
Troubleshooting Multihop Wireless Networks

Lili Qiu, Paramvir Bahl, Ananth Rao, and Lidong Zhou

Updated November 2004

Technical Report
MSR-TR-2004-11

Effective network troubleshooting is critical for maintaining efficient and reliable network operation. Troubleshooting is especially chal-
lenging in multi-hop wireless networks because the behavior of such networks depends on complicated interactions between many un-
predictable factors such as RF noise, signal propagation, node interference, and traffic flows. In this paper we propose a new direction
for research on fault diagnosis in wireless networks. Specifically, we present a diagnostic system that employs on-line trace-driven sim-
ulations to detect faults and perform root cause analysis. We apply this approach to diagnose performance problems caused by packet
dropping, link congestion, external noise, and MAC misbehavior. In a 25 node multihop wireless network, we are able to diagnose over
10 simultaneous faults of multiple types with more than 80% coverage. Our framework is general enough for a wide variety of wireless
and wired networks.

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052
http://www.research.microsoft.com

1. INTRODUCTION
Network management in multihop wireless networks is a necessary

ingredient for providing high-quality, reliable communications among
the networked nodes. Unfortunately, it has received little attention until
now. In this paper, we focus on network troubleshooting, the component
of network management responsible for maintaining the “health” of the
network and ensuring its smooth and continued operation [16].

Troubleshooting a network, may it be wired or wireless, is a difficult
problem. This is because of complex interactions between many differ-
ent network entities and between faults that occur in the different parts
of the network. Troubleshooting a multihop wireless network is even
more difficult because:

• In wireless networks, signal propagation is affected by fluctuat-
ing environmental conditions. Signal variations make network
links unpredictable and unreliable causing the network topology
to change rapidly and frequently. These changes impact protocol
and application behavior.

• Multihop wireless networks have limited capacity. Scarcity of re-
sources such as bandwidth and energy puts tight constraints on
the amount of management traffic the network can tolerate. The
tradeoff between performance improvement because of manage-
ment and performance degradation because of control overhead
requires careful attention.

To address these challenges, we propose a novel troubleshooting frame-
work that integrates a network simulator into the management system for
detecting and diagnosing faults occurring in an operational network. We
collect traces; we clean them; and then we use them to recreate in the
simulator the events that took place inside the real network.

For our system to work, we must solve two problems: (i) accurately
reproduce inside the simulator what just happened in the operational net-
work; and (ii) use the simulator to perform fault detection and diagnoses.

We address the first problem by taking an existing network simulator
(e.g., Qualnet [37], a commercially available packet-level network sim-
ulator) and identify the traces to drive it with. (Note: although we use
Qualnet in our study, our technique is equally applicable to other net-
work simulators, such as ns-2 [30], OPNET [32] etc.). We concentrate
on physical and link layer traces, including received signal strength, and
packet transmission and retransmission counts. We replace the lower
two networking layers in the simulator with these traces to remove the
dependency on generic theoretical models that do not capture the nu-
ances of the hardware, software, and radio frequency (RF) environment.

We address the second problem with a new fault diagnosis scheme
that works as follows: the performance data emitted by the trace-driven
simulator is considered to be the expected baseline (“normal”) behavior
of the network and any significant deviation indicates a potential fault.
When a network problem is reported/suspected, we selectively inject a
set of possible faults into the simulator and observe their effect. The fault
diagnosis problem is therefore reduced to efficiently searching for the
set of faults which, when injected into the simulator, produce network
performance that matches the observed performance. This approach is
significantly different from the traditional signature based fault detection
schemes.

Our system has the following three benefits. First, it is flexible. Since
the simulator is customizable, we can apply our fault detection and diag-
nosis methodology to a large class of networks operating under different
environments. Second, it is robust. We are able to capture complicated
interactions within the network and between the network and the envi-
ronment, as well as among the different faults. This allows us to sys-
tematically diagnose a wide range and combination of faults. Third, it
is extensible. New faults are handled independently of the other faults
as the interaction between the faults is captured implicitly by the simu-
lator.

We have successfully applied our system to detect and diagnose per-
formance problems that arise from the following four faults:

• Packet dropping. This may be intentional or may occur because
of hardware and/or software failure in the networked nodes. We
care about persistent packet dropping.

• Link congestion. If the performance degradation is because of too
much traffic on the link, we want to be able to identify this.

• External noise sources. RF devices may disrupt on-going network
communications. We concern ourselves with noise sources that
cause sustained and/or frequent performance degradation.

• MAC misbehavior. This may occur because of hardware or firmware
bugs in the network adapter. Alternatively, it may be due to ma-
licious behavior where a node deliberately tries to use more than
its share of the wireless medium.

These faults are more difficult to detect than fail-stop errors (e.g., a
node turns itself off due to power or battery outage), and they have rela-
tively long lasting impact on performance, In this paper, we focus only
on identifying the faults, and not on the corrective actions one might
take.

We demonstrate our systems ability to detect random packet dropping
and link congestion in a small multihop IEEE 802.11a network. We
demonstrate detection of external noise and MAC misbehavior via sim-
ulations because injecting these faults into the testbed in a controllable
manner is difficult. In a 25 node multihop network, we find that our trou-
bleshooting system can diagnose over 10 simultaneous faults of multiple
types with more than 80% coverage and very few false positives.

To summarize, the primary contribution of our paper is to show that
a trace-driven simulator can be used as a real-time analytical tool in
a network management system for detecting, isolating, and diagnosing
faults in an operational multihop wireless network. To the best of our
knowledge, we are the first to propose and evaluate such a system. In
the context of this system, we make the following three contributions:

• We identify traces that allow a simulator to mimic the multihop
wireless network being diagnosed.

• We present a generic technique to eliminate erroneous trace data.

• We describe an efficient search algorithm and demonstrate its ef-
fectiveness in diagnosing multiple network faults.

The rest of this paper is organized as follows. We describe the moti-
vation for this research and give a high-level description of our system
in Section 2. We discuss system design rationale in Section 3. We show
the feasibility of using a simulator as a real-time diagnostic tool in Sec-
tion 4. In Section 5, we present fault diagnosis. In Section 6, we describe
the prototype of our network monitoring and management system. We
evaluate the overhead and effectiveness of our approach in Section 7,
and discuss its limitations and future research challenges in Section 8.
We survey related work in Section 9, and conclude in Section 10.

2. SYSTEM OVERVIEW
There is widespread grassroots interest in community and rural-area

wireless mesh networks [3, 17]. Mesh networks enable applications like
Internet gateway sharing [11, 2], local content sharing, gaming etc. They
grow organically as users buy and install equipment [38], but they often
lack centralized network management. Therefore, self-management and
self-healing capabilities as envisioned in [16], are key to the long-term
survival of these networks. It is this vision that inspires us to research
network troubleshooting in multihop wireless networks.

Our management system consists of two distinct software modules.
An agent, that runs on every node, gathers information from various
protocol layers and the wireless network card. It reports this information
to a management server, calledmanager. The manager analyzes the data
and takes appropriate actions. The manager may run on a single node
(centralized architecture), or may run on a set of nodes (decentralized
architecture) [41].

Figure 1: Troubleshooting process

Our three-step troubleshooting process is illustrated in Figure 1. The
process starts by agents continuously collecting and transmitting their
(local) view of the network’s behavior to the manager(s). Examples
of the information sent include traffic statistics, received packet signal
strength on various links, and re-transmission counts on each link.

It is possible that the data the manager receives from the various
agents results in an inconsistent view of the network. Such inconsis-
tencies could be the result of topological and environmental changes,
measurement errors, or misbehaving nodes. TheData Cleaningmodule
of the manager resolves inconsistencies before engaging the analysis
model.

���������

��	
���

�����	���

������

���������

�������������	��

���

������������	���

�����������	

����	�

���� 	���

�

!

�

�

"

�

#

�

!

$

"

�

�

������������	��

�����������	

!����

��	
����

	�������

%�	��&���� �

%�'� 	���

!����

(����)�����)�����	*

Figure 2: Root cause analysis module

After the inconsistencies have been resolved, the cleaned trace data is
fed into the root-cause analysis module which contains a modified net-
work simulator (see Figure 2). The analysis module drives the simulator
with the cleaned trace data and establish the expected normal perfor-
mance for the given network configuration and traffic patterns. Faults
are detected when the expected performance does not match the ob-
served performance. Root cause for the discrepancy is determined by
efficiently searching for the set of faults that results in the best match
between the simulated and observed network performance.

3. DESIGN RATIONALE
A wireless network is a complex system with many inter-dependent

factors that affect its behavior. The factors include traffic flows, network-
ing protocols, signal processing algorithms, hardware, RF propagation
and, most importantly, the interactions between these impacts behavior.
Additionally, network performance is also influenced by the interaction
between nodes and external noise sources. We know of no heuristic
or theoretical technique that captures these interactions and explains the
behavior of such networks. In contrast, a high quality simulator provides
valuable insights on what is happening inside the network.

As an example, consider a 7 * 3 grid topology network shown in Fig-
ure 3. Assume there are 5 long-lived flowsF1, F2, F3, F4 andF5 in the

F1 F2 F3 F4 F5

2.50 Mbps 0.23 Mbps 2.09 Mbps 0.17 Mbps 2.55 Mbps

Table 1: Throughput of 5 competing flows in Figure 3

network, each with the same amount of traffic to communicate. All ad-
jacent nodes can hear one another and the interference range is twice the
communication range. The traffic between nodes A & O interferes with
the traffic between nodes C & Q, and similarly traffic between nodes G
& U interferes with the traffic between nodes E & S. However, neither
traffic between G & U nor traffic between A & O interferes with traffic
between D & R. Table 1 shows the throughput of the flows when each
flow sends CBR traffic at a rate of 11 Mbps. As we can see, the flowF3

receives much higher throughput than the flowsF2 andF4.
A simple heuristic may lead the manager to conclude that flowF3

is unduly getting a larger share of the bandwidth, whereas an on-line
trace-driven simulation will conclude that this is normal behavior. This
is because the simulation takes into account the traffic flows and link
quality, and based on the reported noise level it determines that flows
F1 andF5 are interfering with flowsF2 andF4, therefore allowingF3

a open channel more often. Thus, the fact thatF3 is getting a greater
share of the bandwidth will not be flagged as a fault by the simulator.

Figure 3: The flow F3 gets a much higher share of the bandwidth
than the flows F2 and F4, even though all the flows have the same
application-level sending rate. A simple heuristic may conclude that
nodes D and R are misbehaving, whereas simulation can correctly
determine the observed throughput is expected.

Consequently, a good simulator is able to advise the manager on what
constitutes normal behavior. When the observed behavior is different
from what is determined to be normal, the manager can invoke the fault
search algorithms to determine the reasons for the deviation.

In addition, while it might be possible to apply traditional signature-
based or rule-based fault diagnosis approach to a particular type of net-
work under a specific environment and configuration, simple signatures
or rules do not capture the intrinsic complexity of fault diagnosis in gen-
eral settings. In contrast, a simulator is customizable and with appro-
pritate parameter settings, it can be applied to a large class of networks
under different environments. Fault diagnosis built on top of such a sim-
ulator inherits its generality.

Finally, recent advances in simulators for multihop wireless networks,
as evidenced in products such as Qualnet, have made the use of a simula-
tor for real-time on-line analysis a reality. This is especially true for the
relatively small-scale multihop wireless networks, up to a few hundred
nodes, that we intend to manage.

4. SIMULATOR ACCURACY
We now turn our attention to the following question: “Can we build a

fault diagnosis system using on-line simulations as the core tool?” The
answer to the question cuts to the heart of our work. The viability of our
system hinges on the accuracy with which the simulator can reproduce
observed network behavior.

To answer this question, we quantify the challenge in matching the
behavior of the network link layer and RF propagation. We then evaluate

the accuracy of trace-driven simulation. Finally we study how frequently
the system needs to the adapt.

4.1 Physical Layer Discrepancies
Factors such as variability of hardware performance, RF environmen-

tal conditions, and presence of obstacles make it difficult for simulators
to model wireless networks accurately [25]. To illustrate this problem,
we conduct a simple experiment as follows.

We study the variation of received signal strength (RSS) with respect
to distance for a variety of IEEE 802.11a cards (Cisco AIR-CB20A,
Proxim Orinoco 8480-WD, and Netgear WAG511), and plot the results
in Figure 4. The experiments are conducted inside a building with walls
separating offices every 10 feet. As the distance increases, the number
of walls (obstacles) between the two laptops also increases. The sig-
nal strength measurements are obtained using the wireless research API
(WRAPI) [45]. For comparison, we also plot the RSS computed using
the two-ray propagation model available in Qualnet [37]. This model is
based solely on distance.

Note that the theoretical model does not estimate the RSS accurately.
This is because it fails to take into account signal reflections from sur-
rounding walls. Accurate modeling and prediction of wireless condi-
tions is a hard problem to solve in its full generality but by replacing
theoretical models with data obtained from the network we are able to
significantly improve network performance estimation.

-90

-85

-80

-75

-70

-65

-60

-55

-50

-45

-40

-35

 0 1 2 3 4

S
ig

n
al

 S
tr

en
g

th

Number of Walls

Qualnet - 2 ray
Cisco 20mW

Cisco 5mW
Netgear
Proxim

Figure 4: Comparing the simulator’s two-ray RF wave propagation
model for received signal strength with measurements taken from
IEEE 802.11a WLAN cards from different hardware vendors.

In addition to the challenge of accurately modeling the physical layer
and RF propagation, traffic demands from networked nodes are hard to
predict. Fortunately, for the purpose of fault diagnosis, it is not necessary
to have predictive models, and is sufficient to simulate what happened in
the networkafter the fact. To do this, we require agents to periodically
report information about the link conditions and traffic patterns to the
manager. This information is processed and fed into the simulator. This
approach overcomes the known limitations of RF propagation and traffic
modeling in simulators in the context of fault diagnosis.

4.2 Baseline Comparison
Next we compare the performance of a real network to that of a sim-

ulator for a few simple baseline cases. We design a set of experiments
to quantify the accuracy of simulating the overhead of the protocol stack
as well as the effect of RF interference. The experiments are for the
following scenarios:

1. A single one-hop UDP flow (1-hop flow)

2. Two UDP flows within communication range (2 flows - CR)

3. Two UDP flows within interference range (2 flows - IR)

4. One UDP flow with 2 hops where the source and destination are
within communication range. We enforce the 2-hop route using
static routing. (2-hop flow -CR)

5. One UDP flow with 2 hops where the source and destination are
within interference range but not within communication range. (2-
hop flow -IR)

All the throughput measurements are done using Netgear WAG511
cards and Figure 5 summarizes the results. Interestingly, in all cases the
throughput from simulations are close to the real measurements. Case
(1) shows that Qualnet simulator models the overheads of the protocol
stack, such as parity bits, MAC-layer back-off, IEEE 802.11 inter-frame
spacing and ACK, and headers accurately. The other scenarios show that
the simulator accurately takes into account contention from flows within
the interference and communication ranges.

0

5

10

15

20

25

1-hop flow 2 flows (CR) 2 flows (IR) 2-hop flow
(CR)

2-hop flow
(IR)

U
D

P
 T

h
ro

u
g

h
p

u
t

(M
b

p
s)

simulation real

Figure 5: Estimated throughput from the simulator matches mea-
sured throughput in a real network when the RF condition of the
links is good.

In the scenarios above, data are sent on high-quality wireless links,
and almost never gets lost due to low signal strength. In our next exper-
iment, we study how RSS affects throughput. We vary the number of
walls between the sender and receiver, and plot the UDP throughput for
varying packet sizes in Figure 6.

0

5

10

15

20

25

0 500 1000

UDP packet size (bytes)

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

simulation 0 wall 1 wall
2 walls 3 walls 4 walls

Figure 6: Estimated throughput matches with measured through-
put when the RF condition of the links is good, and deviates when
the RF condition of the links is poor (1-hop connection).

When the signal quality is good (e.g., when there are fewer than 4
walls in between), the throughput measured matches closely with the
estimate from the simulator.

When the signal strength is poor, e.g., when 4 or more walls separate
the two laptops, the throughput estimated by the simulator deviates from
real measurements. The deviation occurs because the simulator does not
take into account the following two factors:

walls loss rate measured throughput simulated throughput
4 11.0% 15.52 Mbps 15.94 Mbps
5 7.01% 12.56 Mbps 14.01 Mbps
6 3.42% 12.97 Mbps 11.55 Mbps

Table 2: Estimated and measured throughput match, when we com-
pensate the loss rates due to poor RF in the real measurements by
seeding the corresponding link in a simulator with an equivalent loss
rate.

• Accurate packet loss as a function of packet-size, RSS, and am-
bient noise. This function depends on the signal processing hard-
ware and the RF antenna within the wireless card.

• Accurate auto-rate control. On observing a large number of packet
retransmissions at the MAC layer, many WLAN cards adjust their
sending rate to something that is more appropriate for the condi-
tions. The exact details of the algorithm used to determine a good
sending rate differ from cards to cards.

Of the two factors mentioned above, the latter can be taken care of
as follows. If auto-rate is in use, we again employ trace-driven sim-
ulation as follows: we monitor the rate at which the wireless card is
operating, and provide it to the simulator (instead of having the sim-
ulator adapt in its own way). When auto-rate is not used (e.g., other
researchers [10] have shown that auto-rate is undesirable when consid-
ering aggregate performance and therefore it should be turned off), the
data rate is known.

The first issue is much harder to address because it may not be pos-
sible to accurately simulate the physical layer. One possible way to ad-
dress this issue is through offline analysis. We calibrate the wireless
cards under different scenarios and create a database to associate envi-
ronmental factors with expected performance. For example, we carry
out real measurements under different signal strengths and noise levels
to create a mapping from signal strength and noise to loss rate. Us-
ing such a table in simulations allows us to distinguish between losses
caused by collisions from losses caused by poor RF conditions. We
evaluate the feasibility of this approach by computing the correlation
coefficient between RSS and loss rates when the sending rate remains
the same. We find the correlation coefficient ranges from -0.95 to -0.8.
The high correlation suggests that it is feasible to estimate loss caused
by poor RF conditions.1

Based on this idea, in our experiment we collect another set of traces
in which we slowly send out packets so that most losses are caused by
poor signal (instead of congestion). We also place packet sniffers near
both the sender and receiver, and derive the loss rate from the packet-
level trace. Then we take into the account the loss rate due to poor
signal by seeding the wireless link in a simulator with a Bernoulli loss
rate that matches the loss rate in real traces.

We find that after taking into account the impact of poor signal, the
throughput from simulation matches closely with real measurements as
shown in Table 2. Note that the loss rate and measured throughput do
not monotonically decrease with the signal strength due to the effect of
auto-rate, i.e., when the data rate decreases as a result of poor signal
strength, the loss rate improves. (The driver of the wireless cards we
use does not allow us to disable auto-rate.) Note that even though the
match is not perfect, we do not expect this to be a problem in practice
1Some researchers [5] report weak correlation between RSS and loss
rates. They attribute multipath as the major reasons for packet loss. The
difference between our finding and theirs is that they use RSS values
reported by the receiver, whereas we use RSS reported by airopeek [7]
running on a separate machine next to the receiver. Using RSS from the
receiver introduces bias since RSS of corrupted packets is not available;
in comparison, airopeek reports RSS for both received and corrupted
packets, and the effects of multipath are reflected by the reported RSS
values. A simple driver hack allows us to get the RSS value for corrupted
packets.

because several routing protocols try to avoid the use of poor quality
links by employing some appropriate routing metrics (e.g., ETX [18],
ETT [33]).

4.3 Stability of Channel Conditions
So far, we have shown that with the help of trace collection a simula-

tor is able to mimic reality. However, one question remains: how rapidly
do conditions change and how often do we collect a trace? When the
channel conditions are fluctuating very rapidly, collecting an accurate
trace and shipping the trace to the manager may be difficult and costly.
Figure 7 shows the temporal fluctuation in RSS over 10 minutes under
the same measurement setup as described above. As expected, the RSS
fluctuates over time. Fortunately, from our diagnosis perspective, the
magnitude of the fluctuation is not significant, and the relative quality of
the signals across different numbers of walls remains stable. This sug-
gests that the environment is generally static, and the nodes may report
only the average and standard deviation of the RSS to the manager every
few minutes (e.g., 1 - 5 minutes).

���

���

���

���

���

���

�	�

 ���
 ���
 ���
 ���

���

���

���

��������	

�

�
�
�
��

��
�
�
�
��
��
�
�
�
�

�

������

�������

��������

��������

	�������

Figure 7: In good environmental conditions, received signal strength
remains stable over time.

4.4 Remarks
In this section, we have shown that even though simulating a wireless

network accurately is a hard problem, for the purpose of fault diagnosis,
we can use trace-based simulations to reproduce what happened in the
real network, after the fact. To substantiate this claim, we look at a
number of simple scenarios and show that the throughput obtained from
the simulator matches reality after taking into account information from
real traces. We require only a small amount of data collected at the
nodes, at a fairly low time-granularity.

5. FAULT ISOLATION AND DIAGNOSIS
We now present our simulation-based diagnosis approach. Our high-

level idea is to re-create the environment that resembles the real network
inside a simulator. To find the root cause, wesearch over a fault space
to determine which fault or set of faults can re-produce performance
similar to what has been observed in the real network.

In Section 5.1 we extend the trace-driven simulation ideas presented
in Section 4 to reproduce network topology and traffic pattern observed
in the real network.

Using trace-driven simulation as a building block, we then develop
a diagnosis algorithm to find root-causes for faults. The algorithm first
establishes the expected performance under a given set of faults. Then
based on the difference between the expected and observed performance,
it efficiently searches over the fault space to re-produce the observed
symptoms. This algorithm can not only diagnose multiple faults of the
same type, but also perform well in the presence of multiple types of
faults.

Finally we address the issue of how to diagnose faults when the trace
data used to drive simulation contains errors. This is a practical prob-
lem since data in the real world is never perfect for a variety of rea-
sons, such as measurement errors, nodes supplying false information,

and software/hardware errors. To this end, we develop a technique to
effectively eliminate erroneous data from the trace so that we can use
good quality trace data to drive simulation-based fault diagnosis.

5.1 Trace-Driven Simulation
Taking advantage of trace data enables us to accurately capture the

current environment and examine the effects of a given set of faults in
the current network.

5.1.1 Trace Data Collection
We collect the following sets of data as input to a simulator for fault

diagnosis:

• Network topology: Each node reports its neighbors. To be effi-
cient, only changes in the set of neighbors are reported.

• Traffic statistics: Each node maintains counters for the volume of
traffic sent to and received from its immediate neighbors. This
data drives traffic simulation described in Section5.1.2.

• Physical medium: Each node reports its noise level and the signal
strength of the wireless links from its neighbors. According to
the traces collected from our testbed, we observe that the signal
strength is relatively stable over tens of seconds. Slight variations
in signal strength with time can be captured accurately through the
time average, standard deviation, and other statistical aggregates.

• Network performance: To detect anomalies, we compare the ob-
served network performance with the expected performance from
simulation. Network performance includes both link performance
and end-to-end performance, both of which can be measured through
a variety of metrics, such as packet loss rate, delay, and through-
put. In our work, we focus on link level performance.

Data collection consists of two steps: collecting raw performance data
at a local node and distributing the data to collection points for analy-
sis. For local data collection, we can use a variety of tools, such as
WRAPI [45], Native 802.11 [28], SNMP [14], and packet sniffers (e.g.,
Airopeek [7], tcpdump [43]).

Distributing the data to a manager introduces overhead. In Section 7.1,
we quantify this overhead, and show it is low and has little impact on
the data traffic in the network. Moreover, it is possible to further reduce
the overhead using compression, delta encoding, multicast, and adaptive
changes of the time scale and spatial scope of distribution. For exam-
ple, in the normal situation, a minimum set of information is collected
and exchanged. Once the need arises for more thorough monitoring
(e.g., when the information being collected indicates anomaly), then the
manager requests more information and increases the frequency of data
collection for the subset of the nodes that require intensive monitoring.

5.1.2 Simulation Methodology
We classify the characteristics of the network that need to be matched

in the simulator into the following three categories: (i) traffic load, (ii)
wireless signal, and (iii) faults. Below we describe how to simulate each
of these components.

Traffic Load Simulation: A key step in replicating the real network
inside a simulator is to re-create the same traffic pattern. One approach
is to simulate end-to-end application demands. However, there can be
potentiallyN ∗N demands for anN -node network. Moreover, given the
heterogeneity of application demands and the use of different transport
protocols, such as TCP, UDP, and RTP, it is challenging to obtain end-
to-end demands.

For scalability and to avoid the need for obtaining end-to-end de-
mands and routing information, we use link-based traffic simulation.
Our high-level idea is to adjust application-level sending rate at each link
to match the observed link-level traffic counts. Doing this abstracts away

higher layers such as the transport and the application layer, and allows
us to concentrate only on packet size and traffic rate. However, match-
ing the sending rate on a per-link basis in the simulator is non-trivial
because we can only adjust the application-level sending rate, and have
to obey the medium access control (MAC) protocol. This implies that
we cannot directly control sending rate on a link. For example, when we
set the application sending rate of a link to be 1 Mbps, the actual sending
rate (on the air) can be lower due to back-off at the MAC layer, or higher
due to MAC level retransmission. The issue is further complicated by
interference, which introduces inter-dependency between sending rates
on different links.

To address this issue, we use the followingiterative searchto deter-
mine the sending rate at each link. There are at least two search strate-
gies: (i) multiplicative increase and multiplicative decrease, and (ii) ad-
ditive increase and additive decrease. As shown in Figure 8, each link
individually tries to reduce the difference between the current sending
rate in the simulator and the actual sending rate in the real network. The
process iterates until either the rate becomes close enough to the target
rate (denoted astargetMacSent) or the maximum number of iterations
is reached. We introduce a parameterα, whereα ≤ 1, to dampen oscil-
lation. In our evaluation, we useα = 0.5 for i ≤ 20, and 1

i
for i > 20.

This satisfies
∑

i αi → ∞, andαi → 0 asi → ∞, and ensures con-
vergence. Our evaluation uses multiplicative increase and multiplicative
decrease, and we plan to compare it with additive increase and additive
decrease in the future.

while (not converged andi < maxIterations)
i = i + 1;
if (option == multiplicative)

foreach link(j)
prevRatio = targetMacSent(j)/simMacSent(j);
currRatio = (1 − α) + α ∗ prevRatio;
simAppSent(j) = prevAppSent(j) ∗ currRatio;

else // additive
foreach link(j)

diff = targetMacSent(j)− prevMacSent(j);
simAppSent(j) = prevAppSent(j) + α ∗ diff ;

run simulation usingsimAppSent as input
determinesimMacSent for all links from simulation results
converged = isConverge(simMacSent, targetMacSent)

Figure 8: Searching for the application-level sending rate using ei-
ther multiplicative increase, multiplicative decrease or additive in-
crease additive decrease.

Wireless Signal:Signal strength has a very important impact on wire-
less network performance. As discussed in Section 4, due to variations
across different wireless cards and environments, it is hard to come up
with a general propagation model to capture all the factors. To address
this issue, we drive simulation using the real measurement of signal
strength and noise, which can be easily obtained using newer genera-
tion wireless cards (e.g., Native 802.11 [28]).

Fault Injection: To examine the impact of faults on the network, we
implement the ability to inject different types of faults into the simulator,
namely (i) packet dropping at hosts, (ii) external noise sources, and (iii)
MAC misbehavior [31].

• Packet dropping at hosts: a misbehaving node drops some traf-
fic from one or more neighbors. This can occur due to hard-
ware/software errors, buffer overflow, and/or malicious drops. The
ability to detect such end-host packet dropping is useful, since it
allows us to differentiate losses caused by end hosts from losses
caused by the network.

• External noise sources: we support the ability to inject external
noise sources in the network.

• MAC misbehavior: a faulty node does not follow the MAC eti-
quette and obtains an unfair share of the channel bandwidth. For

example, in IEEE 802.11 [31], a faulty node can choose a smaller
contention window (CW) to send traffic more aggressively [26].

In addition, we also generate link congestion by putting a high load on
the network. Unlike the other types of faults, link congestion is implic-
itly captured by the traffic statistics gathered from each node. Therefore
trace-driven simulation can directly assess the impact of link congestion.
For the other three types of faults, we apply the algorithm described in
Section 5.2 to diagnose them.

5.2 Fault Diagnosis Algorithm
We now describe an algorithm to systematically diagnose root causes

for failures and performance problems.
General approach: Applying simulations to fault diagnosis enables

us to reduce the original diagnosis problem to the problem of searching
for a set of faults such that their injection results in an expected perfor-
mance that matches well with observed performance. More formally,
given a network settings,NS , our goal is to findFaultSet such that
SimPerf (NS ,FaultSet) ≈ ObservedPerf , where the performance is
a function value, which can be quantified using different metrics. It is
clear that the search space is high-dimensional due to many combina-
tions of faults. To make the search efficient, we take advantage of the
fact that different types of faults often change one or few metrics. For
example, packet dropping at hosts only affects link loss rate, but not
the other metrics. Therefore we can use the metrics in which the ob-
served and expected performance have significant difference to guide
our search. Below we introduce our algorithm.

Initial diagnosis: We start by considering a simple case where all
faults are of the same type, and the faults do not have strong interactions.
We will later extend the algorithm to handle more general cases, where
we have multiple types of faults, or faults that interact with each other.

For ease of description, we use the following three types of faults as
examples: packet dropping at hosts, external noise, and MAC misbehav-
ior, but the same methodology can be extended to handle other types of
faults once the symptoms of the fault are identified.

As shown in Figure 9, we use trace-driven simulation, fed with cur-
rent network settings, to establish the expected performance. Based on
the difference between the expected performance and observed perfor-
mance, we first determine the type of faults using a decision tree as
shown in Figure 10. Due to many factors, simulated performance is
unlikely to be identical with the observed performance even in the ab-
sence of faults. Therefore we conclude that there are anomalies only
when the difference exceeds a threshold. The fault classification scheme
takes advantage of the fact that different faults exhibit different behav-
iors. While their behaviors are not completely non-overlapping (e.g.,
both noise sources and packet dropping at hosts increase loss rates; low-
ering CW increases the traffic and hence increases noise caused by in-
terference), we can categorize the faults by checking the differentiating
component first. For example, external noise sources increase noise ex-
perienced by its neighboring nodes, but do not increase the sending rates
of any node, and therefore can be differentiated from MAC misbehavior
and packet dropping at hosts.

After the fault type is determined, we then locate the faults by find-
ing the set of nodes and links that have large differences between the
observed and expected performance. The fault type determines what
metric is used to quantify the performance difference. For instance, we
identify packet dropping by finding links with large difference between
the expected and observed loss rates. We determine the magnitude of
the fault using a functiong(), which maps the impact of a fault into its
magnitude. For example, under the end-host packet dropping,g() func-
tion is the identity function, since the difference in a link’s loss rate can
be directly mapped to a change in dropping rate on a link (fault’s mag-
nitude); under the external noise fault,g() is a propagation function of a
noise signal.

1) LetNS denote the network settings
(i.e., signal strength, traffic statistics, network topology)

Let RealPerf denote the real network performance
2) FaultSet = {}
3) PredictSimPerf by running simulation with input(NS , FaultSet)
4) if |Diff (SimPerf , RealPerf)| > threshold

determine the fault typeft using the decision tree shown in Fig. 10
for each link or nodei

if (|Diffft (SimPerf (i), RealPerf (i))| > threshold)
addfault(ft, i) with

magnitude(i) = g(Diffft (SimPerf (i), RealPerf (i))

Figure 9: Initial diagnosis: one pass diagnosis algorithm

���������	
������	��

���������	����

�����������
����������

���������������

����������
���������

��������������

���������

��	����������

�����	���� ��! �����

"

"

"

�

�

�

Figure 10: An algorithm to determine the type of faults

The algorithm: In general, we may have multiple types of faults
interacting with each other. Even when all the faults are of the same
type, they may still interact, and their interactions may make the above
one pass diagnosis insufficient. To address these challenges, we develop
an interactive diagnosis algorithm, as shown in Figure 11, to find root
causes.

The algorithm consists of two stages: (i) initial diagnosis stage, and
(ii) iterative refinements. During the initial diagnosis stage, we apply
the one-pass diagnosis algorithm described above to come up with the
initial set of faults; then during the second stage, we iteratively refine
the fault set by (i) adjusting the magnitude of the faults that have been
already inserted into the fault set, and (ii) adding a new fault to the set if
necessary. We iterate the process until the change in fault set is negligi-
ble (i.e., the fault types and locations do not change, and the magnitudes
of the faults change very little).

We use an iterative approach to search for the magnitudes of the faults.
At a high level, the approach is similar to the link-based simulation, de-
scribed in Section5.1.2, where we use the difference between the target
and current values as a feedback to progressively move towards the tar-
get. In more details, during each iteration, we first estimate the expected
network performance under the existing fault set. Then we compute
the difference between simulated network performance (under the exist-
ing fault set) and real performance. Next we translate the difference in
performance into change in faults’ magnitudes using the functiong().
After updating the faults with new magnitudes, we remove the faults
whose magnitudes are too small.

In addition to searching for the correct magnitudes of the faults, we
also iteratively refine the membership of the fault set by finding new
faults that can best explain the difference between expected and ob-
served performance. To control false positives, during each iteration
we only add the fault that can explain the largest mismatch.

5.3 Handling Imperfect Data

1) LetNS denote the network settings
(i.e., signal strength, traffic statistics, and network topology)

Let RealPerf denote the real network performance
2) FaultSet = {}
3) PredictSimPerf by running simulation with input(NS , FaultSet)
4) if |Diff (SimPerf , RealPerf)| > threshold

go to 5)
else

go to 7)
5) Initial diagnosis:

initialize FaultSet by applying the algorithm in Fig. 9
6) while (not converged)

a) adjusting fault magnitude
for each fault typeft in FaultSet (according to decision tree in Fig. 10)

for each faulti in (FaultSet, ft)
magnitude(i)− = g(Diffft (SimPerf (i), RealPerf (i)))
if (|magnitude(i)| < threshold)

delete the fault (ft, i)
b) adding new candidate faults if necessary

foreach fault typeft (in the order of decision tree in Fig. 10)
i) find a faulti s.t. it is not inFaultSet

and has the largest|Diffft (SimPerf (i), RealPerf (i))|
ii) if (|Diffft (SimPerf (i), RealPerf (i))| > threshold)

add (ft, i) to FaultSet with
magnitude(i) = g(Diffft (SimPerf (i), RealPerf (i))

c) simulate
7) ReportFaultSet

Figure 11: A complete diagnosis algorithm: diagnose faults of pos-
sibly multiple types

In the previous sections, we describe how to diagnose faults by using
trace data to drive online simulation. In practice, the raw trace data
collected may contain errors for various reasons as mentioned earlier.
Therefore we need to clean the raw data before feeding it to a simulator
for fault diagnosis.

To facilitate the data cleaning process, we introduceneighbor moni-
toring, in which each node reports performance and traffic statistics not
only for its incoming/outgoing links, but also for other links within its
communication range. Such information is available when a node is in
the promiscuous mode, which is achievable using Native 802.11 [28].

Due to neighborhood monitoring, multiple reports from different nodes
are likely to be submitted for each link. The redundant reports can be
used to detect inconsistency. Assuming that the number of misbehaving
nodes is small, our scheme identifies the misbehaving nodes as the min-
imum set of nodes that can explain the discrepancy in the reports. Based
on the insight, we develop the following scheme.

In our scheme, a senderi reports the number of packets sent and the
number of MAC-level acknowledgements received for a directed link
l as(sent i(l), ack i(l)); a receiverj reports the number of packets re-
ceived on the link asrecv j(l); in addition, a sender or receiver’s im-
mediate neighbork also reports the number of packets and MAC-level
acknowledgement it observes sent or received on the link as (sentk(l),
recvk(l), ackk(l)). An inconsistency in the reports is defined as one of
the following cases.

1. The number of packets received on a link, as reported by the desti-
nation, is noticeably larger than the number of packets sent on the
same link, as reported by the source. That is, for the linkl from
nodei to nodej, and given a thresholdt:

recv j(l)− sent i(l) > t

2. The number of MAC-level acknowledgments on a link, as re-
ported by the source, does not match the number of packets re-
ceived on that link, as reported by the destination. That is, for the
link l from nodei to nodej, and given a thresholdt:

| ack i(l)− recv j(l) |> t

3. The number of packets received on a link, as reported by the desti-
nation’s neighbor, is noticeably larger than the number of packets

sent on the same link, as reported by the source. That is, for the
link l from nodei to nodej, j’s neighbork, and given a threshold
t:

recvk(l)− sent i(l) > t

4. The number of packets sent on a link, as reported by the source’s
neighbor, is noticeably larger than the number of packets sent on
the same link, as reported by the source. That is, for the linkl
from nodei to nodej, i’s neighbork, and given a thresholdt:

sentk(l)− sent i(l) > t

Since nodes do not send their reports strictly synchronously, we need
to use a thresholdt > 0 to mask the resulting discrepancies. Note that
in the absence of inconsistent reports, the above constraints cannot be
violated as a result of lossy links.

We then construct aninconsistency graphas follows. For each pair
of nodes whose reports are identified as inconsistent, we add them to
the inconsistency graph, if they are not already in the graph; we add
an edge between the two nodes to reflect the inconsistency. Based on
the assumption that most nodes send reliable reports, our goal is to find
the smallest set of nodes that can explain all the inconsistency observed.
This can be achieved by finding the smallest set of vertices that covers
the graph, where the identified vertices represent the misbehaving nodes.

This is essentially the minimum vertex cover problem [19], which is
known to be NP-hard. We apply a greedy algorithm, which iteratively
picks and removes the node with the highest degree and its incident
edges from the current inconsistency graph until no edges are left.

History of traffic reports can be used to further improve the accuracy
of inconsistency detection. For example, we can continuously update the
inconsistency graph with new reports without deleting previous informa-
tion, and then apply the same greedy algorithm to identify misbehaving
nodes.

6. SYSTEM IMPLEMENTATION
We have implemented a prototype of network monitoring and man-

agement module on the Windows XP platform. In this section, we
present the components of the prototype implementation, the design
principles, and its features.

Our prototype consists of two separate components:agentsandman-
agers. An agent runs on every wireless node, and reports local informa-
tion periodically or on-demand. A manager collects relevant information
from agents and analyzes the information.

The two design principles we follow are: simplicity and extensibility.
The information gathered and propagated for monitoring and manage-
ment is cast into performance counters supported on Windows. Per-
formance counters are essentially (name, value) pairs grouped by cate-
gories. This framework is easily extensible.

Values in these performance counters are not always read-only. Writable
counters offer a way for an authorized manager to change the values and
influence the behavior of a node in order to fix problems or initiate ex-
periments remotely.

Each manager is also equipped with a graphical user interface (GUI)
to interact with network administrators. The GUI allows an administra-
tor to visualize the network as well as to issue management requests.

The manager is also connected to the back-end simulator. The infor-
mation collected is processed and then converted into a script that drives
the simulation producing fault diagnosis results.

The capability of the network monitoring and management depends
heavily on the information available for collection. We have seen wel-
coming trends in both wireless NICs and the standardization efforts to
expose performance data and control at the physical and MAC layers,
e.g., Native 802.11 NICs [28].

7. EVALUATION
In this section, we present evaluation results. We begin by quanti-

fying the network overhead introduced by data collection and show its
impact on the overall performance. Next, we evaluate the effectiveness
of our diagnosis techniques and inconsistency detection scheme. We
use simulations in some of our evaluation because this enables us to
inject different types of faults in a controlled and repeatable manner.
When evaluating in simulation, we diagnose traces collected from sim-
ulation runs that have injected faults. Finally we report our experience
of applying the approach to a small-scale testbed. Even though the re-
sults from the testbed are limited by our inability to inject some types
of faults (external noise and MAC misbehavior) in a controlled fashion,
they demonstrate the feasibility of on-line simulations in a real system.
Unless stated differently, all results from simulations are based on IEEE
802.11b. The testbed results are based on IEEE 802.11a.

7.1 Data Collection Overhead
For data collection, every node not only collects information locally,

but also delivers the data to the manager. We evaluate the overhead
involved in having all nodes in a network report the information to a
manager. Since the primary goal of this section is to demonstrate the
feasibility of distributing all the data to a manager at a modest cost,
we only makeconservative assumptionsabout the sizes of the reports.
Further optimization is possible as described in Section5.1.1.

In our evaluation, we place nodes randomly in a square, and the man-
ager is chosen at random amongst the nodes. We keep the average num-
ber of neighbors around 6 as we increase the network size. On average,
a node takes 1 to 5 hops to reach the manager. As described in Sec-
tion 5.1.1, for each link we collect traffic counters (i.e., the number of
packets sent and received), signal strength, and noise. The size of link
report depends on whether redundant information is sent for consistency
checking. Therefore we consider two scenarios: when each link is re-
ported by one node (i.e., without data cleaning) and when each link is
reported by all the observers (including the sender and receiver) to allow
us to check for consistency (i.e., with data cleaning). Since every node
has around 6 immediate neighbors, a conservative estimate of a link re-
port is 72 bytes when no redundant link data is sent, and is 312 bytes
when redundant link data is sent.

In Figure 12, we plot the average overhead of data gathering over 10
random runs for various network sizes. As it shows, even with data
cleaning using 60 second report interval, the overhead remains low,
around 800 bits/s/node. Moreover, the overhead does not increase much
as the network size increases.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 10 15 20 25 30 35 40 45 50

O
ve

rh
ea

d
 (

b
it

s/
n

o
d

e/
s)

Number of nodes

60 seconds - no data cleaning
60 seconds - with data cleaning
90 seconds - with data cleaning

Figure 12: Management traffic overhead

Figure 13 shows the performance of FTP flows in the network with
and without the data collection traffic. Ten simultaneous FTP flows are
started from random sources to the manager. The graph shows the av-
erage throughput of these flows on the y-axis. As we can see, the data
collection traffic (with and without sending redundant link data) has lit-
tle impact on the application traffic in the network.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 10 15 20 25 30 35 40 45 50

T
h

ro
u

g
h

p
u

t
(b

it
s

p
er

 s
ec

o
n

d
)

Number of nodes

With data collection (no data cleaning)
With data collection (with data cleaning)

Without data collection

Figure 13: Effect of overhead on throughput

Summary: In this section, we evaluate the overhead of collecting
traces, which will be used as inputs to diagnose faults in a network. We
show that the data collection overhead is low and has little effect on
application traffic in the network. Therefore it is feasible to use trace-
driven simulation for fault diagnosis.

7.2 Evaluation of Fault Diagnosis through Simu-
lations

In this section, we evaluate our fault diagnosis approach through sim-
ulations in Qualnet.

7.2.1 Diagnosing one or more faults of possibly different
types

Our general methodology of using simulation to evaluate fault diag-
nosis is as follows. We artificially inject a set of faults into a network,
and obtain the traces of network topology and link load under faults.
We then feed these traces into the fault diagnosis module to infer root
causes, and quantify the diagnosis accuracy by comparing the inferred
fault set with the fault set originally injected.

We use both grid topologies and random topologies for our evalua-
tion. In a grid topology, only nodes horizontally or vertically adjacent
can directly communicate with each other, whereas in random topolo-
gies, nodes are randomly placed in a region. To challenge our diagnosis
scheme, we put a high load on the network by randomly picking 25 pairs
of nodes to send one-way constant bit rate (CBR) traffic at a rate of 1
Mbps. Under this load, the links in the network have significant net-
work congestion loss, which makes diagnosis even harder. For example,
identifying losses caused by packet dropping at hosts is more difficult
when there is significant network congestion loss. Correct identifica-
tion of dropping links also implies reasonable assessment of congestion
loss. In addition, we randomly select a varying number of nodes to
exhibit one or more faults of the following types: packet dropping at
hosts, external noise, and MAC misbehavior. For a given number of
faults and its composition, we conduct three random runs, which have
different traffic patterns and fault locations. We evaluate how accurate
our fault diagnosis algorithm, described in Section 5.2, can locate the
faults. The time that the diagnosis process takes depends on the size of
topologies, the number of faults, and duration of the faulty traces. For
example, diagnosing faults in 25-node topologies takes several minutes.
Such diagnosis time scale is acceptable for diagnosing long-term perfor-
mance problems. Moreover, the efficiency can be significantly improved
through code optimization.

We use coverage and false positive to quantify the accuracy of fault
detection, where coverage represents the percentage of faulty locations
that are correctly identified, and false positive is the number of (non-
faulty) locations incorrectly identified as faulty divided by the total num-
ber of true faults. We consider a fault is correctly identified when both its
type and its location are correct. For packet dropping and external noise
sources, we also compare the inferred faults’ magnitudes with their true

magnitudes.
Detecting packet dropping at hosts: We start by evaluating how

accurately we can detect packet dropping. In our evaluation, we select a
varying number of nodes to intentionally drop packets with the dropping
rate varied between 0 - 100%. We vary the number of such misbehaving
nodes from 1 to 6.

We apply the diagnosis algorithm, which first uses trace-driven sim-
ulation to estimate the expected performance (i.e., noise level, through-
put, and loss rates) in the current network. Since we observe a significant
difference in loss rates, but not in the other two metrics, we suspect that
there is packet dropping on these links. We locate the dropping links
by identifying links whose loss rates are significantly higher than their
expected loss rates. We use 15% as a threshold so that links whose
difference between expected and observed loss rates exceed 15% are
considered as packet dropping links. We then inject the faults into the
simulator, and find that this significantly reduces the difference between
the simulated and observed performance.

Figure 14 shows the accuracy of detecting dropping links in a 5×5
grid topology. Note that some of the faulty links do not carry enough
traffic to meaningfully compute loss rates. In our evaluation, we use
250 packets as a threshold so that only for the links that send over 250
packets, loss rates are computed. We consider a faulty link sending less
than a threshold number of packets as ano-effect faultsince it drops only
a small number of packets.2 As Figure 14 shows, under our diagnosis
scheme, in most cases over 80% effective faulty links are identified cor-
rectly. The false positive (not shown) is 0 except for two cases in which
one link is misidentified as faulty. Moreover the accuracy does not de-
grade with the increasing number of faults. When we compare the differ-
ence between the inferred and true dropping rates, we find the inference
error, computed as

∑
i |infer i − truei|/

∑
i truei, is within 25%. This

error is related to the threshold used to determine if the iteration has
converged. In our simulations, we consider an iteration converges when
changes in loss rates are all within 15%. We can further reduce the infer-
ence error by using a smaller threshold at a cost of longer running time.
Also, in many cases it suffices to know where packet dropping occurs
without knowing precise dropping rates.

��

���

���

���

���

����

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	���� �	���� �	���� �	���� �	���� �	����

�
�
�
�
��
�
�

����������	���
����������	���

Figure 14: Accuracy of detecting packet dropping in a 5×5 grid
topology

Detecting external noise sources:Next we evaluate the accuracy of
detecting external noise sources. We randomly select a varying num-
ber of nodes to generate ambient noise at 1.1e-8 mW. We again use
the trace-driven simulation to estimate the expected performance under
the current traffic and network topology when there is no noise source.
Note that simulation is necessary to determine the expected noise level,
because the noise experienced by a node consists of both ambient noise
2These faulty links may have impact on route selection. That is, due
to its high dropping rate, it is not selected to route much traffic. In this
paper, we focus on diagnosing faults on data paths. As part of our future
work, we plan to investigate how to diagnose faults on control paths.

and noise due to interfering traffic; accurate simulation of network traf-
fic is needed to determine the amount of noise contributed by interfering
traffic. The diagnosis algorithm detects a significant difference (e.g.,
over 5e-9mW) in noise level at some nodes, and conjectures that these
nodes generate extra noise. It then injects noise at these nodes with
magnitude derived from the difference between expected and observed
noise level to the simulator. After noise injection, it sees a close match
between the observed and expected performance, and hence concludes
that the network has the above faults.

Figure 15 shows the accuracy of detecting noise generating sources
in a 5×5 grid topology. As we can see, in all cases noise sources are
correctly identified with at most one false positive link. We also com-
pare the inferred magnitudes of noises with their true magnitudes, and
find the inference error, computed as

∑
i |infer i − truei|/

∑
i truei, is

within 2%.

��

���

���

���

���

����

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	���� �	���� �	���� �	���� �	���� �	����

�
�
��
�
��
�
�
�	
�
�

�	
�
�

����������	��� �������������

Figure 15: Accuracy of detecting external noise sources in a 5×5
grid topology

Detecting MAC misbehavior: Now we evaluate the accuracy of de-
tecting MAC misbehavior. In our evaluation, we consider one imple-
mentation of MAC misbehavior. But since our diagnosis scheme is to
detect unusually aggressive senders, it is general enough to detect other
implementations of MAC misbehavior that exhibit similar symptoms.
In our implementation, a faulty node alters its minimum and maximum
MAC contention window in 802.11 (CWMin and CWMax) to be only
half of the normal values. The faulty node continues to obey the CW
updating rules (i.e., when transmission is successful, CW = CWMin,
and when a node has to retransmit, CW = min((CW+1)*2-1, CWMax)).
However since its CWMin and CWMax are both half of the normal, its
CW is usually around half of the other nodes’. As a result, it transmits
more aggressively than the other nodes. As one would expect, the ad-
vantage of using a lower CW is significant when network load is high.
Hence we evaluate our detection scheme under a high load.

In our diagnosis, we use the trace-driven simulation to estimate the
expected performance under the current traffic and network topology,
and detect a significant discrepancy in throughput (e.g., the ratio be-
tween observed and expected throughput exceeds 1.25) on certain links.
Therefore we suspect the corresponding senders have altered their CW.
After injecting the suspected faults, we see a close match between the
simulated and observed performance. Figure 16 shows the diagnosis ac-
curacy in a 5×5 topology. We observe the coverage is mostly around
70% or higher. The false positive (not shown) is zero in most cases; the
only case in which it is non-zero is when there is only one link misiden-
tified as faulty.

Detecting mixtures of packet dropping and MAC misbehavior:
Next we examine how accurately the diagnosis algorithm can handle
multiple types of faults. First we consider mixtures of packet dropping
and MAC misbehavior. To challenge the diagnosis scheme, we choose
pairs of nodes adjacent to each other with one node randomly dropping
one of its neighbors’ traffic and the other node using an unusually small
CW. We vary the number of node pairs selected to misbehave from 1 to 6

��

���

���

���

���

����

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	���� �	���� �	���� �	���� �	���� �	����

�
�
�
�
��
�
�

Figure 16: Accuracy of detecting MAC misbehavior in a 5×5 grid
topology

Topology # Faults 4 6 8 10 12 14
Coverage 100% 100% 75% 90% 75% 93%25-node random

False positive 25% 0 0 0 0 7%
Coverage 100% 83% 100% 70% 67% 71%7×7 grid

False positive 0 0 0 0 8% 0

Table 3: Accuracy of detecting combinations of packet dropping,
MAC-misbehavior, and external noises in other topologies

(i.e., the total number of faults varies from 2 to 12 in the network). Fig-
ure 17 summarizes the accuracy of fault diagnosis in a 5×5 grid topol-
ogy. As it shows, in most cases over 80% faults are correctly identified.
Moreover, the false positive (not shown) is close to 0 in all cases. Com-
paring the inferred link dropping rates with their actual rates, we observe
the inference error is within 30%.

��

���

���

���

���

����

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	���� �	���� �	���� �	���� �	���� �	����

�
�
�
�
��
�
�

����������	���
����������	���

Figure 17: Accuracy of detecting combinations of packet dropping
and MAC misbehavior in a 5×5 grid topology

Detecting mixtures of all three fault types: Finally we evaluate the
diagnosis algorithm under mixtures of all three fault types as follows.
As in the previous evaluation, we choose pairs of nodes adjacent to each
other with one node randomly dropping one of its neighbors’ traffic and
the other node using an unusually small CW. In addition, we randomly
select two nodes to generate external noise. Figure 18 summarizes the
accuracy of fault diagnosis in a 5×5 topology. As it shows, the coverage
is above 80%. The false positive (not shown) is close to 0. The accuracy
remains high even when the number of faults in the network exceeds 10.
The inference errors in links’ dropping rate and noise level are within
15% and 3%, respectively.

To test sensitivity of our results to the network size and type of topol-
ogy, we then evaluate the accuracy of the diagnosis algorithm using a
7×7 grid topology and 25-node random topologies. In both cases, we
randomly choose 25 pairs of nodes to send CBR traffic at 1 Mbps rate.
Table 3 summarizes results of one random run. As it shows, we can
identify most faults with few false positives.

Summary: To summarize, we have evaluated the fault diagnosis ap-

��

���

���

���

���

����

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	

�

�	���� �	���� �	���� �	���� �	���� �	����

�
�
�
�
��
�
�

����������	���
����������	���

Figure 18: Accuracy of detecting combinations of packet dropping,
MAC misbehavior, and external noises in a 5×5 grid topology

proach using a variety of scenarios, and shown it yields fairly accurate
results.

7.3 Data cleaning effectiveness and overhead
As mentioned earlier, to deal with data imperfectness, we need to

process the raw data by applying the inconsistency detection scheme
described in Section 5.3 before feeding them to the diagnosis module. In
this section, we evaluate the effectiveness of this scheme using different
network topologies, traffic patterns, and degrees of inconsistency.

• Network topologies: We use both random and grid topologies for
evaluation. In the former, we randomly place nodes in a region
while in the latter we place nodes in anL×L grid, where only
the nodes horizontally or vertically adjacent can directly commu-
nicate with each other. We vary the size of the region to evaluate
how node density affects the accuracy of inconsistency detection,
while fixing the total number of nodes at 49 in all cases.

• Traffic patterns: We generate CBR traffic in the network. We con-
sider two types of traffic patterns:

1. Client-server traffic: in this case, we place one server at the
center of the network to serve as an Internet gateway, and the
other 48 nodes all establish connections from themselves to
the gateway. We assume that the performance reports gener-
ated by the server are correct, and if a client’s report deviates
from the server’s, it is the client that supplied incorrect in-
formation.

2. Peer-to-peer traffic: we randomly select pairs of nodes from
the network to transfer CBR traffic. We keep the number of
connections the same as in client-server traffic.

• Inconsistent reports: We randomly select a varying fraction of
nodes to report incorrect information. In addition, for every such
node, we vary the fraction of its adjacent links that are reported
incorrectly. We used to denote the fraction, whered = 1 means
that the selected node reports all the adjacent links incorrectly,
while d < 1 means that the selected node reports a fraction of its
adjacent links incorrectly.

We again use coverage and false positive to quantify the accuracy,
where coverage denotes the fraction of misbehaving nodes that are cor-
rectly identified, whereas false positive is the ratio between the number
of nodes that are incorrectly identified as misbehaving and the number
of true misbehaving nodes.

Effects of node density:Figure 19 shows the effect of node density
on the fraction of misbehaving nodes detected and false positives in ran-
dom topologies. When the area is a 1400m× 1400m, a node has 7 to 8

neighbors within communication range on average, whereas in a 2450m
× 2450m region, a node only has 2 to 3 neighbors on average.

We make the following observations. First, the detection accuracy is
high: except for the lowest node density, in most cases the coverage is
above 80% and false positive (not shown) is below 15%. Second, as
one would expect, the detection accuracy tends to be higher in a denser
topology than in a sparser topology. This is because in a denser topology,
there are more observers for each link, and majority voting works better.
Note that the accuracy does not strictly decrease with the network size
due to random selection of misbehaving nodes.

Effects of traffic types: Also, in Figure 19, we see that with peer-
to-peer traffic, the detection accuracy is lower than with client-server
traffic. This is because for client-server traffic, we trust the server to
report correct information; we can detect misbehaving clients whenever
their reports deviate from that of the server. In comparison, in peer-to-
peer traffic, all nodes are treated equally and we only rely on majority
voting.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

C
o

ve
ra

g
e

Dimension of area (m)

client-server traffic, d=0.2
client-server traffic, d=1.0

P2P traffic, d=0.2
P2P traffic, d=1.0

Figure 19: Detection accuracy in random topologies with varyingd,
node density, and traffic patterns.

Effects of number of misbehaving nodes:Figure 20 plots the de-
tection accuracy versus the number of misbehaving nodes that report
incorrect information in the network. The density is held constant by
holding the region fixed at a 2450m× 2450m square. Here, we plot the
accuracy for both the grid and the random topologies. As it show, the
accuracy is high even when a large fraction (40%) of the nodes in the
system are misbehaving. In all cases, the coverage is higher than 80%,
and the false positives (not shown) are lower than 12%.

Effects of topology type: Next we examine the effects of network
topologies on detection accuracy. We compare the detection accuracy in
the grid topology against the random topology, both spanning 2450m×
2450m. In Figure 20, we can see that the grid topology almost always
has a higher detection accuracy than the random topology. A closer
look of the topology reveals that while the average node degree in the
grid and random topologies are comparable, both around 2 to 3, the
variation in node degree is significantly higher in the random topology.
There are significantly more nodes with only one neighbor in the random
topology. In this case, it is hard to detect which node supplies wrong
information. In comparison, nodes in grid topologies have a similar
number of neighbors (only corner nodes have fewer neighbors), and no
nodes have fewer than 2 neighbors, which makes it easier for majority
voting. This observation suggests that the minimum node degree is more
important to detection accuracy than the average node degree.

Incorporating history: So far we have studied the case when every
node submits one traffic report at the end of simulation. Now we eval-
uate the case in which nodes periodically send report. In this case, we
can take advantage of history information as described in Section 5.3.
As shown in Figure 21, we observe a higher coverage when using his-
tory information. Similarly, the false positive (not shown) is lower when
history information is incorporated.

Summary: In summary, we show that the inconsistency detection

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20

C
o

ve
ra

g
e

Number of Misbehaving Nodes

Grid topology, d=0.4
Grid topology, d=0.8

Random placement, d=0.4
Random placement, d=0.8

Figure 20: Detection accuracy when the nodes are placed in a 2450m
× 2450m region with varying topology types and the number of mis-
behaving nodes.

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 2 4 6 8 10 12 14 16 18 20
C

o
ve

ra
g

e

Number of Misbehaving Nodes

No history, d=0.2
No history, d=0.6

With history, d=0.2
With history, d=0.6

Figure 21: Comparing detection accuracy between with and without
using history in a 2450m× 2450m grid topology using peer-to-peer
traffic.

scheme is able to detect most misbehaving nodes with very few false
positives under a wide variety of scenarios we have considered. These
results suggest that after data cleaning, we can obtain good quality trace
data to drive simulation-based diagnosis.

7.4 Evaluation of Fault Diagnosis in a Testbed
In this section, we evaluate our approach using experiments in a testbed.

Our testbed consists of 4 laptops, each equipped with a Netgear WAG511
card operating in 802.11a mode. The laptops are located in the same of-
fice with good received signal strength. Each of them runs a routing
protocol, similar to DSR [22], to determine the shortest hop-count paths
to the other nodes. However, due to packet losses caused by high traffic
load and artificial packet dropping, the nodes sometimes switch between
1-hop routes and 2-hop routes. The traffic statistics on all links are pe-
riodically collected using the monitor tool, described in Section 6. We
randomly pick a node to drop packet from one of its neighbors, and see
if we can detect it. To resolve inconsistencies in traffic reports if any,
we also run Airopeek [7] on another laptop. (Ideally we would like
to have nodes monitor traffic in the promiscuous mode, e.g., using Na-
tive 802.11 [28], but since we currently do not have such cards, we use
Airopeek to resolve inconsistencies.)

First, we run experiments under low traffic load, where each node
sends CBR traffic at a rate varying from 1 Mbps to 4 Mbps to another
node. We find the collected reports are consistent with what has been
observed from Airopeek. Then we feed the traces to the simulator (also
running in the 802.11a mode), and apply the diagnosis algorithm in Fig-
ure 11. Since in the testbed one node is instructed to drop one of its
neighbor’s traffic at a rate varying from 20% to 50%, the diagnosis algo-
rithm detects that there is a significant discrepancy between the expected
and observed loss rates on one link, and correctly locates the dropping

link.
Then we repeat the experiments when we overload the network by

having each node sending CBR traffic at a rate of 8 Mbps. In this case,
we observe that the traffic reports often deviate from the numbers seen
in Airopeek. The deviation is caused by the fact that the NDIS driver for
the NIC sometimes indicates sending success without actually attempt-
ing to send the packet to the air [29]. This implies that it is not always
possible to keep an accurate count of the packets sent locally. However,
the new generation of wireless cards, such as Native 802.11 [28], will
expose more detailed information about the packets, and enable more
accurate accounting of traffic statistics. The inaccurate traffic reports
observed in the current experiments also highlight the importance of
cleaning the data before using them for diagnosis. In our experiment,
we clean the data using Airopeek’s reports, which capture almost all the
packets in the air, and feed the cleaned data to the simulator to estimate
the expected performance. Applying the same diagnosis scheme, we de-
rive the expected congestion loss, based on which we correctly identify
the dropping link.

8. DISCUSSION
To the best of our knowledge, ours is the first system that integrates

a network simulator into a network management system to troubleshoot
an operational multihop wireless network. The results are promising.

Our diagnosis system is not limited to the four types of faults dis-
cussed in this paper. Other faults such as routing misbehavior can also
be diagnosed. Since routing misbehavior has been the subject of much
previous work [27, 12, 21], we focus on diagnosing faults on the data
path, which have not received much attention. In general, the fault to be
diagnosed determines the traces to collect and the level of simulation.

Our system can be extended, and below, we discuss some remaining
research challenges.

We focus on faults resulting from misbehaving but non-malicious
nodes. What if the faults are because of malicious attacks? These are
generally hard to detect as they can be disguised as benign faults. It
would be interesting to study how security mechanisms (e.g., crypto-
graphic schemes for authentication and integrity) and counter-measures
such as secure traceroute [34] can be incorporated into our system.

Currently, our system works with a fairly complete knowledge of the
RF condition, traffic statistics, and link performance. Obtaining such
complete information is sometimes difficult. It would be useful to inves-
tigate techniques that can work with incomplete data, i.e. data obtained
from a subset of the network. This would improve the scalability of the
troubleshooting system.

Finally, there is room for improvement in our core system as well.
Our system depends on the accuracy and efficiency of the simulator, the
quality of the trace data, and the fault search algorithm. Improvement
in any one of these will result in better diagnosis. For example, our
system could benefit from fast network simulation techniques developed
by [20, 23]. Further, Bayesian inference techniques could be useful for
diagnosing faults that exhibit similar faulty behavior.

We are continuing our research and are in the process of enhancing the
system to take corrective actions once the faults have been detected and
diagnosed. We are also extending our implementation to manage a 50
node multihop wireless testbed. We intend to evaluate its performance
when some of these nodes are mobile.

9. RELATED WORK
Many researchers have worked on problems that are related to net-

work management in wireless networks. We broadly classify their work
into three areas: (1) protocols for network management; (2) mechanisms
for detecting and correcting routing and MAC misbehavior, and (3) gen-
eral fault management.

In the area of network management protocols, Chenet al.[15] present

Ad Hoc Network Management Protocol (ANMP), which uses hierarchi-
cal clustering to reduce the number of message exchanges between the
manager and agents. Shen et al. [41] describe a distributed network
management architecture with SNMP agents residing on every node.
Our work differs from these two pieces of work in that we do not focus
on the protocol for distributing management information, but instead
on algorithms for identifying and diagnosing faults. Consequently, our
work is complimentary to both [15] and [41].

A seminal piece of work in the area of detecting routing misbehavior
is by Marti, Giullu, Lai, and Baker [27]. The authors address network
unreliability problems stemming from selfish intent of individual nodes,
and propose awatchdogandpathrateragent framework for mitigating
routing misbehavior and improving reliability. The basic idea is to have
a watchdog node observe its neighbor and determine whether it is for-
warding traffic as expected. The pathrater assigns ratings for paths based
on observed node behavior. Based on the rating, nodes establish routes
that avoid malicious nodes resulting in overall increase in throughput.
Other work following this thread of research includes [9, 12, 13].

Our work differs from watchdog-like mechanism in the following
ways. First, the focus of the above research has been on detecting and
punishing malicious nodes, whereas our focus is on detecting and di-
agnosing general performance problems. Second, we use reports from
multiple neighbors and take historical evidence into account to derive
more accurate link loss rates. Finally, most importantly, we use online
simulation-based diagnosis to determine the root cause for high link loss
rates. Different from a simple watch-dog mechanism, which considers
end points as misbehaving when its adjacent links incur high loss rate,
our diagnostic methodology takes into account current network config-
uration and traffic patterns to determine if the observed high loss rates
are expected, and determines the root causes for the loss (e.g., whether
it is due to RF interference, or congestion, or misbehaving nodes).

In the area of wireless network fault management, there exist a num-
ber of commercial products in the market. Examples include AirWave
[8], AirDefense [6], Computer Associate’s UniCenter [1], Symbol’s Wire-
less Network Management System (WNMS) [42], IBM’s Wireless Se-
curity Auditor (WSA) [46], and Wibhu’s SpectraMon [44]. Recently,
Adya et al. [4] present architecture and techniques for diagnosing faults
in IEEE 802.11 infrastructure networks. Our work differs from these in
that the above work target infrastructure or base station based wireless
networks. Multihop wireless networks are significantly different.

10. CONCLUSION
Troubleshooting a multihop wireless network is challenging due to

the unpredictable physical medium, the distributed nature of the net-
work, the complex interactions between various protocols, environmen-
tal factors, and potentially multiple faults. To address these challenges,
we propose online trace-driven simulation as a troubleshooting tool.

We evaluate our system in different scenarios and show that it can
detect and diagnose over 10 simultaneous faults of different types in a
25-node multihop wireless network. This result suggests that our ap-
proach is promising. An important property of our system is that it is
flexible and can be extended to diagnose additional faults. We hope
that this paper will inspire other researchers to further investigate trace-
driven simulation as a tool to diagnose and manage complex wireless
and wireline networks.

11. REFERENCES
[1] The future of wireless enterprise management.

http://www3.ca.com/.
[2] Promise of intelligent networks.

http://news.bbc.co.uk/2/hi/technology/2787953.stm.
[3] NSF workshop on residential boradband revisited: Research

challenges in residential networks, boradband access and

applications. http://cairo.cs.uiuc.edu/nsfbroadband/, October
2003.

[4] A. Adya, P. Bahl, R. Chandra, and L. Qiu. Architecture and
techniques for diagnosing faults in IEEE 802.11 infrastructure
networks. InIn Proc. of ACM MOBICOM, Sept. 2004.

[5] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris.
Link-level measurements from an 802.11b mesh network. InIn
Proc. of ACM SIGCOMM, Aug. 2004.

[6] AirDefense: Wireless LAN security and operational support.
http://www.airdefense.net/.

[7] Wildpackets Airopeek.
http://www.wildpackets.com/products/airopeek.

[8] Airwave, a wireless network management solution.
http://www.airwave.com/.

[9] B. Awerbuch, D. Holmer, and H. Rubens. Provably secure
competitive routing against proactive Byzantine adversaries via
reinforcement learning. InJHU Tech Report Version 1, May 2003.

[10] G. Berger-Sabbatel, F. Rousseau, M. Heusse, and A. Duda.
Performance anomaly of 802.11b. InProc. of IEEE INFOCOM,
June 2003.

[11] P. Bhagwat, B. Raman, and D. Sanghi. Turning 802.11 inside-out.
In Workshop on Hot Topics in Networks (HotNets-II), November
2003.

[12] S. Buchegger and J. Y. Le Boudec. Nodes bearing grudges:
Towards routing security, fairness, and robustness in mobile ad
hoc networks. InProceedings of the Tenth Euromicro Workshop
on Parallel, Distributed and network-based Processing, pages 403
– 410. IEEE Computer Scoiety, January 2002.

[13] S. Buchegger and J.-Y. Le Boudec. The effect of rumor spreading
in reputation systems for mobile ad-hoc networks. InProceedings
of Modeling and Optimization in Mobile, Ad Hoc and Wireless
Networks, Sophia-Antipolis, France, March 2003.

[14] J. Case, M. Fedor, M. Schoffstall, and J. Darvin. A simple
network management protocol (SNMP). InInternet Engineering
Task Force, RFC 1098, May 1990.

[15] W. Chen, N. Jain, and S. Singh. ANMP: Ad hoc network
management protocol. InIEEE Journal on Selected Areas in
Communications, volume 17 (8), August 1999.

[16] D. D. Clark, C. Patridge, J. C. Ramming, and J. T. Wroclawski. A
knoweldge plane for the internet. InProceedings of ACM
SIGCOMM, Karlsruhe, Germany, August 2003.

[17] Wireless networking reference—community wireless/rooftop
systems. http://www.practicallynetworked.com/.

[18] D. D. Couto, D. Aguayo, J. Bicket, and R. Morris. A
high-throughput path metric for multi-hop wireless routing. In
Proc. of ACM MOBICOM, Sept. 2003.

[19] M. Garey and D. Johnson.Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman and Company,
1979.

[20] Y. Gu, Y. Liu, and D. Towsley. On integrating fluid models with
packet simulation. InIEEE INFOCOM, Mar. 2004.

[21] Y. Hu, A. Perrig, and D. B. Johnson. Wormhole Detection in
Wireless Ad Hoc Networks. Technical Report TR01-384, Rice
University, Computer Science, Houston, TX, December 2001.

[22] D. B. Johnson, D. A. Maltz, and J. Broch. DSR: The dynamic
source routing protocol for multihop wireless ad hoc networks. In
Ad Hoc Networking, 2001.

[23] H. Kim and J. C. Hou. A fast simulation framework for ieee
802.11-operated wireless lans. InACM SIGMETRICS, Jun. 2004.

[24] A. V. Konstantinou, D. Florissi, and Y. Yemini. Towards
self-configuring networks. InDARPA Active Networks Conference
and Exposition (DANCE ’02), San Francisco, CA, May 2002.

[25] D. Kotz, C. Newport, and C. Elliott. The mistaken axioms of
wireless-network research. Technical Report TR2003-467,
Dartmouth College, Computer Science, Hanover, NH, July 2003.

[26] P. Kyasanur and N. Vaidya. Detection and handling of MAC layer
misbehavior in wireless networks. InDependable Computing and
Communications Symposium (DCC) at the International
Conference on Dependable Systems and Networks (DSN), pages
173–182, San Francisco, California, June 2003.

[27] S. Marti, T. Giuli, K. Lai, and M. Baker. Mitigating routing
misbehavior in mobile ad hoc networks. InProceedings of ACM
MOBICOM, Boston, MA, August 2000.

[28] Native 802.11 framework for IEEE 802.11 networks. Windows
Platform Design Notes, March 2003.
http://www.microsoft.com/whdc/hwdev/tech/network/802x/Native80211.mspx.

[29] Network devices and protocols: Windows DDK. NDIS library
functions.

[30] The network simulator – ns-2. http://www.isi.edu/nsnam/ns/.
[31] L. M. S. C. of the IEEE Computer Society. Wireless LAN

medium access control (MAC) and physical layer (PHY)
specifications.IEEE Standard 802.11, 1999.

[32] OPNET modeler. http://www.opnet.com.
[33] J. Padhye, R. Draves, and B. Zill. Routing in multi-radio,

multi-hop wireless mesh networks. InIn Proc. of ACM
MOBICOM, Sept. 2004.

[34] V. N. Padmanabhan and D. R. Simon. Secure traceroute to detect
faulty or malicious routing. InACM SIGCOMM Workshop on Hot
Topic in Networks (HotNets-I), Oct. 2002.

[35] N. Pissinou, B. Bharghavati, and K. Makki. Mobile agents to
automate fault management in wireless and mobile networks. In
Proceedings of the IEEE International Parallel and Distributed
Processing Systems Workshop, pages 1296–1300, 2000.

[36] R. Prakash and M. Singhal. Low cost checkpointing and failure
recovery in mobile computing systems. InIEEE Trans. on Parallel
and Distributed Systems, volume 7 (10), pages 1035–1048, 1996.

[37] The Qualnet simulator from Scalable Networks Inc.
http://www.scalable-networks.com/.

[38] MIT Roofnet. http://www.pdos.lcs.mit.edu/roofnet/.
[39] M. Sabin, R. D. Russell, and E. C. Freuder. Generating diagnositc

tools for network fault management. InIntegrated Network
Management, pages 700–711, 1997.

[40] G. K. Saha. Transient fault-tolerant mobile agent in mobile
computing. InIEEE Transactions on Computers, USA, 2003.
IEEE Computer Society Press.

[41] C.-C. Shen, C. Jaikaeo, C. Srisathapornphat, and Z. Huang. The
Guerrilla management architecture for ad hoc networks. InProc.
of IEEE MILCOM, Anaheim, California, October 2002.

[42] SpectrumSoft: Wireless network management system, Symbol
Technolgies Inc. http://www.symbol.com/.

[43] Tcpdump. http://www.tcpdump.org/.
[44] SpectraMon, Wibhu Technologies Inc. http://www.wibhu.com/.
[45] Wireless research API. http://ramp.ucsd.edu/pawn/wrapi/.
[46] Wireless security auditor (WSA).

http://www.research.ibm.com/gsal/wsa/.

