
Mutualcast: An Efficient Mechanism for  
Content Distribution in a Peer-to-Peer (P2P) Network 

Jin Li,   Philip A. Chou   and   Cha Zhang, 
Microsoft Research, Communication and Collaboration Systems 

One Microsoft Way, Bld. 113 
Redmond, WA 98052 

Email: {jinl, pachou, chazhang} @microsoft.com 
 

   

ABSTRACT 
In this paper, we propose Mutualcast, a new delivery mechanism 
for content distribution in peer-to-peer (P2P) networks. Compared 
with prior one-to-many content distribution approaches, Mutual-
cast splits the to-be-distributed content into many small blocks, so 
that more resourceful nodes may redistribute more blocks, and 
less resourceful nodes may redistribute less blocks. Each content 
block is assigned to a single node for distribution, and the node in 
charge can be a content-requesting peer node, a non-content-
requesting peer node, or even the source node. The throughput of 
the distribution is controlled by redistribution queues between the 
source and the peer nodes. We show that such a strategy fully 
utilizes the upload bandwidths of all the peer nodes, thereby 
maximizing the delivery throughput. Furthermore, Mutualcast is 
simple and flexible. It can be applied to file/software download-
ing, media streaming, and erasure coded file distribution in a P2P 
network.   

Categories and Subject Descriptors 
C.2.4 [Distributed Systems]: Distributed Applications; C.2.5 [Lo-
cal and Wide-Area Networks]: Internet.  

General Terms 
Algorithms, Design, Performance 

Keywords 
One-to-many content distribution, file distribution, software dis-
tribution, peer-to-peer networks. 

1. INTRODUCTION 
A number of applications such as software distribution, 

Internet TV/video streaming, video conferencing, personal media 
distribution, and P2P web content duplication require one-to-
many content distribution. A network-level solution to address 
such a content distribution problem is IP Multicast [1], where a 
single packet transmitted from the source is duplicated at routers 
along a distribution tree rooted at the traffic’s source, and is 
thereby delivered to an arbitrary number of receivers. Though IP 
multicast is an efficient solution, its deployment is slow in the real 
world because of issues such as inter-domain routing protocols, 
ISP business models (charging models), congestion control along 
the distribution tree and so forth. Due to such problems facing the 
deployment of a network-level multicast service, the vast majority 

of traffic in the Internet today is unicast based, where two com-
puters directly talk to each other.  

Since a network-level solution is not generally feasible, vari-
ous approaches have been developed to let peer computers, in-
stead of routers, distribute the content from the source. The gen-
eral approach is application-level multicast (ALM) [4], where a 
multicast distribution tree is formed and overlaid on the existing 
network. Instead of using the multicast protocol, each peer com-
puter in the distribution tree uses the unicast protocol to imple-
ment all multicast related functionalities including packet replica-
tion, membership management and content delivery on the over-
laid network. Some sample systems include Scattercast [2] and 
Overcast [3], both of which used a single tree to distribute the 
content. Compared with letting the source node directly send its 
content to all other clients, the distribution tree approach reduces 
the network load of the source, thus achieves more efficient con-
tent distribution. In a distribution tree, the intermediate nodes 
redistribute the content, while the leaf nodes only receive the con-
tent. The upload bandwidths of the leaf nodes are not utilized for 
content distribution. To overcome such inefficiency, CoopNet [5] 
and SplitStream [6] split the content into multiple stripes and 
distributed the stripes across separate multicast trees with disjoint 
interior nodes. Any peer computer could be an interior node in 
one of the multicast trees, and contribute to forwarding the con-
tent. FastReplica [8] and Bullet [9] investigated the issue of effi-
cient and reliable replication of large files. If there were n nodes, 
FastReplica first partitioned the file into n subfiles of equal size. 
Each subfile was then transferred to a different peer in the group, 
which was subsequently replicated and transferred to the other 
peers. In Bullet [9], peer nodes were organized into an overlay 
tree. Each node split the content received from the parent into a 
disjoint set of blocks, with each set sent to a different child node. 
The child nodes then discovered the missing blocks and the nodes 
that held the missing blocks, and sent requests to recover the 
missing blocks. A practical P2P system has been implemented by 
BitTorrent [10] with sharing incentive so that peers are willing to 
distribute content as the more content they upload, the more they 
will be able to download from the peers.  These are just a few 
examples of the many recent schemes for application-level multi-
cast. 

Although the above ALM distribution strategies are more ef-
ficient than directly sending content from the source to the peers, 
they failed to achieve the most efficient content distribution in the 
network. None of the above schemes has adequately considered 
the differences in bandwidth between the peer nodes. They also 
failed to fully engage the bandwidth resources of all the peer 



nodes to distribute the content. In this work, we propose Mutual-
cast, which is a maximally bandwidth-efficient mechanism for 
content distribution in the P2P network. In contrast to existing 
approaches, Mutualcast achieves the maximum possible through-
put for its content by engaging as many nodes as possible to dis-
tribute the content and fully utilizing the nodes' available upload 
bandwidths. Furthermore, Mutualcast can adjust the content send-
ing rate dynamically to match the maximum throughput under the 
prevailing network conditions. There are three distinct features of 
Mutualcast. First, it splits the to-be-distributed content, be it a file 
or media stream, into many small blocks, and distributes each 
block separately. Second, in a Mutualcast group, each block of 
content is assigned to a single peer node for redelivery. Third and 
most importantly, Mutualcast employs an optimal bandwidth allo-
cation strategy, which is implemented via redistribution queues 
between the source and the peer nodes. The redistribution queues 
accommodate the bandwidth differences between the peer nodes, 
and ensure maximum delivery throughput even if there are packet 
loss and transmission jitter on network links. Mutualcast is simple 
and flexible. We have implemented Mutualcast for file/software 
distribution. Nevertheless, the Mutualcast protocol can be used to 
distribute other content, such as streaming media or multimedia 
collections.  

2. BACKGROUND AND PRIOR WORKS 
The one-to-many content distribution problem that we are 

considering is illustrated in Figure 1. The network consists of a 
source node s, which holds the content to be distributed, and mul-
tiple peer nodes Niti ,,2,1, L= , each of which may or may not 
request a copy of the content. Both the source node and the peer 
nodes are end-user nodes. They are usually computers connected 
to the Internet through an internet service provider (ISP), using an 
ADSL, cable modem, campus, or corporate network link. We do 
not consider the case that the nodes are infrastructure nodes on the 
backbone of the Internet. Our target is to distribute the content 
with maximum throughput to all the destinations.  

The simplest approach for a source node to distribute content 
in this setting is to let the source node send the content directly to 
the destination nodes. Though straightforward, the throughput of 
the content distribution is bounded by the upload bandwidth of 
the source node, which is usually fairly limited. Naturally, we 
want to enlist the help of the peer nodes, and use their upload 
bandwidths to aide the content distribution.  

Let us now examine a number of prior ALM approaches in 
distributing the content from the source to the peer nodes. The 
Scattercast [2] and Overcast [3] form a single distribution tree. A 
sample distribution tree can be shown in Figure 2(a). In this con-
figuration, the source node sends data to node t1, which forwards 
the data to nodes t2 and t3. The ALM distribution tree utilizes the 
upload bandwidth of the intermediate node t1, whereas the upload 

bandwidths of the leaf nodes t2 and t3 are not utilized. To better 
utilize the bandwidths of the peer nodes, nodes with higher up-
load bandwidths should be placed upstream, while nodes with 
lower upload bandwidths should be placed downstream. 

We next examine CoopNet [5] and SplitStream [6]. Both 
schemes stripe the content and distribute the stripes using separate 
multicast trees with disjoint interior nodes. CoopNet uses a cen-
tralized tree management scheme, while SplitStream relies on 
Pastry [7] to maintain the distribution tree. CoopNet further util-
izes multiple description coding (MDC) and forward error correc-
tion (FEC) to protect from packet loss and node failure. The 
CoopNet/SplitStream configuration with two application-level 
multicast trees is illustrated in Figure 2(b). The content is divided 
into two equal stripes. The first stripe is sent to node t1, which 
forwards the stripe to nodes t2 and t3. The second stripe is sent to 
node t2, which forwards the strip to nodes t1 and t3. We notice that 
the system utilizes the upload bandwidths of nodes t1 and t2, but 
fails to utilize the upload bandwidth of node t3.   

Finally, we examine FastReplica, which is specifically de-
signed for file download. For an N node P2P network, Fas-
tReplica distributes the file with N height-2 multicast trees with 
intermediate degree N-1. A sample FastReplica configuration of 
three peer nodes is illustrated in Figure 2(c). FastReplica distrib-
utes the file in two steps: the distribution step and the collection 
step. In the distribution step, the file is split into three subfiles and 
sent to nodes t1, t2 and t3 (along solid, dashed, and dotted lines), 
respectively. After the distribution step, the collection step kicks 
in. Each peer node forwards its subfile to the other peer nodes. All 
peer nodes are engaged in content distribution in FastReplica.   

All of the above one-to-many content distribution ap-
proaches adapt to the capabilities of the peer nodes, i.e., their 
upload/download bandwidths, by establishing a suitable network 
topology. Nodes with high bandwidth are placed in the center of 
the distribution network, and are in charge of more content distri-
bution. Once the network topology is established, the content is 
distributed in fixed stripes through the established network. Such 
distribution strategy leaves the distribution network less flexible 
to adapt to changes in the network conditions, e.g., congestion of 
certain nodes/links. 

3. MUTUALCAST DISTRIBUTION  

3.1 Framework 
Mutualcast differs from the previous one-to-many content 

distribution approaches in that it uses a fixed network topology, 
but adapts by letting peer nodes with different capabilities distrib-
ute different amount of content. There are three distinct features in 
Mutualcast. First, Mutualcast splits the to-be-distributed content, 
be it a file or a media stream, into many small blocks. The number 
of blocks redistributed by a certain node can thus be proportional 
to the resource (upload bandwidth) of the node. The node with 

 
Figure 1 One-to-many content distribution. 

1t
2t

3t
s

 

1t

2t

3ts

 

1t

2t

3t

s

(a) (b) (c) 
Figure 2 Prior one-to-many content distribution schemes: a) Scat-
tercast/Overcast, b) SplitStream/CoopNet, c) FastReplica. 



larger upload bandwidth may redistribute more blocks, and the 
node with smaller upload bandwidth may redistribute fewer 
blocks. Second, in a Mutualcast group, each block of content is 
assigned to a single node for redelivery. The node in charge of the 
redelivery can be a content-requesting peer node, a non-content-
requesting peer node, or even the source node itself. Third, em-
ploying redistribution queues between the nodes, Mutualcast can 
effectively deal with dynamic changes in the network condition, 
and copes with variations in the upload bandwidth, packet loss 
and packet jitter of each node in the network on an ongoing basis.   

The basic distribution framework of Mutualcast is as follows. 
The content being distributed is chopped into blocks Bj, 
j=1,2,…,M. For each block Bj, one unique node is assigned to 
distribute the block to the rest of the peer nodes. Frequently, the 
node in charge of redistributing the block Bj is a peer node ti. In 
such a case, the source node sends one copy of the block Bj to the 
peer node ti, which then redistributes the block Bj by sending a 
copy of the block to the rest of the peer nodes. However, when the 
source node has abundant bandwidth resources, the node in 
charge of distributing the block Bj can be the source node s itself. 
In that case, the source node will directly send one copy of block 
Bj to each peer node ti.  

We show an example Mutualcast distribution network in 
Figure 3. In this network, there are one source node s and four 
peer nodes t1, t2, t3 and t4. Among the peer nodes, the nodes t1, t2 
and t3 request a copy of the content from the source node s. The 
node t4 does not request a copy of the content. Nevertheless, it 
contributes its upload bandwidth to help distributing the content 
to the other peer nodes. When the block is assigned to the con-
tent-receiving peer nodes t1, t2 and t3 for redistribution, such as the 
blocks 1, 2, 3 and 4, the block is first sent by the source node to 
the peer node in charge, which then forwards the block to the 
other two peer nodes. When the block is assigned to a non-
content-receiving peer node t4 for redistribution, such as the 
blocks 5, 6 and 7, the block is first sent by the source node to the 
peer node t4, which forwards the block to the other three peer 
nodes. The source node may also choose to directly distribute the 
block, such as the block 8. In that case, the block is sent directly 
from the source node to the peer nodes t1, t2 and t3. 

Mutualcast chops the content into a large number of small 
blocks for distribution. The size of the Mutualcast block is a com-
promise between the granularity of distribution and the overhead 
required for identifying the block. During the implementation, it is 
preferable that the size of the Mutualcast block is a little bit less 
than the maximum transmission unit (MTU) of the network, so 
that each Mutualcast block can be sent as a single packet over the 
network. In the current work, we set the block size as 1KB.   

3.2 Mutualcast: distribution routes 
During the Mutualcast content distribution session, each 

block is assigned to a certain node for redistribution. The number 
of blocks assigned to the peer node is proportional to its capacity, 
which for the Mutualcast distribution network, is evaluated by its 
upload bandwidth. The reason is the following. In terms of the 
contribution of a peer node to the network, it is the upload band-
width of the peer node that counts. Thus, to efficiently distribute 
content in a P2P network, we should make use of the upload 
bandwidths of the peer nodes as much as possible. We also notice 
that for a file distribution session, the primary parameter that gov-
erns the speed of the distribution is the throughput of the network 
link. If a client can choose multiple servers to serve it the file, it 
should choose the server that provides the fastest network 
throughput between the two. The other network parameters, such 
as round trip time (RTT), packet loss ratio, network jitter, are less 
relevant. In a networks composed of the end-user nodes, we may 
characterize the network by assigning an upload bandwidth con-
straint on each node, a download bandwidth constraint on each 
node, and a link bandwidth constraint between any two nodes or 
any two group of nodes.  However, the bottleneck is usually the 
upload bandwidths of the nodes. In Mutualcast, a peer node sends 
content to multiple destinations. The output of the peer node thus 
splits among multiple receivers. As a result, the link bandwidth 
required between the two peer nodes is only a fraction of the up-
load bandwidth of the sending node, which usually does not be-
come the bottleneck. The required download bandwidth for a 
node to receive the content is always less than the total available 
upload bandwidths of all the nodes in the network divided by the 
total number of receiving nodes. In increasingly common net-
works, the total upload bandwidths of the end-user nodes are 
much smaller than the total download bandwidths. This is espe-
cially true for end-user nodes on the cable modem and ADSL 
networks, for which the balance is asymmetrically skewed to-
wards larger download bandwidth. Even for user nodes on the 
campus networks or the corporate networks, the download band-
width can still be much larger than the available upload band-
width because the user may cap the upload bandwidth to limit 
participation in the P2P activity. In the following discussion, we 
will assume that the receiving nodes have enough download and 
link bandwidths to receive content from the Mutualcast. We will 
briefly discuss nodes of limiting download and link bandwidths in 
Section 3.7.  

Table 1 Link bandwidth and download bandwidth requirement for 
Mutualcast network of Figure 3. 

In the example of Figure 3, let us assume that the upload 
bandwidths of the peer nodes t1 and t2 are B; that of the peer node 
t3 is 2B; that of the peer node t4 is 3B; and that of the source node 
is 4B, where B is a unit of bandwidth. An optimal strategy of fully 
utilizing the upload bandwidths of the source and peer nodes is 
shown in Table 1. We will discuss the bandwidth allocation prob-
lem in the next section.  

 
Figure 3 Mutualcast content distribution network: an example.  

Receiving Sending node, and Link BWs Download 
node s t1 t2 t3 t4 BW 

t1 0.83B - 0.5B B B 3.33B 
t2 0.83B 0.5B - B B 3.33B 
t3 1.33B 0.5B 0.5B - B 3.33B 
t4 B - - - - B 

Upload BW 4B B B 2B 3B  



If the Mutualcast group includes a source node, N1 content-
requesting peer nodes (N1>1 as otherwise the problem is trivial) 
and N2 non-content-requesting (but willing to participate) peer 
nodes, the Mutualcast network will distribute the content through 
N1 height-2 trees with intermediate degree N1-1 (with the interme-
diate node being one of the content-requesting nodes), N2 height-2 
trees with intermediate degree N1 (with the intermediate node 
being one of the non-content-requesting nodes), and one height-1 
tree with degree N1, all rooted at the source node. The network 
topology employed by Mutualcast bears some resemblance to the 
FastReplica scheme of [8]. Nevertheless, there are a number of 
distinct features of Mutualcast. First, Mutualcast does not separate 
the distribution and the collection steps. Instead, the content 
blocks are distributed continuously by the source and the peer 
nodes. Second, in Mutualcast, the amount of content being redis-
tributed by a particular peer is not fixed, but varies according to 
the capabilities (the upload bandwidths) of the peer nodes. Fi-
nally, Mutualcast may involve the source node and non-content-
requesting peer nodes in the redistribution of content.  

The Mutualcast network distributes the content through three 
routes: 1) through content-requesting peer nodes, 2) through non-
content-requesting peer nodes, and 3) directly from the source 
node. Each distribution method demands different amounts of 
network resource from the participating nodes. Again, the network 
resource of chief concern is the upload bandwidth consumed. To 
distribute a portion of content having bandwidth B in a Mutual-
cast network of N1 content-requesting peer nodes, the first distri-
bution route demands upload bandwidth B from the source node, 
and upload bandwidth (N1-1)B from each content-requesting peer 
node. The second distribution route demands upload bandwidth B 
from the source node, and upload bandwidth N1·B from each non-
content-requesting peer node. The third distribution route de-
mands upload bandwidth N1·B from the source node. Thus, Mutu-
alcast uses the upload bandwidths of the peer nodes (including the 
content-requesting peer nodes and the non-content-requesting 
peer nodes) to alleviate the upload bandwidth burden on the 
source node.  This has the effect of speeding up the maximum rate 
of content distribution.  

It is interesting to notice that for the same route, the amount 
of network resource consumed is independent of the individual 
upload bandwidth of each peer node. Thus we may consider the 
bandwidth allocation problem with respect to each route category 
instead of each peer node.  

3.3 Mutualcast: bandwidth allocation 
In the Mutualcast network, the most precious resource is the 

upload bandwidth of the source node, where the content origi-
nates. If the upload bandwidth of the source node is used up, we 
cannot further speed up content distribution, even if there are still 
peer nodes with available upload bandwidths. It is apparent that if 
the source node sends content blocks at rate B through the deliv-
ery links to all N1 content-requesting peer nodes, it will consume 
N1·B of the upload bandwidth of the source. On the other hand, if 
the source node sends content blocks at rate B to a peer node ti, 
which in turn distributes the blocks to the rest of the content-
requesting peer nodes, only an amount B of the upload bandwidth 
of the source node is needed. Apparently, as long as there are 
more than one content-requesting peer nodes, the source node 
should forward as many content blocks as possible to the peer 
nodes for redelivery. Between the content-requesting and non-
content-requesting peer nodes, the content-requesting peer nodes 

have a slight edge in efficiency, as the content blocks sent to the 
nodes in the forward links are not wasted. As a result, among the 
three distribution routes outlined above, the most preferred route 
is route 1, followed by the route 2. Only when the source node 
still has upload bandwidth left, it may choose route 3 to distribute 
content directly to the peer nodes. 

We assume that the Mutualcast network consists of a source 
node of upload bandwidth Bs, N1 (N1>1) content-requesting peer 
nodes with average bandwidth B1, and N2 non-content-requesting 
peer nodes with average bandwidth B2. Applying the distribution 
route selection strategy above, the distribution throughput of the 
Mutualcast network, which is defined as the amount of content 
multicast to the content-requesting peer nodes per second is: 

 

.   and   
1

with

,
)(

)(

,

2
1

2
21

1

1
1

21
1

21
21

21

B
N
N

BB
N

N
B

BBB
N

BBB
BB

BBBB

ss

sss
sss

ss

ssss

=
−

=

⎪⎩

⎪
⎨
⎧

+≥
+−

++

+≤
=θ

            (1) 

This shows that before the upload bandwidths of all the peer 
nodes have been exhausted, the distribution throughput is limited 
only by the upload bandwidth of the source node. All N1 content-
requesting peer nodes receive content at the rate of the upload 
bandwidth of the source node. After the upload bandwidths of all 
the peer nodes have been exhausted, the distribution throughput 
becomes (1/N1)th of the sum of the upload bandwidths of the net-
work (N1B1+N2B2+ Bs) minus a small portion (N2B2/N1) wasted in 
the distribution through non-content-requesting peer nodes.  

3.4 Mutualcast: distribution route selection 
through redistribution queue 

With the priority outlined in Section 3.3, if we know the 
available upload bandwidths of the source and all the peer nodes, 
we may explicitly calculate the bandwidth allocated between any 
two peer nodes, and distribute content blocks accordingly. How-
ever, there is an even simpler method that works in a distributed 
fashion. We may use a queue to estimate the bandwidth on any 
connection link, and govern the selection of the distribution routes 
of the content blocks based on the status of the queues, thus 
achieving implicit bandwidth allocation without knowing the 
bandwidths of the network.   

Our idea is to establish a queue to buffer content being sent 
from one node to another, and to use the queue to control the 
speed of distribution between any two nodes. In our implementa-
tion of Mutualcast, the links between nodes are established via 
TCP connections. The redistribution queues are thus simply the 
TCP send and receive buffers. An additional advantage of using 
TCP is that the flow control, reliable data delivery and node leave 
event are all automatically handled by TCP.  

We call the TCP connection carrying blocks to be redistrib-
uted the forward link, and the TCP connection that carries blocks 
not to be further redistributed the delivery link. We establish one 
TCP connection (the delivery link) from each peer node to every 
other content-requesting peer node. We establish one TCP con-
nection (the forward link) from the source node to every non-
content-requesting peer node, and two TCP connections (the for-
ward and the delivery links) from the source node to every con-
tent-requesting peer nodes. The selection of the distribution routes 
becomes finding available slots in the TCP connections. 



Let us now examine the workflow of the Mutualcast source 
and peer nodes. Each content-requesting Mutualcast peer node 
consists of two threads, where one thread receives the content 
blocks from the delivery link, while the other thread receives the 
content blocks from the forward link and redistributes them to the 
rest of the content-requesting peer nodes through their delivery 
links. For the non-content-requesting peer nodes, only the forward 
link thread is operated. 

The operational flow of the forward link thread of a Mutual-
cast peer node (both content-requesting and non-content-
requesting) is shown in Figure 4. In each iteration loop of the 
forward link thread, the peer node removes one content block 
from the incoming forward link, and copies the block onto the 
outgoing delivery links of all the other content-requesting peer 
nodes. The thread does not remove another content block from the 
incoming forward link until it has successfully copied the last 
content block onto all the delivery links. That way, if the outgoing 
delivery links are blocked, possibly resulted from reaching the 
limit on the upload bandwidth of the peer node, the peer node will 
stop removing the content blocks from the incoming forward link, 
thus effectively regulate the receiving rate of the forward link to 
be 1/Mth of the upload bandwidth of the peer node, where M is the 
number of nodes that the content block is redistributed to, which 
is N1-1 for content-requesting peer node and N1 for non-content-
requesting peer node.  

The operational flow of the delivery link thread of the con-
tent-receiving peer node is shown in Figure 5. For the content 
blocks arriving on delivery links from nodes other than the source 
node, the operation is simply to remove the content blocks from 
the link as soon as they arrive. For content blocks arriving on the 
delivery link from the source node, we put an additional con-

straint that we only remove content blocks from the delivery link 
when the receiving buffer length1 of the forward link from the 
same source node is above a certain threshold. The rationale is 
that the delivery link and the forward link are two separate TCP 
connections sharing the same network path from the source to the 
peer node. The content blocks sent through the forward link have 
higher priority, as they are to be redelivered to the other content 
receiving peers. The receiving buffer length policy guarantees that 
the bandwidth of the forward link to be at least 1/Mth of the up-
load bandwidth before the delivery link from the source node to 
the peer node is activated.  

The operational flow of a Mutualcast source node is shown 
in Figure 6. For each content block, the source node selects one of 
the distribution routes based on the status of the redistribution 
queue. The route selection is based on the following order of pri-
orities. The redistribution by a content-requesting peer node has 
the highest priority. The redistribution by a non-content-
requesting peer node has the second highest priority. The distribu-
tion directly from the source node to all the content-requesting 
peer nodes has the lowest priority.  

As shown in Figure 6, the source node first checks if there is 
space available for the content block in any TCP connection of 
the forward link from the source node to the content-requesting 
peer node. If the send buffer of one of the TCP connections is not 
full, the content block is put into that TCP buffer to be sent to the 
corresponding content-requesting peer node, which then redis-
tributes the content block to the other content-requesting peer 
nodes through the corresponding delivery links. If no space on the 
forward links to the content-requesting peer nodes can be found, 
the source node checks the forward links to the non-content-
requesting peer nodes. If space is found available on a link, the 
content block is put into the TCP buffer for the corresponding 
link. If there is still no space available even on the links to the 
non-content-requesting peer nodes, the source node pursues the 
final distribution route, and checks if there is space for one block 
available in all the delivery links to all the content-requesting peer 
nodes. Combined with the receiving buffer length policy in Figure 
5, this ensures that the bandwidth of the forward link does not get 
squeezed by the traffic of the forward link, If space is found, the 
content block is replicated and put into the delivery link to each 
content-requesting peer node.  If there is no space on any of the 
distribution routes, the source node will wait for a short amount of 
time before it will retry to find an available route for the content 
block again. 

3.5 Operational analysis of Mutualcast: role 
of the redistribution queue 

Using redistribution queues and the above operational strat-
egy for the peer and source nodes, Mutualcast handles anomalies 
such as packet loss and network congestion during content distri-
bution by adjusting the upload bandwidths of the nodes to achieve 
the maximum content distribution throughput by fully utilizing 
the upload bandwidth resources of the source and peer nodes. We 
explain the optimality of the Mutualcast in the following. 

The content blocks between any two nodes are distributed 
through a redistribution queue, which in our current implementa-
tion is a TCP connection with a certain size sending and receiving 
                                                                 
1 In socket programming, the receiving buffer length may be ob-

tained through ioctl() function call with parameter FIONREAD. 

 
Figure 4 The forward link thread of the peer node. 

 
Figure 5 The delivery link thread of the peer node. 



buffer. We notice from Section 3.4 that the Mutualcast source and 
peer nodes push as many content blocks as possible into the TCP 
connections, until the TCP sending buffer is full. The content 
blocks that are pending in the sending buffers of the TCP connec-
tions ensure that the network paths between any two peer nodes 
are fully utilized, even considering network anomalies such as 
packet loss and network congestion. If there are no packet losses, 
new content blocks will be sent to the destination peer nodes 
through the TCP connections. If there are packet losses or other 
network anomalies, TCP will try to recover from the network 
errors through retransmissions, and the content blocks that are 
pending in the TCP sending buffers will not be sent out. The con-
tent blocks that are pending in the TCP receiving buffer of the 
forward link ensures that the upload bandwidth of the correspond-
ing peer node is fully utilized. After the peer node pushes the last 
content block into the TCP sending buffer of the delivery links, it 
can retrieve the content block pending in the TCP receiving 
buffer, thus continue the activity of pushing blocks into the deliv-
ery links, and not wasting the upload bandwidth.  

In addition, the operational flows of Figure 4-6 ensure that 
the upload bandwidths of the source node and peer nodes are fully 
utilized, and the content distribution routes are selected in favor of 
the distribution through content-requesting peer nodes, then the 
distribution through non content-requesting peer nodes, and fi-
nally the direct distribution from the source node.  

When we use Mutualcast to distribute content to N1 content-
requesting peer nodes, if the upload bandwidth of the source node 
is low and the delivery links from the source to the peer nodes are 
not activated, then the content distribution throughput of Mutual-
cast will be the upload bandwidth Bs of the source node. In this 
case, the content is sent out of the source node at rate Bs, where 
the peer nodes have sufficient upload bandwidth to send content 
to all content-requesting peer nodes. Each content-requesting peer 
node is receiving content at the rate of Bs, as if the source node is 
only sending the content to it alone. If the upload bandwidth of 
the source node is high, and the delivery links from the source to 
the content-requesting peer nodes are activated, then the content 
distribution throughput of Mutualcast will be the sum of the up-
load bandwidths of the source and peer nodes, minus a small por-
tion of bandwidth wasted by sending content blocks to the non-
content-requesting peers for redelivery, all divided by the number 
N1 of content-requesting nodes. As a result, Mutualcast achieves 
the maximum content distribution throughput calculated in equa-
tion (1), no matter what the network resource (upload bandwidth) 
configuration of the network is. Mutualcast also easily adapts to 
the changes in network bandwidth through the redistribution 
queues of the TCP links. If a certain peer node slows down, the 
content blocks in its delivery links will move slowly, prompting 
the peer node to retrieve fewer content blocks from its forward 
link. This in turn causes the source node to send fewer content 
blocks to this now slowed down peer node, and to redirect the 
content blocks to other faster peer nodes. Alternatively, if a cer-
tain peer node speeds up, Mutualcast can likewise adjust by send-
ing more content blocks to it.  

3.6 Theoretical analysis of Mutualcast: 
maximizing content distribution throughput 

In this section we prove that Mutualcast is optimal for peer-
to-peer networks with constrained upload bandwidths.  Mutual-
cast achieves the maximum possible throughput in such networks; 
no other system can do better. 

Let the graph (V,E) represent the network, with V being the 
set of nodes and E being the set of links (directed edges).  Let s in 
V denote the source node and let T denote the subset in E of con-
tent-requesting nodes.  Let the remaining nodes be non-content-
requesting nodes.  Consider two types of capacities.  Let c(e) be 
the capacity of each edge e in E, and let cout(v) represent the up-
load bandwidth (output capacity) of each node v in V, such that 
for each node v, the sum of the capacities of the edges leaving v is 
at most cout(v). 

A cut between two nodes v1, v2 in V is a partition of V into 
two sets V1, V2 such that vi is in Vi, i=1,2.  The value of the cut is 
the sum of the capacities c(e) on the edges e from V1 to V2. 

It is well known that the maximum flow between s and any 
sink t in T achieves the minimum value over all cuts between s 
and t.  Let Ct be the value of the maximum flow (the maxflow) 
between s and t.  Note that Ct = Ct(c) depends on the edge capac-
ity function c:E→[0,∞). 

 
Figure 6 The operation flow of the source node. 



Definition.  The broadcast capacity between s and T is the 
minimum maxflow between s and any t in T, that is, C = mint Ct.  
Note that like Ct, C = C(c) depends on the edge capacity function 
c. 

Clearly, the broadcast capacity C is an upper bound on the 
maximum rate at which common information can be broadcast 
from s to all nodes in T.  Unfortunately, C is not achievable in 
general using multicast routing, as the example in Figure 7  illus-
trates. Although C can always be achieved using network coding 
[12], network coding requires the intermediate nodes to code, not 
merely route, their input packets to produce output packets. If 
only routing is used, the maximum throughput C0 from s to T via 
multiple multicast trees can be a factor of log N lower than C [13]. 
Moreover, determining the optimal collection of multicast trees 
(achieving C0) is NP-hard, while the tightest known bound on the 
gap between C0 and the throughput C00 ≤ C0 achievable in poly-
nomial time is relatively loose [14].  On the other hand, if there 
are no Steiner nodes in the network (a Steiner node is a node v for 
which Cv < C) then the broadcast capacity C can be simply 
achieved by greedily packing multiple multicast trees, as implied 
by Edmonds’ theorem [15]. 

Mutualcast, which is a particularly structured collection of 
multiple multicast trees, achieves the broadcast capacity C = C(c) 
for some edge capacity function c(e).  Furthermore, it achieves the 
maximum such broadcast capacity, as the following theorem 
shows. 

Theorem.  The Mutualcast throughput θ achieves the maxi-
mum possible broadcast capacity subject to the node output ca-
pacity constraints, that is, θ = maxc C(c) over all edge capacity 
functions c:E→[0,∞) such that for all nodes v, the sum of c(e) 
over all edges e leaving v is at most cout(v).  

Proof.  We have separate proofs for networks in which Bs ≤ 
Bs1 + Bs2 and networks in which Bs ≥ Bs1 + Bs2.  We prove the 
former with a cut separating s from V–s and we prove the latter 
with cuts separating V–t from t. 

First assume Bs ≤ Bs1 + Bs2.  For any edge capacity function 
c, the broadcast capacity C(c) can be at most equal to the value of 
the cut separating s from V–s.  Since this is at most Bs ≡ cout(s), we 
have maxc C(c) ≤ Bs.  Of course, a throughput θ must satisfy θ ≤ 
maxc C(c).  On the other hand, according to (1), Mutualcast 
achieves throughput θ = Bs.  Hence  θ = maxc C(c) = Bs. 

Now assume Bs ≥ Bs1 + Bs2.  For any edge capacity function 
c, the sum of c(e) over all edges entering nodes in T must be at 
least N1 times the broadcast capacity C(c).  Thus we have (denot-
ing U = V–T–s as the set of non-content-receiving nodes): 

.)()(

)()(

)()(

)()(

)(

)()(

)()(

)(
1

∑ ∑∑

∑ ∑∑ ∑

∑ ∑∑ ∑

∑ ∑

∈ ∈∈

∈ ∈∈ ∈

∈ ∈∈ ∈

∈ ∈

−≤

−=

−=

≤

Uu uIneVv
out

Uu uIneVv vOute

Uu uIneVv vIne

Tt tIne

ecvc

ecec

ecec

eccCN

 

On the other hand, from (1) we have (denoting Bv = cout(v)): 

.1
1

111
1

1

11111
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−++

−
= ∑∑∑∑

∈∈∈∈ Uu
u

Tt
ts

Uu
u

Tt
t B

N
B

N
B

N
B

N
B

N
θ

Hence 

∑∑

∑∑∑

∑∑∑∑

∈∈

∈∈∈

∈∈∈∈

−=

−++=

−
−

−++
−

=

Uu

u

Vv
out

Uu
us

Uu
u

Tt
t

Uu
u

Tt
ts

Uu
u

Tt
t

N
B

vc

B
N

BBB

B
N

B
N

BBB
N

N
N

1

1

111

1
1

)(

1

1
1

1
1

θ
 

Of course, θ ≤ maxc C(c), so N1 θ ≤ N1 maxc C(c) = N1 C(c*), 
where c* is an optimizing capacity function.  Thus 

.)(*)()(max)(
)(

11
1

∑ ∑∑∑∑
∈ ∈∈∈∈

−=≤=−
Uu uIneVv

outx
Uu

u

Vv
out ecvccCNN

N
B

vc θ  

We are done if we can show that the inequality holds with equal-
ity.  Certainly this is true if U is empty.  To show this when U is 
not empty, we argue that for each u in U, 

.)(*
)(1

∑
∈

≤
uIne

u ec
N
B  

Otherwise, any flow through u to the N1 content-receiving nodes 
would be insufficient to use up the upload bandwidth Bu, whence 
we could achieve a higher throughput by re-allocating some ca-
pacity from edges between s and T to edges between s and U.  □ 

Corollary.  In a file download scenario, Mutualcast mini-
mizes the maximum download time experienced by any content-
receiving peer node, and in a streaming media scenario, Mutual-
cast maximizes the minimum quality experienced by any content-
receiving peer node. 

Thus Mutualcast is ideal in situations where a distributed 
group of friends wishes to experience downloaded or streamed 
content at the same time with the same quality.  

3.7 Mutualcast: throughput under download 
bandwidth or link bandwidth constraints 

The above sections assume that the only bottleneck in Mutu-
alcast is the upload bandwidths of the peer nodes. Here we give a 
brief discussion on the Mutualcast throughput under link band-
width or download bandwidth constraints.  

Consider a peer node i with upload bandwidth Bu
i. Let its 

link bandwidth to the content-receiving peer node j be Bl
ij, 

j=0,…,M-1, where M is the number of content-receiving nodes 
other than itself. The link bandwidth between node i and j will not 
be the bottleneck as long as:  

 / MBB i
u

ij
l ≥  

If the above inequality is not satisfied, the upload bandwidth of 
node i cannot be fully utilized in the current Mutualcast scheme. 
The effective upload bandwidth of node i becomes:  

 min' ij
l

j
i

u BMB = . 

This effective upload bandwidth can be used in equation (1) to 
obtain the new Mutualcast throughput.  

When a content-receiving peer node has download band-
width less than the throughput given in equation (1) (which is 
based only on the upload bandwidths), such a node will also be a 
bottleneck of Mutualcast. In such scenario, the overall Mutualcast 
throughput will be the minimum download bandwidth of all the 
content-receiving peer nodes. This is because all nodes have to 
wait for the slowest node to finish before they can resume deliv-
ery.  

 
Figure 7  Edges have unit capacity.  Broadcast capacity is two 
units.  Multicast can achieve only one unit of throughput. 



An alternative strategy to the current Mutualcast implementa-
tion is to let the slow peer nodes skip certain content blocks, so 
that they will not slow down the receiving operation of the re-
maining peer nodes, so that they can still proceed at full speed. In 
a file download scenario, the slow peer nodes may be able to re-
ceive the skipped content after all the remaining nodes have fin-
ished downloading. In a streaming media scenario, the slow peer 
nodes may be able to receive their content with lower quality, if 
layered media coding is used. In comparison to the alternative 
approach, the current Mutualcast implementation maximizes the 
throughput of common information to all content-receiving peer 
nodes.  It maximizes the minimum quality experienced by any 
content-receiving peer node in a streaming media scenario, or 
minimizes the maximum download time experienced by any con-
tent-receiving peer node in a file download scenario (for example, 
if a distributed group of friends wishes to experience downloaded 
or streamed content at the same time with the same quality).  If 
this is not an objective, but rather it is permissible for fast nodes 
to have higher throughput than slow nodes, then the alternative 
solution may be preferable to the current Mutualcast implementa-
tion. 

4. EXPERIMENTAL RESULTS 
A Mutualcast file distribution solution has been imple-

mented. The solution includes a sender module run by the source 
node and a receiver module run by each of the peer nodes. To 
verify the performance of Mutualcast, we setup a Mutualcast con-
tent delivery network with one source node and four content-
receiving peer nodes. A media file of size around 1MB is then 
distributed from the source node to all the peer nodes. We meas-
ure the actual throughput by dividing the distribution file size by 
the time it took Mutualcast to distribute the file. We then compare 
the theoretical broadcast capacity of the Mutualcast network ver-
sus the actual throughput under a variety of upload bandwidth 
configurations of the source node and peer nodes. The results are 
shown in Table 2.    

With just the simple implementation of the Mutualcast 
sender and receiver components of Figure 4-6, the actual Mutual-
cast throughput is remarkably close to the analytical broadcast 
capacity of the peer-to-peer network. 

Table 2 The throughput of content distribution: the analytical 
broadcast capacity vs. actual Mutualcast throughput 

No.  Upload Bandwidths (kbps) Throughput (kbps)  
 s t1 t2 t3 t4 Analytical Mutualcast 

1 500 1000 1000 750 500 500 500.08 
2 1000 1000 1000 750 500 1000 999.43 
3 500 250 1000 750 500 500 499.95 
4 1000 750 1000 750 500 1000 1001.2 

5. CONCLUSIONS 
A simple yet flexible content distribution approach called 

Mutualcast is developed in the paper. Mutualcast splits the to-be-
distributed content into many small blocks, and assigns the distri-
bution of each content block to a single node, which can be a 
content-requesting node, a non-content-requesting node or the 
source node. Nodes with more upload bandwidth can distribute 
more blocks, and nodes with less upload bandwidth can distribute 
fewer blocks. TCP connections with their sending and receiving 

buffers are used by Mutualcast to control the throughput of the 
distribution, and ensure that the upload bandwidths of the all the 
peer nodes and source node are fully utilized even with network 
anomalies such as packet losses and delivery jitters. Though sim-
ple, Mutualcast achieves the broadcast capacity of the peer-to-
peer network.  

6. REFERENCES 
[1] “Internet protocol multicast”, ch 43 of Internetworking 
Technology Handbook, http://www.cisco.com/univercd/cc/td/doc/ 
cisintwk/ito_doc/index.htm. 
[2] Y. Chawathe, “Scattercast: an architecture for internet broad-
cast distribution as an infrastructure service”. PhD thesis, Univer-
sity of California, Berkeley, August 2000. 
[3] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, 
and J. W. O'Toole Jr., “Overcast: reliable multicasting with an 
overlay network”. In Proc. of the Fourth Symposium on Operat-
ing System Design and Implementation (OSDI), October 2000. 
[4] Y. Hua Chu, S. Rao, H. Zhang, “A case for end system mul-
ticast”, In Proc.  of Sigmetrics 2000, Santa Clara, CA, June 2000. 
[5] V. N. Padmanabhan and K. Sripanidkulchai, “The Case for 
Cooperative Networking”, In Proc.  of the First International 
Workshop on Peer-to-Peer Systems (IPTPS), Cambridge, MA, 
USA, March 2002. 
[6] M. Castro, P. Druschel, A-M. Kermarrec, A. Nandi, A. Row-
stron and A. Singh, "SplitStream: High-bandwidth content distri-
bution in a cooperative environment", In Proc.  of the Interna-
tional Workshop on Peer-to-Peer Systems, Berkeley, CA, Febru-
ary, 2003. 
[7] A. Rowstron and P. Druschel, "Pastry: scalable, distributed 
object location and routing for large-scale peer-to-peer systems",   
In Proc. of IFIP/ACM International Conference on Distributed 
Systems Platforms (Middleware), Heidelberg, Germany, pages 
329-350, November, 2001. 
[8] L. Cherkasova and J. Lee, “FastReplica: Efficient Large File 
Distribution within Content Delivery Networks”, In Proc. of the 
4-th USENIX Symposium on Internet Technologies and Systems, 
Seattle, Washington, March 26-28, 2003. 
[9] D. Kostic, A. Rodriguez, J. Albrecht, A. Vahdat, “Bullet: 
High Bandwidth Data Dissemination Using an Overlay Mesh”, In 
Proc. 19th ACM Symposium on Operating Systems Principles, 
October 19-22, 2003, the Sagamore, New York. 
[10] B. Cohen, “Incentives build robustness in BitTorrent”, 
http://bitconjurer.org/BitTorrent/bittorrentecon.pdf . 
[11] S. B. Wicker, V. K. Bhargava, Reed-Solomon Codes and 
their Applications, IEEE Press, New York, 1994. 
[12] R. Alswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network 
information flow,” IEEE Trans. Information Theory, Vol 46, No. 
4, pp. 1204-1216, July 2000. 
[13] S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. 
Jain, and L. Tolhuizen, “Polynomial time algorithms for network 
code construction,” submitted to IEEE Trans. Information The-
ory. 
[14] K. Jain, M. Mahdian, and M. R. Salavatipour, “Packing 
Steiner trees,” 14th ACM-SIAM Symp. Discrete Algorithms 
(SODA), 2003. 
[15] J. Edmonds, “Edge-disjoint branchings,” in Combinatorial 
Algorithms, R. Rustin, ed., pp. 91-96, Academic Press, NY, 1973. 



 


