so forth.

We conducted a series of laboratory and field studies using
the system we developed, modifying the software and
redesigning its user interface each time. The lab studies
identified problems and enabled us to make generally
useful changes. Each field study, on the other hand,
identified new design requirements that were specific to the
context in which it was deployed, and without which the
acceptability of the system was in question. As this
research has progressed, it called into question how useful a
“generic” interface will be and forced us to enhance the
original annotation system with features that have
transformed it into a general-purpose multimedia
annotation platform.

Following a brief discussion of related work in the next
section, we describe our initial multimedia system in more
detail. We then describe a series of lab studies and field
deployments, illustrating them with different interfaces that
resulted. Finally, we discuss the implications of these
results for designers of platforms and applications.

RELATED WORK
The intent of this paper is to describe the evolution of
interfaces to a multimedia annotation system, culminating
in a suggestion that the relationship between widely used
applications and extensible or tailorable systems is
changing. There are a few literatures of some relevance.

Because a multimedia annotation system is used as an
example in this paper, the fact that it builds on other
systems such as the Classroom 2000 project [1] is only
indirectly relevant. Those interested in a more detailed
description of multimedia annotations and reviews of the
relevant literature can find them in the several cited papers
that provide details of studies summarized in this paper
[3][4][14][15].

Discussion in the HCI literature has largely centered on
enabling “end-users” to tailor their environments
[8][9][10][18]. But several researchers have found that
people do extremely little customization of their
applications and systems [16][17]. As a result, providing
the ability to tailor the interface increases the interface
complexity as well as the development and maintenance
cost, but does nothing to remove the necessity for providing
the best possible default design.

In this paper we do not propose people build highly
customizable interfaces aimed at the end user. Instead, we
propose that designers shift their thinking toward more
generic platforms on which domain experts (but not
necessarily software developers) can fashion task-specific
user interfaces.

Other research has addressed the evolution of human-
computer interfaces [6][11][12][13]. The effects of
designing for increasingly specialized activities in a context
of growing expectations fits into the progressions described
in these papers without being an issue upon which they
focus.

And finally, extensible or tailorable systems has been a
major topic in the software engineering literature [19][20].
While the goals of extensibility in software engineering are
somewhat different from our goals in designing a
multimedia annotation system, there is nonetheless much to
be learned from software engineering in the area of
designing more generally useful platforms.

MULTIMEDIA ANNOTATION SYSTEM
In this section we examine our initial system design goals,
and we describe the architecture and original user interface
features of the system. As preface, we present a scenario to
illustrate the use of our multimedia annotation system as
we originally envisaged it.

Scenario
A student logs in to watch a lecture in the evening from her
home computer. Through her web browser she receives the
audio and video of the lecturer, the associated slides that
flip in synchrony with the video, and notes associated with
the slides. In addition to typical VCR-like navigation
features for the lecture video, there is a table of contents of
slide titles, and with a click she can “seek” or jump the
presentation to the appropriate slide and audio-video point.

The student also sees questions and comments entered by
classmates who watched the lecture before her, as well as
responses from other students, teaching assistants, and the
lecturer. These questions are linked to the lecture content.
As she watches a lecture, questions asked during that
portion of the lecture are automatically highlighted or
“tracked.” The content of a question appears in a preview
window; if one piques her interest she can jump the
presentation to it. As she is watching, she sees a question
that nobody has answered. She types a response, which is
automatically registered with the system and displayed with
the question. The person who posed the question is notified
of the reply by email.

Later, she has a question. She selects the “ask question”
button, then types a subject header and her question. Afraid
that the question may sound uninformed, she makes it
anonymous. In addition, she enters the email address of a
friend, who may be able to answer it before the TA gets to
it. When she saves the question, it is added to a pre-existing
shared "discussion" collection and is automatically emailed
to the TA alias and to her friend. A TA browsing through
his email sees the question arrive and opens the message.
The email includes the text of the question along with a
URL pointer to the point in the lecture where the question
was asked. It also contains enough meta information for a
reply to be added to the annotation database, making it
visible to students who later watch the lecture.



The student can similarly record personal notes, also linked
to the lecture. These are added into a different collection,
with permissions set by the student.

Initial System Design Goals
This scenario helps illustrate some of our initial design
goals. In particular, we wanted:

• A general-purpose user interface to support the kind of
activity presented in the scenario across a wide variety
of web pages containing embedded video (college
course and corporate training web pages, news
websites like CNN, and usability study pages, to name
a few).

• Fine-grained organization and access control structures
to support structured sharing among users. We wanted
to be able to group annotations into sets and control
who could add annotations to the set and who could
see annotations in the set. With this simple mechanism,
we could create a shared discussion set for a college
class, a personal notebook set for each user, a table of
contents set for each video file, and so on.

• Close integration with email so that annotations can be
sent out via email and replies can be cast as
annotations by the annotation server. Email is widely
used and well suited for asynchronous collaboration,
and with close integration a single conversation can
span both mediums.

• Anchoring and display of annotations “in-context” of
multimedia content just like notes in the margin of a
book, so that we could tie annotations to particular
points or ranges along a media timeline.

• Annotations stored external to the annotated content
(e.g., the audio-video file) in a separate store. This is
critical as it allows third parties to add annotations
without having write access to the content. Students

should not, for example, be able to modify the original
lecture.

At the outset, we believed we could meet all of these goals
with a single, well-designed user interface, thus among our
non-goals was any kind of user interface specialization
ability.

Original System and User Interface
Given these goals, the system we built was designed to
support annotation of multimedia content that appears
anywhere on the web. When a user accesses a web page
containing video, the browser contacts the web server to get
the HTML page and the video server to get the video
content. Annotations associated with the video on the web
page can be retrieved by the client from the annotation
server.

Figure 1 shows the interaction of these networked
components. The annotation server communicates with the
annotation client via HTTP. Annotations are keyed on the
URL of the media with which they are associated. The
annotation server communicates with email servers via
SMTP, and can send and receive annotations in email.

The video appears in a browser window in Figure 2 and is
controlled with a standard media player. Slides appear to
the right, synchronized with the video. Annotations made
previously appear in a separate window, which in the figure
is above the slide frame. Indented annotations are replies.
The red arrow marks the annotation linked to the spot
closest to the current position of the video, and the blue
annotation has been selected. The preview window shows
text of the selected annotation, and if none is selected it will
show the text of the nearest annotation. Various controls
appear at the bottom of the display and in a menu
summoned with a mouse click.

When replying to an annotation or adding a new one, a
viewer has a choice of making a text or voice annotation.
Figure 3 shows the respective dialogue boxes.

LABORATORY STUDIES AND GENERAL INTERFACE
IMPROVEMENTS
We conducted laboratory studies of the use of the system,
detailed in [3]. We examined the use of text and voice

Figure 2. The first interface. An annotation window appears
over a browser window in which a video plays.

Annotation
Server

Web
Server

Video
Server

Email
Server

CLIENT

Figure 1. The Annotation Server fits into a standard
multimedia network architecture.



annotations, contrasted paper and pencil annotation-taking
with the use of the system, analyzed the effects of reading
others’ annotations on responding and adding new
annotations, and got feedback on many aspects of the
interface. These studies led to substantial interface changes
as well as some evolution of the features.

As shown in Figure 4, the interface was now embeddable in
a standard web page, and could easily be modified to fit in
with the “look and feel” of the rest of the page. At the
bottom of the annotation frame in the lower left were tabs
for selecting one of three annotation sets: Contents (perhaps
a list of slide titles), Questions (for viewing prior public
annotations), and Notes (for viewing personal notes one has
taken). At the top of this frame were buttons for adding to
the public discussion or personal notes.

Regarding functions, the lab study revealed an
unanticipated lack of interest in voice annotations, so we
added the ability to configure which annotation media types
(text, audio, or web urls) were available to users. Voice
annotations were found to be less useful for subsequent
viewers since they cannot be previewed as the video rolls.
More significantly, though, they cannot be edited and
polished the way text can.

People chose to pause the video when adding text
annotations, so we made it possible to configure the
annotation client to pause the video automatically when an
annotation is being added. Curiously, pausing a video to
make notes on it more than doubled study participants’
viewing time, however all participants reported preferring it
to taking notes while the video was playing.

In general, the design of the multimedia annotation
software evolved to accommodate more flexible
construction of task-specific user interfaces. More details
can be found in [4].

Following this iterative design process we had a robust
prototype and considered deployment sites. We settled on
two domains. One is the education context covered in the
scenario we presented earlier. The other is to support
analysis of and dissemination of results from usability
studies, which are routinely videotaped.

FIELD STUDY IN ‘C’ LANGUAGE COURSES
To conduct this study, we observed and videotaped a C
programming course taught by our internal education group
and attended by employees. We then used the digitized
video and slides to conduct two on-demand versions of the
course. Students signed up for the courses in the usual way,
aware that these offerings would involve an experimental
system. They met face to face at the beginning and end of
the course and used our multimedia annotation interface to
view the lectures and interact in the interim. Study details
are described in [4].

Early in our observations we realized that programming
language classes make particularly heavy use of online
demos that are not picked up adequately by a single video
camera focused on the instructor. This motivated a system
modification: demos were captured after lectures were
taped. Links to the demos were added as annotations that
would execute appropriately as a video was viewed. This
modification can be seen in Figure 5 on the next page.

Results
Students in the two on-demand series of classes were
generally very positive, citing the convenience. Instructors
had fewer time demands but missed the direct contact. The
class interaction was at a level close to that of the live class.
Their comments pointed out some general and specific
aspects of using the system for the C programming class.

At the general level, the students benefited from
clarification questions asked in the live class, which they

Figure 4. Browser-based interface following lab studies.

A: text annotation.

B: voice annotation.

Figure 3: Adding a new annotation.



saw online. A number noted that they asked fewer
questions than they might have because their questions
were already answered, either on the video or with the
system. Good questions and the replies could of course be
left in place for subsequent classes. One student
complained about a detail in the interface, saying “I have
questions about C, I don’t want to ‘Discuss’ C.” Our choice
of the term “Discussion” for the public annotation set might
be a good one for seminar-style classes, but not for this
one. We subsequently changed this (Figure 5).

More seriously, the flexibility of asynchronous viewing led
some students to procrastinate, to others’ detriment as well
their own, since last-minute viewing is not conducive to
creating and sharing comments with the class (e.g. via
annotations on the lecture videos). This led us to extend the
system to include features that are modeled on approaches
to discourage procrastination in some live classes: group
exercises and quizzes.

Follow-up laboratory studies
We used our system’s built-in annotation set mechanism to
create annotation sets for group projects. Annotations in a
group set were shared by the few students assigned to work
together if they could not meet face to face. The group’s
product was reported using the class-wide annotation set. In
this case, ‘Questions’ was no longer an appropriate label
for the shared class-wide annotation set, and ‘Discussion’
was restored.

The system and interface was then used in a laboratory
study to gauge the effectiveness of the group project
approach [14]. It was found to be successful, and the study
also generated a strong demand for a feature not included:
The ability to easily copy an annotation from one set to
another.

We then extended the interface to include quizzes linked to
the video via annotations. Questions appeared at designated
points in the video and were potentially useful for self-
assessment, grading, or monitoring progress. After
responding students could be given a link to the appropriate
spot in the lecture to review the question topic. We

conducted a laboratory study to explore student reactions
and such issues as whether people prefer a question to stop
the video or scroll by in the preview window. We found
that preferences vary [15].

In conclusion, the field study led to the discovery of a range
of interface issues and the identification of additional task-
specific features: means for incorporating demos for certain
kinds of classes, interface terminology dependencies for
different classes, support for group projects and assessment
tools of different kinds. Class content, instructor style, and
student style created different user interface demands.

MULTIMEDIA ANNOTATION USE BY USABILITY
ENGINEERS
We explored the use of the annotation system with usability
engineers (UEs) supporting several product groups. After
taping participants in studies, UEs typically review and
take notes on the videos, laboriously identify and excerpt
segments illustrating key points, and disseminate
observations in meetings (where they show the video
highlights) and documents (where they do not). We
expected that the annotation system would allow them to
annotate digitized videos as they review them, providing
others with links to relevant portions. Viewers could
choose to view material before or after a chosen highlight if
need be (which they could not do when the highlights were
excerpted).

We quickly discovered that this activity represents a
conceptual shift from lecture viewing. The shift could be
described as going from a timeline-centric point of view to
an annotation-centric perspective. The assumption with a
lecture is that viewers are on the whole watching from
beginning to end, although they can use annotations to
jump from point to point. Everything is organized around
the video timeline.

Usability engineers, once they have reviewed the tapes and
annotated segments of interest, need to collect the segments
for presentation together. For example, a usability engineer
may annotate three different regions (in different video
files) showing examples of users misunderstanding the
same menu label. They then need to play the video
segments to which their annotations correspond one after
another. Thus, rather than watching a single video and its
associated annotations, they need to watch a set of
annotations and the video segments they annotate.

This led to the development of the playlist feature. A
playlist is a sequence of video annotations, possibly from
different target videos, which can be played sequentially:
when one segment ends, the next will be played.

Our first interface handled playlists in a straightforward
manner: right-clicking brings up a menu item that provides
access to playlists (Figure 6 on the next page).

This interface quickly proved mismatched to the UE’s task,
however. Results are communicated in face-to-face review
meetings, where this playlist feature would be a fine
supplement to a slide presentation. However, comments

Figure 5: C class interface: “Questions” replace
“Discussion,” among other changes.



from team members are collected verbally in such
meetings, and the key feature of supporting asynchronous
discussion is not useful. UEs circulate their findings via
email also, so we thought that perhaps this is where our
annotation system could be of potential of use.

We found, however, that UEs were not willing to adapt to
use the annotation system -- or felt their teams were not
willing -- even when we managed the process of digitizing
the videos. They wanted to have the multimedia annotation
functionality embedded in the documents or slide
presentations that they sent around in email.

This led to the development of a prototype interface that
did just that. Figure 7 is an example of a video annotation
interface embedded directly in a Word document that has
been saved as HTML. The example shown is not from a
usability report, but it shows a new arrangement of features
including no slide window and a larger preview window.

SHAKESPEARE COURSE USE AND INTERFACE
It was clear to us at this point in our research that, contrary
to our initial conception, the classroom and usability
requirements for multimedia annotation differ quite
substantially. We focused on the classroom environment
for the next experiment. Peter Donaldson, an MIT professor
of Drama, was interested in using our annotation system in
a Shakespeare class that is centered on comparative
examination of performances of plays, many of which are
digitally available.

It became clear that to be acceptable in the film class, the
interface required modification. Figure 8 on the next page
shows several major feature changes. To compare
performances or aspects of performances, a second video
window is added. Buttons beneath the video windows
provide much finer-grained control of playback than
previous interfaces, such as single-stepping forward or
backward by frame.

One might consider this to be “gold-plating’ the interface,
but without these and other features, the system would not
have been accepted. It might have been accepted ten years
ago, but due to the software’s flexibility and users’ savvy in
this case, there was significant demand to create a
specialized interface.

The system was used in class projects during the fall
semester, 2000. “In a couple of cases [the annotation
system] got students in touch with the films in ways that
don't happen with conventional essays,” wrote Donaldson
[7].

Although this outcome is very exciting, the experience has
also proved to be a source of concern. It required
considerable effort to develop the interface for the film
class, and that interface is not likely to be useful for other
classes. It may be useful for other film classes, but even that
is not a foregone conclusion, since instructors’ teaching
styles and class format differ significantly.

PLATFORM REQUIREMENTS
Our initial hope that a single multimedia system interface
would capture enough to find broad applicability has so far
not been borne out. Wherever we have looked we have
found new and often orthogonal, perhaps incompatible,
interface requirements.

Are we involved in a process for defining a range of
features that can eventually be brought into a single
package that many users can adapt to their purposes, or
should we focus on building a platform or toolkit that
others can use to design specific interfaces that will vary
considerably based on domain and approach?

So far, all indications point to the latter. There are clearly
commonalities shared among the different task domains we
have studied, however there are enough differences among
them to require distinct interface features for each context.
A single, general-purpose multimedia annotation interface
that incorporates all the features runs the risk of being too
complex and too task-non-specific to be useful in any
context. The most prudent and fruitful direction to head in

Figure 7. Annotation system embedded in a document.

Figure 6. Playlists: A major conceptual change.



has been toward a generic annotation platform, on top of
which task-specific user interfaces can easily be fashioned
with a modicum of programming skill.

There are general lessons to be learned from our
experience. First, we have distilled several general
requirements for a more generic software platform for the
support of multimedia annotations:

• Thorough support for common activities. The most
common annotation functions -- such as creating,
saving, retrieving, and deleting annotations -- should
be the easiest to incorporate into an interface.

• Extensibility and customizability at both the interface
and platform levels. For instance, designers should be
able to extend an annotation’s schema to accommodate
task-specific features like voting, logging the number
of times the annotation has been read, assigning an
annotation “type” (“comment,” “question,” etc), or
controlling annotation status (“open issue,” “resolved,”
etc).

• Storage flexibility. Designers should be able to store
annotations in a variety of configurations. For personal
annotations, it may be important to store annotations in
the video or audio file itself for portability purposes.
For shared annotations on read-only media,
annotations may be stored in a separate database.
Storing annotations in one facility should not preclude
transferring them to another.

• Universal annotation support. Ultimately, a general-
purpose annotation platform should support annotating
any media type with any other media type. Many of
the problems encountered with annotations on video
and audio apply to annotations on text, images, and
complex composite presentations.

• Interoperability among task-specific interfaces.
Annotations made in one interface based on the

platform should be transferable to another interface
based on the platform with minimal effort.

These requirements have continued to inform our work,
and we are currently developing a much more powerful and
flexible annotation platform combined with a more flexible
interface toolkit.

Secondly, and more importantly, the laboratory studies and
field deployments we have conducted over the past several
years have specific implications for the designers of
multimedia systems, and potentially for two other groups:
third parties who would tailor such platforms for specific
domains, and the users of resulting applications. We
discuss these implications in the next section.

GENERAL DISCUSSION
One way to look at our experiences is that we are exploring
the requirements for a relatively new kind of multimedia
system. Annotated multimedia is a domain with some
research and product precedents, but it is not yet widely
embraced. Field studies have enriched our understanding of
what such systems should support, laboratory studies have
refined the interaction design and interface features.

This is accurate as far as it goes, but there is more to the
picture. It is unclear that the general-purpose application
that we initially envisioned is realizable. Field study
approaches such as contextual design [5] are generally
undertaken with the goal of developing a widely-used
product; usability studies are undertaken to refine the
interaction design. Based on our experience, in designing
systems such as this one, we will do better to think less in
terms of delivering a generic system and more in terms of
providing a toolkit or application development
environment. This was not what we set out to do.

Interfaces based on a more generic annotation platform
could be developed by third parties or could be constructed
by technical support groups, working with individual
instructors or other users. In this sense it might resemble
Lotus Notes, which is less a generic application than an
application development environment that requires the
involvement of professionals to create databases and views.

These studies suggest a general trend to be considered by
designers of applications targeted at a wide range of people.
It may be, as we have found, that an application that seems
basic and general enough for wide use without modification
will encounter resistance, and context-specific requirements
will emerge. If designers do not anticipate this, they may
not build in the flexibility that will permit shifting to a
toolkit approach.

This trend is arguably due to two factors. New applications
are striving to support more complex, specialized activities,
which are more subject to requirements based on domain or
stylistic differences. At the same time, the people being
supported are increasingly aware that software is highly
flexible and are less inclined to adapt, more inclined to be
annoyed by having to work around an interface.

Figure 8. The Shakespeare interface: Understanding drama
by comparing performances.



Software specialization is not new. To support vertical
markets, people build novel interfaces to applications such
as Microsoft Word and Excel. The difference is that generic
off-the-shelf Word and Excel are useful applications to
many people just by themselves. Customized versions came
later. A generic multimedia annotation system may not be
appreciated by many, just as there is not really a generic
Lotus Notes application.

The process of analyzing general platform requirements
from task-specific contexts and then driving them into a
platform is crucial because it makes quickly developing
new task-specific interfaces easier. As users become more
savvy and start to demand more customization, providing
more generic platforms that can be easily specialized will
become easier and cheaper than providing one-off task-
specialized interfaces.

CONCLUSION
We have described experiences with a series of prototype
multimedia annotation systems over several years, and our
growing recognition of the difficulty of creating an
interface that will be widely useful, despite favorable
responses to our specialized interfaces. The technology will
prove useful, but the path to realizing the uses may be
through development of a platform that third parties can
build upon. This is a common enough approach, but it did
not seem appropriate for this seemingly simple application.

To support specialized activities carried out by people
increasingly aware of the potential of software, and to do so
while we are pushed to tighten the feedback loop between
user and designer, requires a different approach. From the
outset we must think carefully about potential third-party
partners in development, rather than assume we can deliver
a turn-key system. We must plan a mix of laboratory
studies and field studies to determine who will be
responsible for the different elements of the design, and
how the partnership could work.

ACKNOWLEDGMENTS
We would like to thank Scott LeeTiernan, Francis Li,
Elizabeth Sanocki, Peter Donaldson, Belinda Yung, Randy
Hinrichs, David Aster, and others for their contributions.

REFERENCES
1. Abowd, G., Atkeson, C.G., Feinstein, A., Hmelo, C.,

Kooper, R., Long, S., Sawhney, N., and Tani, M.
Teaching and Learning as Multimedia Authoring: The
Classroom 2000 Project, Proceedings of Multimedia ’96
(Boston, MA, Nov 1996), ACM Press, 187-198.

2. Apple Computer, 1992. Macintosh Human Interface
Guidelines. Addison-Wesley.

3. Bargeron, D., Gupta, A., Grudin, J. & Sanocki, E.,
1999. Annotations for streaming video on the Web:
system design and usage studies. Proc. WWW8, 61-75.

4. Bargeron, D., Gupta, A., Grudin, J., Sanocki, E. & Li,
F., 2001. Asynchronous collaboration around
multimedia and its application to on-demand training.
Proc. HICSS-34, CD-ROM, 10 pages.

5. Beyer, H. & Holtzblatt, K., 1998. Contextual design.
Morgan Kaufmann.

6. Bøgh Andersen, P., 2001. Elastic systems. Proc.
Interact 2001, 367-374.

7. Donaldson, P., personal communication, January 2001.

8. Dourish, P., 1995. Developing a reflective model of
collaborative systems. ACM Transactions on Computer-
Human Interaction, 2, 1, 40-63.

9. Eisenberg, M. & Fischer, G., 1994. Programmable
design environments: Integrating end-user programming
with domain-oriented assistance. Proc. CHI’94, 431-
437.

10.Fischer, G. & Girgensohn, A., 1990. End-user
modifiability in design environments. Proc. CHI’90,
183-191.

11.Gentner, D. R. and Grudin, J., 1996. Human interface
design models: Lessons for computer human interfaces.
IEEE Computer, 29, 6, 28-35.

12.Grudin, J., 1990. The computer reaches out: The
historical continuity of interface design. Proc. CHI'90,
261-268.

13.Grudin, J. and Norman, D.A., 1991. Language evolution
and human-computer interaction. Proc. 13th Annual
Conference of the Cognitive Science Society, 611-616.

14.LeeTiernan, S. and Grudin, J., 2001. Fostering
engagement in asynchronous learning through
collaborative multimedia annotation. Proc. INTERACT
2001, 472-479.

15.LeeTiernan, S. and Grudin, J., unpublished manuscript.

16.Mackay, W., 1990. Users and customizable software: A
co-adaptive phenomenon. Ph.D. thesis, Sloan School of
Management, MIT.

17.McClintock, M., personal communication, 2000.

18.Mørch, A., 1997. Three levels of end-user tailoring:
Customization, integration, and extension. In
Computers and Design in Context. M. Kyng & L.
Mathiassen (Eds.), pp. 51-76. MIT Press.

19.Reiss, S.P., 1990. Connecting tools using message
passing in the field environment. IEEE Software, July,
57-66.

20.Teitelman, W. & Masinter, L., 1981. The Interlisp
programming environment. Computer, 14, 4, 25-34.


