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Patrick Pérez, Michel Gangnet, Andrew Blake

January 13, 2004

Technical Report
MSR-TR-2004-04

Filling regions of an image in a seamless manner is an important task
for editing digital images. We propose to address it by using an ex-
ample-based image generation technique. Such techniques have recently
proved very effective in the context of unconstrained texture synthesis.
We show that they can also be surprisingly effective to fill large regions
in images, even within complex mixes of textures and structures. We
combine this approach with a block-based architecture within an inter-
active image editing tool, named PatchWorks. This tool performs faster
and better than earlier pixel-based counterparts, and faster than most
recent related techniques with similar capabilities. The ease of use and
versatility of our system is illustrated on a number of real image editing
tasks.

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052
http://www.research.microsoft.com



1 Introduction

Filling regions of an image in a seamless manner is important both for photograph
and movie editing. It is indeed a key tool for images restoration (repairing images
physically damaged by tears, stains, scratches, writing, etc.), correction (fixing un-
desirable artifacts such as red-eyes, flash reflections, blemish, wrinkles, etc., and
removing unwanted occluding objects such as wires, persons, etc.), and manipula-
tion (producing photo-montages and playing visual tricks). One real example for
each of these types of image editing tasks is presented in Fig. 1, along with the
results obtained effortless with the tool presented in this report.

Repair Correct

Play

Fig 1. Three examples of image editing tasks using PatchWorks: digital repairing of
damaged old photographs, contents correction by removing undesirable “objects”,
and visual effects. All these tasks require to re-invent plausible image patches to
fill-in regions manually selected by the user.

A natural way to address the task of region filling in images is to resort to classic
interpolation techniques: the boundary values along the border of the destination
region are interpolated inside, based on a certain smoothness criterion. The most

1



sophisticated and successful attempts along those lines are those first proposed in
(Bertalmio, Sapiro, Caselles & Ballester 2000). The so-called Inpainting approach
is a PDE-based framework in which different diffusion schemes are interleaved to
iteratively extend, as smoothly as possible, the isophotes arriving at the region
boundary (Bertalmio et al. 2000, Bertalmio, Bertozzi & Sapiro 2001, Ballester,
Bertalmio, Caselles, Sapiro & Verdera 2001a, Ballester, Caselles, Verdera, Bertalmio
& Sapiro 2001b). The authors report impressive results of removing scratches or text
overlays from photographs. By design, their system is good at bridging small gaps
in rather texture-free regions. Unfortunately, the technique does not seem suitable
in terms of both synthesis versatility and computational cost for a number of image
manipulation tasks where the destination regions can be large, and the surrounding
image highly textured.

As for synthesis capabilities, image-based (also known as example-based or non-
parametric [NP]) image generation techniques appear as an appealing alternative
to variational interpolation. Indeed, since the seminal works by Efros & Leung
(1999) and Freeman, Pasztor & Carmichael (1999), a common and extremely sim-
ple framework has been developed to tackle with impressive success a number of
tasks: unconstrained texture re-synthesis (Efros & Leung 1999, Guo, Shum & Xu
2000, Wey & Levoy 2000, Bar-Joseph, El-Yaniv, Lischinski & Werman 2001, Efros
& Freeman 2001, Harrison 2001, Hertzmann, Jacobs, Oliver, Curless & Salesin 2001,
Ashikhmin 2001, Liang, Liu, Xu, Guo & Shum 2001, Kwatra, Schödl, Essa, Turk &
Bobick 2003), texture transfer (Ashikhmin 2001, Efros & Freeman 2001, Hertzmann
et al. 2001), texture-by-numbers (Ashikhmin 2001, Efros & Freeman 2001, Harrison
2001, Hertzmann et al. 2001), generic super-resolution (Freeman et al. 1999, Free-
man, Pasztor & Carmichael 2000, Hertzmann et al. 2001), and object-specific super-
resolution (Baker & Kanade 2000). The work on so-called Image Analogies by
Hertzmann et al. (2001) unifies elegantly all these techniques and covers all the
above-mentioned applications (as well as artistic style transfer).

As soon as (Efros & Leung 1999), the specific task of filling regions in images with
such techniques is mentioned as an instance of constrained texture synthesis, i.e.,
synthesis with boundary conditions, and very briefly illustrated on a single mono-
texture example. In (Wey & Levoy 2000, Harrison 2001, Liang et al. 2001), the
task of region filling is similarly mentioned as an aside with a single experimental
illustration on a mono-texture example.1 To our knowledge the work of Bornard,
Lecan, Laborelli & Chenot (2002) is the first one to focus specifically on the use
of example-based synthesis techniques à la Efros & Leung (1999) to address the
region filling problem. This pixel-based technique is shown to give very good results
at low cost on rather narrow regions corresponding to scratches, thin structures,
or text overlays. More recently, sophisticated techniques have been proposed to
ensure a robust NP filling of large image regions surrounded by multiple textures
and structures (Bertalmio, Vese, Sapiro & Osher 2003, Criminisi, Pérez & Toyama

1Harrison’s work has nonetheless originated an explicit region filling tool in the form the GIMP
plug-in called Resynthesizer. This tool will be used for comparison purpose in this report.
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2003, Drori, Cohen-Or & Yeshurun 2003, Jia & Tang 2003). They all mix classic
NP texture synthesis with some form of smooth interpolation: of the low frequencies
in (Bertalmio et al. 2003, Drori et al. 2003), of the priority map in (Criminisi et
al. 2003), and of the texture segmentation of the surrounding in (Jia & Tang 2003).
Their sophistication however comes at a price with computation times ranging from
several minutes to several hours for regions of order 100× 100 pixels.

In order to get a really versatile interactive image editing tool, good results and
reasonable computation times should be obtained on large regions with complex sur-
rounding. This is achieved with the patch-based filling system, named PatchWorks,
that we present in this report. The salient features of this system are:

• Patch-based generation: in the spirit of (Efros & Freeman 2001, Guo et
al. 2000, Liang et al. 2001), the image generation is performed on a patch
basis, as opposed to pixel-based region filing techniques described in (Efros
& Leung 1999, Wey & Levoy 2000, Harrison 2001, Bornard et al. 2002). As
we shall show, using patches dramatically speeds-up the process, while often
improving the quality. This is a key ingredient to deal with large regions, e.g.,
larger than 100× 100 pixels.

• Local patch search: unless specified otherwise by the user, the set of sample
patches is gathered in the surrounding of the destination region, similarly
to (Bornard et al. 2002), but in contrast with (Efros & Leung 1999, Wey
& Levoy 2000, Harrison 2001). This impacts dramatically the speed of the
filling process and its quality. When situation requires it, the source of sample
patches can also be provided manually, in a form of one or several regions of
any size and shape.

• Inward layered filling: following the first suggestion of Efros & Leung (1999),
concentric layers are generated from the boundary of the destination region
inwards, with no need for one of the “highest confidence first” approaches
proposed in (Harrison 2001, Bornard et al. 2002, Criminisi et al. 2003, Drori
et al. 2003).

The generic algorithm for example-based image generation is presented in Section
2, along with our patch-based version for region filling. First experiments on toy
examples will illustrate the merit of using patches and concentric layers.

In Section 3, we demonstrate the power and versatility of the image editing tool
thus obtained. In particular, we demonstrate the ability of the algorithm to deal
with complex photographs as well as with images of single textures. We conclude
this demonstration section by showing complete image editing tasks conducted with
several successive uses of PatchWorks.

The only downside of patches is the occasional persistence of visible seams regu-
larly organized along the tilling structure. We propose in Section 4 a simple post-
processing technique that helps removing photometric and colorimetric seams. It
complements the optimal irregular boundary approach proposed by Efros & Free-
man (2001) and recently extended by Kwatra et al. (2003), which is more adapted
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to removing texture seams. Our technique is based on the idea of slightly modifying
the whole content of every other image patch of the final tiling to increase further
its compatibility with its neighborhood.

In Section 5, we conclude and indicate further research directions.

2 The algorithm

2.1 Generic example-based image generation

The principle behind example-based image generation is extremely simple and in-
tuitive. Given sample image portions, a new image portion that is visually similar
to those in the sample set can be generated in a jigsaw fashion: little pieces taken
from the sample pool are stitched together as seamlessly as possible. One step of
the generation procedure consists in (i) choosing an empty location at the bound-
ary of the existing synthesized image portion, and (ii) filling it in with a patch of
pixels borrowed from the source such as to match well the part of neighborhood
that already exists at this location. This way, a complete new image can be gen-
erated from scratch within a lexicographical procedure, an existing image can be
extended (extrapolating out in a spiraling-out procedure), or a region of an exist-
ing image can be filled-in by spiraling inwards from its boundary. In addition to
the spatial consistency, complementary information can also influence the choice of
the sample piece. When used, such an information is available from the start for
all the locations to be synthesized over, and for all the image patches in the data
set. In super-resolution, as well as in coarse-to-fine texture synthesis, this informa-
tion corresponds to a low resolution view of the image at concerned locations. In
texture-by-numbers, this information consists of texture labels present both in the
source data and in the image to be synthesized. With emphasis on this auxiliary
guidance, the Image Analogies framework (Hertzmann et al. 2001) expresses its
principle nicely: one tries to generate an image J which is to the input auxiliary
image J̃ what I is to Ĩ, where the image pair (I, Ĩ) defines the sample set.

Let us set up formally the scene, using a patch-based formalism. Sample image
I and its counterpart J to be (partly) generated are indexed respectively by sets of
pixels Γ and Ω. In case of auxiliary guidance, two other images Ĩ and J̃ , possibly
different in nature from the two previous ones, are available and indexed also by Γ
and Ω respectively. At any moment in the process of generating/completing J , a
binary mask M = {mx,x ∈ Ω} assigns label 0 to pixel locations still unoccupied,
and 1 to the occupied ones.

The elementary building brick is a square patch2 of pixels defined through a set
P of shifts with respect to a reference position, say the upper left corner. The
patch can reduce to a singleton, as in most works. A neighborhood defined through
the shift set N is also assigned to P . If for example the patch is 2 × 2 and its
neighborhood is constituted of the 12 pixels surrounding it, we have P = {0, 1}2 and

2It could be any tileable pattern, starting with rectangles.
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x∗i

P ∗i

p∗i

N∗
i

n∗i

Ĩ

I

Fig 2. Notations at the source. Main source image I is tiled with patches {P ∗i } with
origins {x∗i } and neighborhoods {N∗

i }. The latter give rise to image value vectors
{n∗i }. When an auxiliary image Ĩ is also used, an auxiliary image value vector p∗i is
associated to each patch P ∗i .

N = {−1, 0, 1, 2}2 − P . For any location x, the associated patch and neighborhood
are respectively x + P = {x + u,u ∈ P} and x + N = {x + u,u ∈ N}.

A sample dictionary D .= {d∗i }i=1...n∗ is built by considering n∗ patches P ∗
i

.=
x∗i + P at locations x∗i , i = 1 . . . n∗ such that their neighborhoods N∗

i
.= x∗i + N all

belong to the sample support Γ (Fig. 2).
Each entry in the dictionary is a vector formed in the following manner:

d∗i = [n∗i ,p
∗
i ,x

∗
i , i

∗
i ], (1)

with:

• n∗i , the vector of image values I(N∗
i ) in the patch neighborhood;3

• p∗i , the vector of auxiliary image values Ĩ(P ∗
i ) in the patch;

• i∗i , the vector of dictionary indices corresponding to neighboring patches. They
are eight possible such neighbors,4 each of them associated to one shift in the
set T . In case of 2 × 2 patches and 8-connexity, T = {−2, 0, 2}2. We denote
i∗i = [γ∗t (i)]t∈T . For a given patch, some of these neighbors might either not
exist at all (border of the sample image support Γ) or not be associated to
an entry in the dictionary. In the two cases the corresponding entry in i∗i is
assigned null index: γ∗t (i) = 0 iff 6 ∃j : x∗j = x∗i + t.

The support Ω of J is tiled with n patches Pj
.= xj +P , j = 1 . . . n. If the patches

are not singletons, the tiling Ω ⊂ ∪n
j=1Pj can be periodic or not, overlapping or

not. Similarly to dictionary entries, a vector dj = [nj ,pj ,xj , ij ] can be associated
to each patch Pj , with a slight twist: for a given state of the generation procedure

3Given a set of pixels A, notation I(A) stands for {I(x),x ∈ A}.
4In the general case, this number depends on the geometry of the elementary patch and of its

neighborhood.
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only part of J image values exist, and nj might be only partly populated. This is
also th case if Pj falls on the border of the image support Ω. This will be captured
by a binary sieve mj of same size as nj , with null entries indicating empty entries
in nj . Finally, at any moment the dictionary index of the patch copied over Pj will
be denoted α(j) ∈ {0, 1, . . . , n∗}, with α(j) = 0 for patch location not yet filled-in.

Using these notations, a high level synopsis of example-based image generation is
proposed below (Algorithm 1). Up to slight twists, this generic description encom-
passes all works mentioned earlier, irrespective to their application domains. In this
synopsis, search stands for a procedure that returns a dictionary index i such that
I(N∗

i ) is “similar” to J(Nj) over the populated part of Nj , and, if auxiliary guid-
ance is used, Ĩ(P ∗

i ) and J̃(Pj) are similar. Step (a) in Algorithm 1 simply amounts
to picking a location whose associated patch is at least partially empty while its
neighborhood is at least partially filled.

Algorithm 1 Generic example-based image generation

• Build sample dictionary D .= {d∗i }i=1...n∗ .

• Initialize completion mask M = {M(x),x ∈ Ω}.
• While M0

.= {x ∈ Ω : M(x) = 0} 6= ∅ do:

(a) Pick location j s.t. Pj ∩M0 6= ∅ and Nj 6⊂ M0.

(b) Assemble dj and mj .

(c) Search: α(j) ← search(dj ,mj ;D).

(d) Copy: J(Pj) ← I(P ∗
α(j)), M(Pj) ← 1.

Nj

xj

Pj

M0

Let us briefly review the different ingredients:

• Elementary patch: apart from unconstrained texture synthesis approaches in
(Efros & Freeman 2001, Guo et al. 2000, Liang et al. 2001, Kwatra et al. 2003),
and resolution enhancement in (Freeman et al. 1999), all example-based image
generation techniques proceed one pixel at a time: P is thus a singleton,
and N stands for a few-pixel wide band around (typically 2-10 pixel wide).
Note however that at copy time, it is not only the candidate location but also
the empty part of its neighborhood that are filled with source materials in
(Criminisi et al. 2003, Drori et al. 2003, Jia & Tang 2003).

• Similarity and search: the similarity measure on which the search relies is
usually captured by a distance of the form

dist(dj ,d∗i ;mj) =
(
‖nj − n∗i ‖q

q,∆nmj
+ β‖pj − p∗i ‖q

q,∆p1

)1/q
(2)

where q = 1 or 2, ∆p and ∆n are two diagonal matrices weighting the con-
tributions of each location in the patch and in the neighborhood respectively
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according to its distance to the center of the patch, notation ‖u‖q,w stands
for (

∑
k wk|uk|q)1/q, and 1 stands for vector with unit entries. Based on this

distance which depends on sieve mj , the procedure search(dj ,mj ;D) may re-
turn the nearest neighbor from the dictionary, or one randomly picked among
either the K nearest neighbors, or among all points within the ball of radius
(1 + ε)dmin around the query vector dj , or within a ball of radius ε around
the nearest neighbor. Due to the complexity of the nearest neighbor search in
a large dictionary of high-dimensional vectors, dimension reduction via PCA
and approximate heuristics (kd-tree in particular) have also been considered
by most authors. To both speed-up the image generation and reduce the risk
of unrealistic results, Ashikhmin (2001) also introduced a consistency princi-
ple: the first sample patches to be searched are those that continue verbatim
what has already been copied in one of the neighboring locations (Fig. 3):

if arg min{dist[dj ,d∗γ∗−tαγt(j)
], t ∈ T, αγt(j) 6= 0, γ∗−tαγt(j) 6= 0} < threshold

the shift t ∈ T for which the minimum is reached yields α(j) = γ∗−tαγt(j) and
the search is stopped for location j.

αγt′ (j)

j

γt′ (j)
α

α?

α?

Source

γ∗−t
γt

Fig 3. Consistency-driven search. Best patch α(j) for location j is first searched such
as to continue verbatim one of the source patches that has already been used to
populate a neighboring location γt(j).

In the region-filling technique of Bornard et al. (2002), this consistency strat-
egy is coupled with a proximity principle, according to which the candidate
sample patches for a given location are only searched within a certain maxi-
mum distance from this location.

Location-dependent search is also used in (Jia & Tang 2003) where a texture-
based segmentation of the image is performed beforehand and interpolated
within the selected region such that each location to be filled is associated to
a certain texture (and associated image patches).

• Auxiliary guidance: multi-resolution texture synthesis, super-resolution, texture-
by-number are specific applications of NP image generation where auxiliary
guidance is employed (low resolution image in the two former, class labels in
the latter). In (Drori et al. 2003), the region filling problem is addressed within
a multiresolution setting where previous level is used to drive the detail gener-
ation at the current one. Also of interest for the region filling problem, a depth
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map can be used as auxiliary guidance to mimic the changes of texture scale
caused by depth changes in the scene (Harrison 2001, Hertzmann et al. 2001).

• Tiling geometry and order of visit: apart from the hole-filling technique in
(Barret & Cheney 2002), where irregular micro-regions are used to manipu-
late the image, only regular tilings have been considered in the literature on
example-base image generation. The issue of synthesis order is mostly relevant
when initial boundary conditions have to be taken into account, as we shall
discuss later for our region filling problem. For other unconstrained image
generation, complete new images are generated usually in the lexicographical
order.

2.2 PatchWorks

The basic version of PatchWorks is summarized in Alg. 2. It is a particular instance
of the generic framework described above with the following settings.

Algorithm 2 Basic PatchWorks

Input
p width of square patches
q width of neighborhood
` max. distance of patches from destination
J original image of support Ω
D ⊂ Ω destination to be filled-in (D 6= ∅)
Γ ⊂ Ω−D source of image patches

P

N

p

w

• If Γ = ∅, Γ ← {x ∈ Ω−D : d(x, D) ≤ `}.
• For each x s.t. x + N ⊂ Γ, associate one entry d∗i in the dictionary.

• Initialize binary completion mask M s.t. M(x) = 0 iff x ∈ D.

• Tile Ω with step p: Ω ⊂ ∪jPj with Pj having upper left corner xj .

• Label recursively inner layers: L0 .= ∅ and for k = 0 . . . K − 1,
Lk+1 =

{
j ∈ {1 . . . n} − ∪k

u=1L
u : ij ∩ Lk 6= ∅}.

• For k = 1 . . . K visit Lk lexicographically, and for current location index j:

– Assemble dj and mj .

– Search: α(j) ← arg mini=1···n∗ ‖nj − n∗i ‖1,mj

– Copy: J(Pj) ← I(P ∗
α(j)), M(Pj) ← 1

Images J is a color image.
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Destination The destination region to be filled-in, D ⊂ Ω, composed of one or
several disjoint parts, is provided manually using any appropriate selection tool,
e.g., drawing-based, brushing-based, color-based. The latter type of selection is
crucial when it comes to select convoluted and/or numerous regions, as in the first
examples in Section 4.1.

Source By default the sample source is defined as a band of width ` around selec-
tion D (Fig. 4). This default mode works well in most circumstances, and results
in an effortless process from the user’s perspective. In some situations however, it
is useful to select manually the source region Γ ⊂ Ω − D, to prevent for example
the growing of a given structure or texture from the surrounding (Fig. 4). The user
can thus control the nature of synthesized textures through the choice of texture
“buckets”. He/she can as well as control the trade-off between the computational
complexity of the filling-in process and its quality through the size and richness of
the sample source.

D

Γ

Γ

Ω
Γ

D
`

Ω

Fig 4. Source and destination in PatchWorks. The destination region D ⊂ Ω is
provided in some way by the user. (Left) By default the source of image samples,
Γ, is the band of width ` around it. (Right) It can also be manually provided as one
or several connected regions.

Fig. 5 shows an example where the manual selection of the source region has
prevented the undesirable bleeding of one of the textures neighboring the destination
while speeding up the filling process.

Patches Whereas most non-parametric image generation technique proceed one
pixel at a time (but generally with rather thick neighborhood), a few authors have
demonstrated that using copying entire square patches instead improves dramat-
ically both the speed and the quality of unconstrained texture synthesis (Guo et
al. 2000, Efros & Freeman 2001, Liang et al. 2001, Kwatra et al. 2003).

This is the choice we make for our region-filling tool: the building bricks are
square patches of size p, where p typically ranges from 4 to 20. Their neighborhood
is formed by a w-pixel wide band around it, where w ranges typically from 2 to 4.
The impact of these two parameters in terms of result quality and computational
load is illustrated on a few single-texture examples in Figs. 6, 7, and 8. Such single-
texture examples have been thoroughly investigated in the context of unconstrained
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Fig 5. Interest of switching to manual source input. (Left) When removing an object
at the boundary of another one, e.g., the person highlighted in yellow behind the
hat of the baby in this example, the use of the default source often results in an
undesirable bleeding of the latter object in the background. (Right) Alternatively,
the user can specify the source of sample patches, a small chunk of sky highlighted in
green here. This not only prevents the above mentioned bleeding, but also permits
to control the size of the dictionary, hence the computational load: in this example
the manually selected sample source is 10 times smaller than the default one for
` = 20.

texture synthesis. In these studies, it has been shown that the the width w of
the neighborhood in case of pixel-wise generation (p = 1) must get rather large
to capture correctly certain textural patterns. In fact the neighborhood must be
larger than the maximum textel size in the image (Efros & Leung 1999). However,
the very high-dimensional search associated to large neighborhoods, combined with
the intrinsic slowness of pixel-wise procedures, results in prohibitive computational
loads. Using patches instead of single pixels, not only reduces the number of queries
to the dictionary, but also often limits the need for large neighborhoods. Hence
the computational gain is two-fold for at least similar quality, as shown in Fig. 6.
Even in extreme cases, e.g., in Fig. 8, pixel-wise synthesis will fail to capture the
correct patterns, no matter how large the neighborhood gets. By contrast, very
large patches, with modest neighborhoods can still work well, at very low cost.
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(1,2) 10.8s (1,4) 34.3s (1,8) 114.5s

(4,2) 1.5s (4,4) 4.0s (4,8) 9.8s

(8,2) 0.6s (8,4) 1.4s (8,8) 3.1s

Fig 6. Impact of patch size p and neighborhood width w. The caption under each
result indicates the parameter couple (p, w) followed by the cpu times on a Pentium
IV, 2.3GHz, 1MByte of Ram. While in pixel-wise synthesis the size of the neigh-
borhood is a critical parameter, it appears that the size of the patch can have an
even more dramatic impact. This first example illustrates the fact that a few pixels
wide patches with slim neighborhoods allow us to get similar or better results than
single-pixel generation with large neighborhoods, while offering orders of magnitude
of speed-ups. Pixel-wise filling is only satisfactory when w gets to 8, whereas large
8× 8 patches do similarly well 200 times faster with only w = 1. On this example,
Harrison’s Resynthesizer yields results similar to (1,2) after 50s. [200× 200 image,
66× 66 destination region]
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(1,2) 10.8s (1,4) 34.3s (1,8) 114.5s

(4,2) 1.5s (4,4) 4.0s (4,8) 9.8s

(8,2) 0.6s (8,4) 1.4s (8,8) 3.1s

Fig 7. Impact of patch size p and neighborhood width w (continued). In this second
example, with more complex structured patterns, good results were only obtained
with a large neighborhood, irrespective to the size of the patch. Although now re-
duced, the speed-up offered by large patches for a similar quality remains nonethe-
less dramatic. On this example, Harrison’s Resynthesizer yields results similar to
(p, w) = (1, 2) after 50s. [200× 200 image, 66× 66 destination region]

Synthesis order In (Efros & Leung 1999, Wey & Levoy 2000, Liang et al. 2001),
constrained texture synthesis for region-filling is conducted in a concentric way, e.g.,
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(1,2) 52.7s (8,2) 2.7s (32,2) 0.5s (50,2) 0.1s

Fig 8. Impact of neighborhood width w in presence of highly structured patterns.
On this extreme example of highly structured patterns, increasing the size of patches
up to 50 improves dramatically both the quality and the speed. An excellent fill is
finally obtained with no more than a two pixel-wide neighborhood. By contrast,
increasing a lot the size of the neighborhood hardly improved the result of single-
pixel (or small-patch) generation, while increasing prohibitively the computational
complexity [e.g., 45mn for (1,16)]. [256× 256 image, 128× 128 destination region]

one layer after another starting from the inner boundary of the region inwards. This
choice seems indeed the simplest and more natural way to treat all boundary con-
ditions on an equal footing, as opposed to raster-scan filling that makes bottom
right boundary conditions less likely to be well met. A careful examination of this
statement showed us that in many single texture situations encountered in natural
images, no noticeable improvements were obtained by using concentric as opposed
to lexicographical filling-in. However, when the texture under consideration either is
substantially non-stationary, or exhibits oblique patterns, a concentric filling proves
better (Fig. 9, top row). More importantly, when the destination straddles two
regions characterized by different colors and/or texture, the concentric ordering of-
fers a clear improvement (Fig. 9, bottom row): with a lexicographical synthesis
not only the top region grows un-naturally inside the bottom one, but also visi-
ble seams might appear at the bottom/right part of the destination region. More
sophisticated synthesis orders have been introduced in (Harrison 2001, Bornard et
al. 2002, Criminisi et al. 2003, Drori et al. 2003). The one proposed by Harrison
(2001) relies on a preliminary statistical analysis of the anisotropies of the textures
in the image. Apart from the overhead associated to this preliminary computa-
tions conducted over the whole image, we found often that either it was making
no noticeable difference (as compared to concentric pixel-wise filling-in à la Efros &
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Leung (1999)), or it was overshooting stronger structures in an undesirable fashion.
The one considered by Bornard et al. (2002) is purely geometric (filling-in first the
most surrounded locations) and is likely to make only little difference compared to
concentric filling, especially for the square regions used in Fig. 9. Finally the ones
proposed in (Criminisi et al. 2003, Drori et al. 2003) rely on two different ways of
mixing geometry and image content and both allow to continue nicely interfaces be-
tween differently colored or textured regions. This is an appealing feature (obtained
as well by Jia & Tang (2003) thanks to an interpolated texture segmentation), but
comes at a substantial computational cost.

Search heuristics We use exhaustive search for exact nearest-neighbor. Whereas
randomness is useful to inject variety in unconstrained texture synthesis, we found
that it was more of a nuisance (along with a computational overhead) than anything
else in the constrained case we are interested in. Initial boundary conditions are
sufficient to avoid verbatim synthesis, and noise is simply making seams more visible.
As for the consistency principle of Ashikhmin (2001), it is in a sense subsumed by the
use of square patches. Patch-based synthesis amounts to systematically enforcing
the consistency principle on a fixed geometry basis. We found no need for further
enforcing this principle at the level of patches themselves. As for the proximity
principle used by (Bornard et al. 2002) in the context of pixel-based region-filling
with source taken around the destination, we found that it degraded noticeably the
quality of the results in our patch-based implementation.

Distance We found that the L1 norm with no weighting, i.e, q = 1 and ∆n =Id in
(2), computed directly in RGB space, behaves similarly to other, more expensive,
distances proposed in the literature (L2 norm weighted by a Gaussian kernel, pos-
sibly within alternative color spaces). In particular, switching from q = 2 to q = 1
provided a 40% speed gain for similar results (even slightly better in certain cases,
although no systematic behavior differences were noticed).

Overall complexity In the absence of auxiliary guidance, the size of a vector in the
dictionary is 12w(p+ w). An estimate of the number n∗ of vectors in the dictionary
is given by5 4(|D|1/2 + ` + p + 2w − 1)(`− p− 2w − 1). Finally the number of time
the dictionary will be searched is approximately p−2|D|. For a 100 × 100 square
region to be tiled with 5× 5 patches surrounded by 2-pixel wide neighborhoods and
chosen not further than 50 pixels from the destination region, a 168-dimensional
dictionary of approximately 26,000 vectors will be searched 400 times. This amounts
to compute 1.7 million scalar differences. Fig. 10 provides similar cost estimations
for (p, w) ∈ {1 . . . 16}2. It makes clear the drastic computational advantage offered
by the patch-based architecture.

5Assuming D is a square, the number of square patches of size p+2w in a band of width ` around
D is (|D|1/2 + 2`)2 − [|D|1/2 + 2(p + 2w − 1)]2, hence the result.
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Lexicographic Concentric

Fig 9. Two types of situations where concentric filling does substantially better than
lexicographical filling. (Top rows) when filling a region surrounded by a “texture”
which is either not stationary or with oblique patterns, a concentric ordering yields
less visible seams than the lexicographical one. (Bottom rows) when filling a selection
that straddles two very different regions, the top one is unnaturally favored by the
lexicographical order and the boundary conditions at the bottom are visibly not well
respected. [200× 200 image, 66× 66 destination region]
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Fig 10. Complexity assessment as a function of (w, p). This plot indicates the number
of scalar distances, as a function of the patch size p and of the neighborhood width
w, to be computed to fill a 100 × 100 pixel region, using the surrounding 50-pixel
band as a source. It shows clearly the massive complexity reduction obtained as
soon as patches are a few pixels wide. It also shows that the cost increase induced
by the extension of the neighborhood is kept reasonably low within a patch-based
system.

Auxiliary guidance All examples presented in this report make no use of auxiliary
guidance: Ĩ and J̃ do not exist and vectors d do not have an inner-patch component
p. The depth guidance proposed by Harrison (2001) can however be invoked within
PatchWorks when the region to be filled corresponds to a textured surface with
strong perspective distortion (typically the ground in scenes with large depth vari-
ations). Fig. 11 shows the impact of depth-based guidance in this situation. Note
however that auxiliary guidance might result in a substantial overhead since the di-
mension of the search space is increased by |P | times the number of channels of the
auxiliary image (1 for depth). Also, in the absence of an automatic way of switching
on this mode when appropriate, the use of this feature requires an additional input
from the user.

3 Results

3.1 Single input image editing

We first present examples of one shot removal, i.e., one destination region is filled
at once using the default source. In case the selection is composed of several discon-
nected components, these components are filled independently. In particular, each
one is associated with its own surrounding source.
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Fig 11. Advantage of depth-based guidance in presence of perspective distortion.
When the object to be removed lies on a textured surface under strong perspective
distortion, such as the gravel ground in this example, plain PatchWorks is usually
unable to recreate the progressive change of scale in the synthesized image region
(Middle). Using a depth-based complementary term in the similarity measure allows
to circumvent this problem (Right).

Thin convoluted regions Using a color-based selection tool, thin convoluted struc-
tures of consistent color can be easily removed from an image. This can be useful to
remove scribbling, scratches, logos, or any kind of obstructing text overlays. This
is illustrated in Fig. 12. When dealing with such thin regions, the size of used
patches should be roughly of the order of the gap width, e.g., p = 2 in the examples.
Note that it is in this type of situation that Inpainting techniques have proved very
effective. The results obtained with PatchWorks, as well as with the NP approaches
of Harrison (2001) and Bornard et al. (2002), are similar to those of Inpainting for
a presumably lower computation load.

Image extension Using PatchWorks, it is very easy to extend images from their
external boundary outwards. This is useful to complete digitized old photographs
with missing parts at the border. A first example of this task was presented in Fig.
1. A more dramatic illustration is offered in Fig. 13.

An other interesting application of this partly constrained image generation (only
part of the destination region boundary is assigned boundary conditions) is the
completion of the panoramas that are now routinely produced by users of digital
cameras. Instead of cropping the original panorama into a smaller rectangular one,
and hence loosing part of the original scene, the panorama can be easily extended
to fill completely its rectangular bounding box (Fig. 14).
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Fig 12. Removing thin convoluted structures. When restoring or correcting images,
one might come across the task of removing thin structures of complex forms, such as
text overlays. If these structures come in a consistent color, they are easily selected
at once based on their color, and can then be removed using PatchWorks with
default sources taken around each individual connected component of the selection
(e.g., each letter). A close examination of the final image in this example shows
that most of the structures, even those thin and complex, of the original image are
convincingly completed.

Fig 13. Completing old photographs. It is quite common for old photographs to have
torn borders. After digitization, PatchWorks can be used to re-invent the missing
parts. On this 276 × 476 digitized old photograph, the 8,200 missing pixels in the
lower left corner were filled in 0.2s. After 2min45s, Resynthesizer filled the same
area in a much less satisfactory way, with artifacts appearing in the grass.
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Fig 14. Completing panoramas. (Top) Typical panorama have irregular lay-outs due
to the geometric correction of overlapping constitutive images. Getting back to a
rectangular format is usually done by cropping, which results in a loss of original
material, and in a restriction of the panorama scope. (Bottom) This is avoided by
filling-in with PatchWorks the missing portions of the bounding box of the original
panorama. On this 1058× 311 panorama, 20,000 pixels associated to missing parts,
as well as to the dark window frame in the upper right corner, were filled in 0.4s.

Filling large regions The patch-based architecture of PatchWorks makes easy the
removal of large undesirable objects. The user only provides a rough outline of the
destination region, and automatic filling is obtained fast enough for a comfortable
use in an interactive image editing context. Filling large regions is useful in a number
of image correction tasks where characters or objects have to be removed from the
scene (Fig. 15), but also for other photo-editing tasks, such as photo-montages (Fig.
16).
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Fig 15. Removing large objects at once. The original 318 × 500 image on the left
was corrected by removing a tourist. (Middle) PatchWorks fills the 4,000 pixels
of the destination region in 0.2s by satisfactorily continuing the different wall and
water regions surrounding it. (Right) By contrast, Resynthesizer performs less
satisfactorily despite its 45s of computation.

→

↓

→

Fig 16. Clearing background of photo-montages. New images can be produced by
importing cutout objects from different sources within a common background. In
this context, PatchWorks proves useful to clear any undesirable objects from the
original scene, the raft to be replaced by the kayak in this example. It took 1.5s
with (p, w, `) = (8, 2, 20) to fill a region amounting to 20% of the original 318× 500
image. Resynthesizer fills less satisfactorily the same region, with dark chunks in
the middle, after 8min.
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3.2 Multiple input image editing

We conclude this section with a few examples of more elaborate image editing works.
In these examples, PatchWorks was used in successive steps, often with the source
manually specified, and with a few trials. All these results were nonetheless produced
in just a few minutes.

Two of these more elaborate works were already shown in Fig. 1 to illustrate
respectively the tasks of correcting the content of images and playing visual tricks.
Figs. 17-19 present other examples of complex image corrections with one or several
undesirable objects removed to make the scene more pleasing.

Fig 17. Small image corrections. PatchWorks may be employed to slightly change
the esthetic or semantic content of a scene by removing small undesirable objects.
In these examples, the removed objects although relatively small were occluding a
great deal of texture and structure. Re-inventing these complex regions required a
few trials, playing with the manual selection of the sources.
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Fig 18. Not so small image corrections. This other example further illustrates how
PatchWorks can be used to remove easily undesirable objects from a scene even
when the part of background that is originally occluded is large and exhibits a fairly
complex structure.
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Fig 19. Major image corrections. This last example shows how a complete range of
objects can be easily removed from the same single scene: this picture, taken from
a moving car, has indeed been enhanced by removing the large blurred elements in
the foreground, and the dim uninteresting structures in the far background.

4 Making seams invisible

By design, the patches that are used to tile the destination region are meant to
produce as few seams as possible. As a result, no block artifacts are usually visible
if the patches are not too large and the dictionary is rich enough. This is the case
in all experiments presented in the previous section. When patches are large (e.g.,
larger than 5 × 5 pixels) and/or the dictionary is rather restricted, both situations
occurring when trying to fill extremely large regions in a reasonable time, visible
residual seams can show up: at each step of the filling process, it is unlikely that
even the best source patch matches very precisely the existing neighborhood at the
concerned location. These seams can be of three different types:
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• Color/intensity seams,

• Texture seams,

• Structure seams.

The two first types are often made particularly visible by their lying along the
regular grid of patches boundaries. Efros & Freeman (2001) suggest to break this
geometric regularity by finding a posteriori optimal jagged boundaries in between the
patches using a dynamic programming technique. This approach has been extended
recently by Kwatra et al. (2003) to find the best irregular border of a patch at pasting
time thanks to a max-cut/min-flow technique. These approaches based solely on the
carving of patches frontiers are mostly effective on seams of type 2.When seams of
type 1 occur in rather uniform regions simply because the dictionary is not rich
enough, these techniques are not helpful.

This kind of seams are well handled in (Drori et al. 2003) using the Laplacian
pyramid blending of Burt & Adelson (1983). We propose an alternative technique
well adapted to our patch-based architecture. It relies on the use of the image blend-
ing technique proposed in (Pérez, Gangnet & Blake 2003), which corrects smoothly
an image patch of any shape such that it complies exactly with new prescribed
boundary conditions. It can be applied to any of the square patches used to tile the
selection, with is neighborhood providing the new boundary conditions.

Let Pj a patch location in the destination region. It has been filled by source patch
I(P ∗

i ), with i = α(j). This copied patch can be modified by an additive correction
f defined over Nj ∪ Pj by:

Lf = 0 over Nj ∪ Pj and I(N∗
i ) + f(Nj) = J(Nj), (3)

where L is a discrete Laplacian operator. Hence the correction is as smooth as pos-
sible while ensuring that the modified source patch neighborhood complies exactly
with the actual neighborhood in J . The computation of this correction amounts to
solve a sparse linear system of order p2. These corrections only need to be applied
to every other patch of the tiling (one color of the checkerboard), at least for the
inner layers. An example of this post-processing if shown in Fig. 20.

As for the seams of the third type, they are the most visible and it is not clear how
they could be removed a posteriori. Using some kind of warping to deform concerned
patches so that structures are better aligned might be envisaged but seems complex.
Alternatively, part of these seams might be avoided at synthesis time by designing
either a match distance penalizing them particularly or a synthesis order favoring
their continuing (Harrison 2001, Criminisi et al. 2003, Drori et al. 2003). The former
might however result in more seams of the two other types, whereas the latter comes
at a non negligible computational cost.
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PatchWorks Corrected PatchWorks Corrections

Fig 20. Removing seams by post-processing. The tiling obtained with a small dictio-
nary of 20× 20 blocks exhibits a few visible seams in this example. These seams are
removed by applying an appropriate smooth additive correction to all the patches of
the first inner layer, and to every other patch on the other layers. The corrections
shown on the right are those applied in the green color channel. [size of destination
region: 140× 120 pixels; w = 20, p = 2, ` = 40.]

5 Conclusions

We have shown that the simplest use of Efros and Leung’s example-base image
generation technique can be turned into a fast, robust, and flexible image completion
tool using a block-based architecture. If results are in some specific cases not as
good as those reported in recent works (Criminisi et al. 2003, Drori et al. 2003, Jia
& Tang 2003), comparable results are obtained in most classic image completion
tasks, but orders of magnitude faster. This latter aspect is crucial in the context of
interactive image editing.

The main problem, partly attacked with different angles in (Bertalmio et al. 2003,
Criminisi et al. 2003, Drori et al. 2003, Jia & Tang 2003), remains the issue of mixing
convincingly structures, textures, and boundaries in the synthesis process. Higher
level image analysis tools might be necessary to address this problem.

Another issue of interest concerns the reduction of the complexity when it comes
to edit very large images, e.g, as large as 6 Mpixels. Because we are handling
a different sample dictionary for each individual region filling, standard dimension
reduction and clustering techniques are less appealing in our context and alternative
solutions should be sought.

Acknowledgments
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