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1 Introduction

Routing in ad-hoc wireless networks has been an active area
of research for many years. Much of the original work in the
area was motivated by mobile application environments, such
as battlefield ad-hoc networks. The primary focus in such en-
vironments is to provide scalable routing in the presence of
mobile nodes. Recently, interesting commercial applications
of multi-hop wireless networks have emerged. One example
of such applications is “community wireless networks” [7, 19,
29, 30]. In such networks, most of the nodes are either sta-
tionary or minimally mobile. The focus of routing algorithms
in such networks is on improving the network capacity or the
performance of individual transfers.

In static ad-hoc wireless networks, choosing paths that min-
imize hop count (the most commonly used metric in ad-hoc
routing [18, 25–27]) can lead to poor performance [11] be-
cause such paths tend to include wireless links between distant
nodes. These long wireless links can be slow or lossy, leading
to poor throughput for flows that traverse them. A routing al-
gorithm can select better paths by explicitly taking link quality
into account.

Researchers have proposed some metrics to measure wire-
less link quality, but to our knowledge, the relative perfor-
mance of these metrics for the purpose of routing in static
ad-hoc wireless networks has not been investigated. In this
paper, we report the results of an experimental study of three
link-quality metrics, and compare them against minimum hop-
count routing. The first metric is called “Expected Trans-
mission Count” (ETX) [10], and is based on measuring the
loss rate of broadcast packets between pairs of neighboring
nodes. The second metric is called “Per-hop Round Trip
Time”(RTT) [2]. This metric is based on measuring the round
trip delay seen by unicast probes between neighboring nodes.
The third metric is called “Per-hop Packet Pair Delay” (Pkt-
Pair). This metric is based on measuring the delay between a
pair of back-to-back probes to a neighboring node.

To compare the performance of these metrics, we incorpo-
rated them in an ad-hoc routing protocol, based on DSR [18].
The protocol runs on a 23-node testbed. The nodes are
equipped with 802.11a cards, and run Windows XP. We ex-
periment with various traffic scenarios such as long-lived TCP
flows, multiple simultaneous data transfers and simulated web
traffic. We also consider a scenario involving some mobility.

The main contributions of the paper are the following: (i)
We describe a routing protocol, that incorporates the notion
of link quality metrics, for routing in static ad-hoc wireless
networks. We describe several implementation issues and op-
timizations. (ii) We present detailed experimental results to
show that in scenarios with stationary nodes, the ETX metric
out-performs hop-count although it uses longer paths. This is
in contrast with the results in [10], in which the authors saw
little or no gain from ETX in a DSR-based routing protocol.
(iii) We show that the one-hop RTT and one-hop packet-pair
metrics perform poorly, because their load-sensitivity leads to
self-interference. Fourth, we also consider a scenario where
we add a single mobile node to our 23-node static testbed. (iv)

We show that in such a scenario minimum hop-count routing
performs considerably better than link-quality routing because
the metrics do not react sufficiently quickly.

The rest of the paper is organized as follows. In Section 2,
we describe the three wireless link quality metrics that we con-
sider in this paper. In Section 3, we describe our routing pro-
tocol. In Section 4, we describe the testbed. In Section 5, we
present the main body of our results. In Section 6, we describe
the scenario involving a mobile node. In Section 7, we provide
an overview of related work. Section 8 concludes the paper.

2 Link Quality Metrics

We consider three wireless link quality metrics in this paper,
which are described in detail below. We also support minimum
hop-count routing by defining a “HOP” metric. Each of these
metrics represents a different notion of what constitutes good
link quality. In Section 7, we will discuss other link quality
metrics that we have not included in this study.

In the following discussion, we will talk about links between
wireless nodes. The process of link discovery (i.e. neigh-
bor discovery), maintenance of this information (i.e. detecting
when a link is broken) and the propagation of this information
throughout the network is described in Section 3.

2.1 Hop Count (HOP)

This metric provides minimum hop-count routing. Link qual-
ity for this metric is a binary concept, either the link exists or
it doesn’t.

The primary advantage of this metric is its simplicity. Once
the topology is known, it is easy to compute and minimize
the hop count between a source and a destination. Moreover,
computing the hop count requires no additional measurements,
unlike the other metrics we will describe in this section.

The primary disadvantage of this metric is that it does
not take packet loss or bandwidth into account. It has been
shown [11] that a route that minimizes the hop count does not
necessarily maximize the throughput of a flow. For example, a
two-hop path over reliable or fast links can exhibit better per-
formance than a one-hop path over a lossy or slow link. The
HOP metric, however, will prefer the one-hop path.

2.2 Per-hop Round Trip Time (RTT)

This metric is based on measuring the round trip delay seen
by unicast probes between neighboring nodes. Adya et al. [2]
proposed this metric. To calculate RTT, a node sends a probe
packet carrying a timestamp to each of its neighbors every
500 milliseconds. Each neighbor immediately responds to
the probe with a probe acknowledgment echoing the times-
tamp. This enables the sending node to measure round trip
time to each of its neighbors. The node keeps an exponentially
weighted moving average of the RTT samples to each of its
neighbors. The average computation is as follows:

Average = 0.1 × RTT Sample + 0.9 × Average
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If a probe or a probe response packet is lost, the moving aver-
age is increased by 20% to reflect this loss. Similar penalty is
taken if loss of a data packet is detected on the link. We also
increase the moving average if we detect a loss of data packet.
The routing algorithm selects the path with the least total sum
of RTTs.

The RTT metric measures several different facets of link
quality. First, if either the node or the neighbor is busy, the
probe or the probe-ack packet will experience queuing delay,
resulting in high RTT. Second, as shown in [2], if other nodes
in the vicinity are busy, the probe or the probe-ack packet will
experience delays due to channel contention, again resulting
in high RTT. Third, if link between the nodes is lossy, the
802.11 ARQ mechanism may have to retransmit the probe or
the probe-ack packet several times to get it delivered correctly.
This also increases the RTT along that hop. Finally, if despite
the ARQ mechanism, a probe or a probe-ack packet is lost,
the node that sent the probe detects it, and increases the mov-
ing average as described earlier. In short, the RTT metric is
designed to avoid highly loaded or lossy links.

We originally thought that it might be advantageous to use a
metric that measured channel load and preferred those links
with less load. However, as we discuss later in the paper,
we observed that this leads to route instability due to a phe-
nomenon we call self-interference. Reporting a good metric
(i.e. lightly-loaded) for the link will result in that link becom-
ing preferred, thereby increasing the traffic on the link. This
increases the RTT on that link, eventually resulting in a bad
metric being reported for the link. This phenomenon is made
worse by the fact that due to limitations of our implementa-
tion, we are unable to insert the probe packets at the head of
the queue maintained by the driver. This queuing delay signif-
icantly distorts the RTT value on that hop. The authors of [2]
have also observed this phenomenon. This phenomenon, and
associated route flapping has also been observed in wired net-
works. Some remedies have been suggested [3, 21]. We will
discuss this further in Section 5.

This metric has several other disadvantages as well. First,
there is the overhead of measuring the round trip time. We re-
duce this overhead by using small probe packets (137 bytes).
Second, the metric doesn’t explicitly take link data rate into
account. We may be able to take impact of link data rate into
account by using larger probe packets. However, larger probes
would impose an even greater measurement overhead. Finally,
this measurement technique requires that every pair of neigh-
boring nodes probe each other. This implies that the technique
might not scale to dense networks.

2.3 Per-hop Packet Pair Delay (PktPair)

This metric is based on measuring the delay between a pair of
back-to-back probes to a neighboring node. It is designed to
correct the problem of distortion of RTT measurement due to
queuing delays. The packet-pair technique is well-known in
the world of wired networks [20].

To calculate this metric, a node sends two probe packets
back-to-back to each neighbor every 2 seconds. The first probe

packet is small (137 bytes), and the next one is large (1000
bytes). The neighbor starts a timer upon receiving the first
probe packet, and stops the timer upon receiving the second
packet. It then sends the value of this timer, which is the delay
between the receipt of the first and the second packet, back
to the sending node. The sender maintains a exponentially
weighted moving average of these delays for each of its neigh-
bors, using the averaging equation described in the previous
section. The objective of the routing algorithm is to minimize
the sum of these delays.

Like the RTT metric, this metric also measures several
facets of link quality. If, due to high loss rate, the second
probe packet requires retransmissions by 802.11 ARQ, the de-
lay measured by the neighbor will increase. If the link from
the node to its neighbor has low bandwidth, the second packet
will take more time to traverse the link, which will result in
increased delay. If there is traffic in the vicinity of this hop, it
will also result in increased delay, since the probe packets have
to contend for the channel.

The primary advantage of this metric over RTT is that it isn’t
affected by queueing delays at the sending node, since both
packets in a pair will be delayed equally. In addition, using
a larger packet for the second probe makes the metric more
sensitive to the link bandwidth than the RTT metric.

This metric has several disadvantages. First, it is subject
to overheads even greater than those of the RTT metric, since
two packets are sent to each neighbor, and the second packet
is larger. Second, we discovered that the metric is not com-
pletely immune to the phenomenon of self-interference. To un-
derstand self-interference for packet-pair measurements, con-
sider three wireless nodes A, B, and C forming a two-hop chain
topology. Assume that A is sending data to C via B. If a queue
builds up on the link from A to B, the PktPair measurements
on that link won’t be affected because both the probe packets
would be delayed equally. Now consider the link from B to C.
Node B can not simultaneously receive a packet from A and
send a probe to C. This means that the probe packet is con-
tending with the data packet for the wireless channel. This
increases the metric from B to C, increasing the total metric
along the path from A to C. This self-interference is less se-
vere than that experienced by RTT. However, as we will see, it
does affect PktPair performance adversely.

2.4 Expected Transmission Count (ETX)

This metric estimates the number of retransmissions needed
to send unicast packets by measuring the loss rate of broad-
cast packets between pairs of neighboring nodes. De Couto et
al. [10] proposed ETX. To compute ETX, each node broad-
casts a probe packet every second. The probe contains the
count of probes received from each neighboring node in the
previous 10 seconds. Based on these probes, a node can calcu-
late the loss rate of probes on the links to and from its neigh-
bors. Note that the broadcast packets are not retransmitted by
the 802.11 ARQ mechanism. This allows the node to estimate
the number of times the 802.11 ARQ mechanism will retrans-
mit a unicast packet.
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To illustrate this, consider two nodes A and B. Assume that
node A has received 8 probe packets from B in the previous
10 seconds, and in the last probe packet, B reported that it had
received 9 probe packets from A in the previous 10 seconds.
Thus, the loss rate of packets from A to B is 0.1, while the loss
rate of packets from B to A is 0.2. A successful unicast data
transfer in 802.11 involves sending the data packet and receiv-
ing a link-layer acknowledgment from the receiver. Thus, the
probability that the data packet will be successfully transmitted
from A to B in a single attempt is (1−0.1)×(1−0.2) = 0.72.
If either the data or the ack is lost, the 802.11 ARQ mechanism
will retransmit the packet. If we assume that losses are inde-
pendent, the expected number of retransmissions before the
packet is successfully delivered is 1/0.72 = 1.39. This is the
value of the ETX metric for the link from A to B. The routing
protocol finds a path that minimizes the sum of the expected
number of retransmissions.

Note that A calculates a new ETX value for the link from A
to B every time it receives a probe from B. In our implementa-
tion of the ETX metric, the node maintains an exponentially
weighted moving average of ETX samples, using the same
averaging equation as the RTT metric. Note that there is no
question of taking 20% penalty for lost probe packets. We do,
however, take the penalty if loss of a data packet is detected.

ETX has several advantages. Since each node broadcasts the
probe packets instead of unicasting them, the probing overhead
is substantially reduced. The metric suffers little from self-
interference since we are not measuring delays.

The main disadvantage of this metric is that since broadcast
probe packets are small, and are sent at the lowest possible data
rate (6Mbps in case of 802.11a), they may not experience the
same loss rate as data packets sent at higher rates do. More-
over, the metric does not directly account for link load or data
rate. A heavily loaded link may have very low loss rate, and
two links with different data rates may have the same loss rate.

3 Ad-hoc Routing Architecture

We implement ad-hoc routing and link-quality measurement
in a module that we call the Mesh Connectivity Layer (MCL).
Architecturally, MCL is a loadable Windows driver. It imple-
ments a virtual network adapter, so that to the rest of the system
the ad-hoc network appears as an additional (virtual) network
link. MCL routes using a modified version of DSR [1] that we
call Link-Quality Source Routing (LQSR). We have modified
DSR extensively to improve its behavior, most significantly to
support link-quality metrics. In this section, we review our ar-
chitecture and implementation to provide background for un-
derstanding the performance results.

3.1 Ad-Hoc Routing at Layer 2.5

The MCL driver implements an interposition layer between
layer 2 (the link layer) and layer 3 (the network layer). To
higher-layer software, MCL appears to be just another ether-
net link, albeit a virtual link. To lower-layer software, MCL

Ethernet 802.11 802.16, etc.

Mesh Connectivity Layer (with LQSR)

IPv4 IPv6 IPX, etc.

Figure 1: The ad-hoc routing implementation mul-
tiplexes multiple physical links into a single virtual
link, over which we run unmodified network proto-
cols and applications.

appears to be just another protocol running over the physical
link. See Figure 1 for a diagram.

This design has several significant advantages. First, higher-
layer software runs unmodified over the ad-hoc network. In
our testbed, we run both IPv4 and IPv6 over the ad-hoc net-
work. No modifications to either network stack were required.
Network layer functionality, for example ARP, DHCP, and
Neighbor Discovery, just works. Second, the ad-hoc rout-
ing runs over heterogeneous link layers. Our current im-
plementation supports ethernet-like physical link layers (eg
802.11 and 802.3) but the architecture accommodates link lay-
ers with arbitrary addressing and framing conventions. The
virtual MCL network adapter can multiplex several physical
network adapters, so the ad-hoc network can extend across
heterogeneous physical links. Third, the design can support
any ad-hoc routing protocol, including DSR [18], AODV [27],
TORA [25], etc.

In the simple configuration shown in Figure 1, the MCL
driver binds to all the physical adapters and IP binds only to
the MCL virtual adapter. This avoids multi-homing at the IP
layer; for example, the mesh node then has a single IPv4 ad-
dress. However other configurations are certainly possible. In
our testbed deployment, the nodes have both an 802.11 adapter
for the ad-hoc network and an ethernet adapter for manage-
ment and diagnosis. We configure MCL to bind only to the
802.11 adapter. The IP stack binds to both MCL and the ether-
net adapter. Hence the mesh nodes are multi-homed at the IP
layer, so they have both a mesh IP address and a management
IP address. We prevent MCL from binding to the manage-
ment ethernet adapter, so the ad-hoc routing does not discover
the ethernet as a high-quality single-hop link between all mesh
nodes.

The virtual MCL network adapter appears to higher-layer
software as an ethernet link. The MCL adapter has its own
48-bit virtual ethernet address, distinct from the layer-2 ad-
dresses of the underlying physical adapters. The mesh net-
work functions just like an ethernet, except that it has a smaller
MTU. To allow room for the LQSR headers, it exposes a 1280-
byte MTU instead of the normal 1500-byte ethernet MTU. Our
Windows 802.11 drivers do not support the maximum 2346-
byte 802.11 frame size.

3.2 Modifications to DSR

Our MCL driver implements a version of Dynamic Source
Routing (DSR) that we call Link-Quality Source Routing
(LQSR). LQSR implements all the basic DSR functionality,
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including Route Discovery (Route Request and Route Reply
messages) and Route Maintenance (Route Error messages).
LQSR uses a link cache instead of a route cache, so fundamen-
tally it is a link-state routing protocol. The primary changes in
LQSR versus DSR relate to its implementation at layer 2.5 in-
stead of layer 3 and its support for link-quality metrics.

3.3 Modifications to support Layer 2.5 routing

Due to the layer 2.5 architecture, LQSR uses 48-bit virtual eth-
ernet addresses. All LQSR headers, including Source Route,
Route Request, Route Reply, and Route Error, use 48-bit vir-
tual addresses instead of 32-bit IP addresses. To support multi-
ple physical network interfaces per node, the 48-bit addresses
are augmented with 8-bit interface indices. Each node locally
assigns interface indices to its physical network adapters, start-
ing at one. Two nodes may be connected by multiple links, for
example if the nodes have multiple radios. To uniquely specify
a link, LQSR uses the source virtual address, the outgoing in-
terface index, the incoming interface index, and the destination
virtual address.

3.3.1 Modifications to support Link-quality metrics

We have modified DSR in several ways to support routing ac-
cording to link-quality metrics. These include modifications
to Route Discovery and Route Maintenance plus new mecha-
nisms for Metric Maintenance. Our design does not assume
that the link-quality metric is symmetric.

First, LQSR Route Discovery supports link metrics. When
a node receives a Route Request and appends its own address
to the route in the Route Request, it also appends the metric
for the link over which the packet arrived. When a node sends
a Route Reply, the reply carries back the complete list of link
metrics for the route.

Once Route Discovery populates a node’s link cache, the
cached link metrics must be kept reasonably up-to-date for the
node’s routing to remain accurate. In Section 5.2 we show that
link metrics do vary considerably, even when nodes are not
mobile. LQSR tackles this with two separate Metric Mainte-
nance mechanisms. The first mechanism maintains the metrics
for links that the node is using actively to route its packets, and
second mechanism maintains the metrics of other links. In
combination, the two Metric Maintenance mechanisms ensure
that a node uses good routes in the face of changing metrics.

LQSR uses a reactive mechanism to maintain the metrics
for the links which it is actively using. When a node sends
a source-routed packet, each intermediate node updates the
source route with the current metric for the next (outgoing)
link. This carries up-to-date link metrics forward with the data.
To get the link metrics back to the source of the packet flow
(where they are needed for the routing computation), we have
the recipient of a source-routed data packet send a gratuitous
Route Reply back to the source, conveying the up-to-date link
metrics from the arriving Source Route. This gratuitous Route
Reply is delayed up to one second waiting for a piggy-backing
opportunity, and while delayed, subsequent gratuitous Route

Replies squash (replace) earlier delayed Route Replies. This
design keeps the overhead low while keeping the source of a
packet flow informed about changes in link metrics along the
route.

LQSR uses a proactive background mechanism to maintain
the metrics for all links. Occasionally each LQSR node send
a Link Info message. The Link Info carries current metrics
for each link from the originating node, including broken links
with an infinite metric. The Link Info is piggy-backed on a
Route Request, so it floods throughout the neighborhood of the
node. LQSR attempts to piggy-back Link Info messages on all
Route Requests, if there is room in the packet. If a node has
not sent a Link Info in the last 10 seconds, then it generates a
dummy Route Request for the purpose of carrying a Link Info
message.

The link metric support also affects Route Maintenance.
When Route Maintenance notices that a link is not functional
(because a requested Ack has not been received), it penalizes
the link’s metric and sends a Route Error. The Route Error car-
ries the link’s updated metric back to the source of the packet.

3.3.2 Other modifications

Our LQSR implementation includes the usual DSR concep-
tual data structures. These include a Send Buffer, for buffer-
ing packets while performing Route Discovery; a Maintenance
Buffer, for buffering packets while performing Route Mainte-
nance; and a Route Request table, for suppressing duplicate
Route Requests. Instead of a Route Cache, we use a Link
Cache and run Dijkstra’s algorithm to calculate routes.

The LQSR implementation of Route Discovery omits some
optimizations that are not worthwhile in our environment. In
practice, Route Discovery is almost never required in our
testbed so we have not optimized it. In particular, LQSR nodes
do not reply to Route Requests from their link cache. Only the
target of a Route Request sends a Route Reply. Furthermore,
nodes do not send Route Requests with a hop limit to restrict
their propagation. Route Requests always flood throughout the
ad-hoc network. Nodes do cache information from overheard
Route Requests.

The Windows 802.11 drivers do not support promiscuous
mode and they do not indicate whether a packet was success-
fully transmitted. Hence our implementation of Route Main-
tenance uses explicit acknowledgments instead of passive ac-
knowledgments or link-layer acknowledgments. Every source-
routed packet carries an Ack Request option. A node expects
an Ack from the next hop within 500ms. The Ack options are
delayed briefly (up to 80ms) so that they may be piggy-backed
on other packets flowing in the reverse direction. Also later
Acks squash (replace) earlier Acks that are waiting for trans-
mission. As a result of these techniques, the acknowledgment
mechanism does not add significant byte or packet overhead.

The LQSR implementation of Route Maintenance also
omits some optimizations. LQSR nodes do not implement
“Automatic Route Shortening,” which would allow nodes to
send a gratuitous Route Reply when they overhear a source-
routed packet before it is routed to them. Route shortening is
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not possible because of the lack of promiscuous mode. LQSR
nodes do not implement “Increased Spreading of Route Error
Messages,” which would piggy-back the last-received Route
Error on the next Route Request. This is not important be-
cause LQSR will not reply to a Route Request from (possibly
stale) cached data. When LQSR Route Maintenance detects a
broken link, it does not remove from the transmit queue other
packets waiting to be sent over the broken link. Unfortunately,
Windows drivers do not provide access to the transmit queue.
However, LQSR nodes do learn from Route Error messages
that they forward.

LQSR supports a form of DSR’s “Packet Salvaging” or re-
transmission. Salvaging allows a node to try a different route
when it is forwarding a source-routed packet and discovers that
the next hop is not reachable. The acknowledgment mecha-
nism does not allow every packet to be salvaged because it is
primarily designed to detect when links fail. When sending
a packet over a link, if the link has recently (within 250ms)
been confirmed to be functional, we request an Ack as usual
but we do not buffer the packet for possible salvaging. This
design allows for salvaging the first packets in a new connec-
tion and salvaging infrequent connection-less communication,
but relies on transport-layer retransmission for active connec-
tions. In our experience, packets traversing “cold” routes are
more vulnerable to loss from stale routes and benefit from the
retransmission provided by salvaging.

Our LQSR implementation does not assume that links are
symmetric. For example, it sends Route Replies using an
independently-discovered source route instead of blindly re-
versing the route in the Reply. Similarly, an Ack option may
take a different (multi-hop) path back instead of reversing the
one-hop path by which the Ack Request option arrived. Hence
LQSR does not need the DSR Blacklist mechanism for detect-
ing and avoiding asymmetric links.

We have not yet implemented the DSR “Flow State” opti-
mization, which uses soft-state to replace a full source route
with a small flow identifier. We intend to implement it in the
future. Our Link Cache implementation does not use the Link-
MaxLife algorithm [1] to timeout links. We found that Link-
MaxLife produced inordinate churn in the link cache. Instead,
we use an infinite metric value to denote broken links in the
cache. We garbage-collect dead links in the cache after a day.

4 Testbed

The experimental data reported in this paper are the results of
measurements we have taken on a 23-node wireless testbed.
Our testbed is located on one floor of a fairly typical office
building, with the nodes placed in offices, conference rooms
and labs. Unlike wireless-friendly cubicle environments, our
building has rooms with floor-to-ceiling walls and solid wood
doors. With the exception of one additional laptop used in the
mobility experiments, the nodes are located in fixed locations
and did not move during testing. The node density was delib-
erately kept high enough to enable a wide variety of multi-hop
path choices. See Figure 2.

The nodes are primarily laptop PCs with Intel Pentium II
processors with clock rates from 233 to 300 MHz, but also in-
cluded a couple slightly faster laptops as well as two desktop
machines. All of the nodes run Microsoft Windows XP. The
TCP stack included with XP supports the SACK option by de-
fault, and we left it enabled for all of our TCP experiments. All
of our experiments were conducted over IPv4 using statically
assigned addresses.

Each node has an 802.11a PCCARD radio. We used the
default configuration for the radios, except for configuring ad-
hoc mode and channel 36 (5.18 GHz). In particular, the cards
all performed auto-speed selection. There are no other 802.11a
users in our building.

We use four different types of cards in our testbed: 11
Proxim ORiNOCO ComboCard Gold, 7 NetGear WAG 511,
4 NetGear WAB 501, and 1 Proxim Harmony. While we per-
formed no formal testing of radio ranges, we observed that
some cards exhibited noticeably better range than others. The
Proxim ORiNOCOs had the worst range of the cards we used
in the testbed. The NetGear WAG 511s and WAB 501s exhib-
ited range comparable to each other, and somewhere between
the two Proxim cards. The Proxim Harmony had the best range
of the cards we tried.

5 Results

In this section, we describe the results of our experiments. The
section is organized as follows. First, we present measure-
ments that characterize our testbed. These include a study of
the overhead imposed by our routing software, and a character-
ization of the variability of wireless links in our testbed. Then,
we present experiments that compare the four routing metrics
under various type of traffic.

5.1 LQSR Overhead

Like any routing protocol, LQSR incurs a certain amount of
overhead. First, it adds additional traffic in the form of routing
updates, probes, etc. Second, it has the overhead of carrying
the source route and other fields in each packet. Third, all
nodes along the path of a data flow sign each packet using
HMAC-SHA1 and regenerate the hash to reflect the changes in
the LQSR headers when forwarding the packet. Also, the end
nodes encrypt or decrypt the payload data using AES-128 1.
The cryptographic overhead can be significant given the slow
CPU speeds of the nodes in our testbed.

The following experiment measures the overhead of LQSR.
We used four laptops named A, B, C and D. These machines
were similar to those used in the testbed. Each machine was
equipped with a Proxim ORiNOCO card. The machines were
placed in close proximity of each other. All the links between
the machines were operating at the maximum data rate (nomi-
nally 54Mbps).

1Our network administrators insisted upon better protection than WEP be-
fore they would allow us to connect our testbed to the campus network.
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Figure 2: Our testbed consists of 23 nodes placed in fixed locations inside an office building. Four different models of
802.11a wireless cards were used. The six shaded nodes were used as endpoints for a subset of the experiments (see
section 5.3). The mobile node walking path shows the route taken during the mobility experiments (see section 6).

To establish a baseline for our measurements, we set up
static IP routes between these machines to form a chain topol-
ogy. In other words, a packet from A to D was forwarded via
B and C, and a packet from D to A was forwarded via C and B.
We measured the throughput of long-lived TCP flows from A
to B (a 1-hop path), from A to C (a 2-hop path) and from A to
D (a 3-hop path). At any time, only one TCP flow was active.
These throughputs form our baseline.

Next, we deleted the static IP routes and started LQSR on
each machine. LQSR allows the user to set up static routes
that override the routes discovered by the routing protocol. We
set up static routes to form the same chain topology described
earlier. Note that LQSR continues to send its normal control
packets and headers, but routes discovered through this pro-
cess are ignored in favor of the static routes supplied by the
user. We once again measured the throughput of long-lived
TCP flows on 1, 2 and 3 hop paths. Finally, we turned off all
cryptographic functionality and measured the throughput over
1, 2 and 3 hop paths again.

The results of these experiments are shown in Figure 3.
Each bar represents the average of 5 TCP connections. The
variation between runs is negligible. The first thing to note is
that, as one would expect, the throughput falls linearly with the
number of hops due to inter-hop interference. LQSR’s over-
head is most evident on 1-hop paths. The throughput reduc-
tion due to LQSR, compared to static IP routing is over 38%.
However, when cryptographic functionality is turned off, the
throughput reduction is only 13%. Thus, we can conclude that
the LQSR overhead is largely due to cryptography, which im-
plies that the CPU is the bottleneck. The amount of overhead
imposed by LQSR decreases as the path length increases. This
is because channel contention between successive hops is the
dominant cause of throughput reduction. At these reduced data
rates, the CPU can easily handle the cryptographic overhead.
The remaining overhead is due to the additional network traf-
fic and headers carried in each packet. Note that the amount
of control traffic varies depending on the number of neighbors
that a node has. This is especially true for the RTT and PktPair
metrics. We believe that this variation is not significant.
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Figure 3: MCL does not significantly impact perfor-
mance on multi-hop paths. On single-hop paths the
cryptography overhead is significant.
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Figure 4: The bandwidth of the link from 65 to 100 is
roughly stable over time.

5.2 Link Variability in the Testbed

In our testbed, we allow the radios to dynamically select their
own data rates. Thus, different links in our testbed have dif-
ferent bandwidths. To characterize this variability in link qual-
ity, we conducted the following experiment. Recall the Pkt-
Pair metric collects a sample of the amount of time required to
transmit a probe packet every 2 seconds on each link. We mod-
ified the implementation of the PktPair metric to keep track of
the minimum sample out of every successive 50 samples (i.e
minimum of samples 1-50, then minimum of samples 51-100
etc.). We divide the size of the second packet by this mini-
mum. The resulting number is an indication of the bandwidth
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Figure 5: The bandwidth of the link between 68 and
66 appears to vary over time.
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Figure 6: Each point corresponds to the two links be-
tween a pair of nodes. The X co-ordinate represents
the link with the higher bandwidth. There are several
node pairs with asymmetric bandwidths.

of that link during that 100 second period. In controlled exper-
iments, we verified that this approach approximates the raw
link bandwidth. We gathered these samples from all links for
a period of 14 hours. Thus, for each link there were a total
of 14 × 60 × 60 ÷ 100 = 504 bandwidth samples. There
was no traffic on the testbed during this time. We discard
any intervals in which the calculated bandwidth is more than
36Mbps, which is the highest data rate that we actually see in
the testbed. This resulted in removal of 3.83% of all bandwidth
samples. Still, the resulting number is not an exact measure of
the available bandwidth, since it is difficult to correctly ac-
count for all link-layer overhead. However, we believe that the
number is a good (but rough) indication of the link bandwidth
during the 100 second period.

Of the 23 × 22 = 506 total possible links, only 183 links
had non-zero average bandwidth, where the average was com-
puted across all samples gathered over 14 hours. We found
that bandwidths of certain links varied significantly over time,
while other links it was relatively stable. Examples of two such
links appear in Figures 4 and 5. In the first case, we see that
the bandwidth is relatively stable over the duration of the ex-
perient. In the second case, however, the bandwidth is much
more variable. Since the quality of links in our testbed varies
over time, we are careful to repeat our experiments at different
times.

In Figure 6 we compare the bandwidth on the forward and
reverse direction of a link. To do this, we consider all pos-
sible unordered node pairs. The number of such pairs is
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Figure 7: All pairs: Median throughput of three
minute TCP transfers between every ordered pair of
nodes (Total 23 × 22 = 506). Throughput is highest
under ETX, lowest under RTT.
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Figure 8: All Pairs: Median of number of paths taken
by a TCP transfer. The impact of self-interference on
RTT and PktPair metrics is evident.

23 × 22 ÷ 2 = 253. Each pair corresponds to two directional
links. Each of these two links has its own average bandwidth.
Thus, each pair has two bandwidths associated with it. Out of
the 253 possible node pairs, 90 node pairs had non-zero av-
erage bandwidth in both forward and reverse directions. In
Figure 6, we plot a point for each such pair. The X-coordinate
of the pair represents the link with the larger bandwidth. The
existence of several points below the diagonal line implies that
there are several pairs for which the forward and the reverse
bandwidths differ significantly. In fact, in 47 node pairs, the
forward and the reverse bandwidths differ by more than 25%.

5.3 Impact of Routing Metrics on Long Lived
TCP Flows

Having characterized the overhead of our routing software, and
the quality of links in our testbed, we can now discuss how
various routing metrics perform in our testbed. We begin by
discussing the impact of routing metrics on the performance
of long-lived TCP connections. In today’s Internet, TCP car-
ries most of the traffic, and most of the bytes are carried as
part of long-lived TCP flows [16]. It is reasonable to expect
that similar types of traffic will be present on community net-
works, such as [7, 30]. Therefore, it is important to examine
the impact of routing metrics on the performance of long-lived
TCP flows.

We start the performance comparison with a simple exper-
iment. We carried out a TCP transfer between each unique
sender-destination pair. There are 23 nodes in our testbed, so
a total of 23× 22 = 506 TCP transfers were carried out. Each
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Figure 9: All pairs: Median path length of a TCP
transfer. The HOP metric uses the shortest paths.
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Figure 10: All Pairs: Comparison of HOP and ETX
path lengths. Each point represents a connection.
ETX consistently uses longer paths than HOP.

TCP transfer lasted for 3 minutes, and transferred as much
data as it could. On the best one-hop path in our testbed a
3 minute connection will transfer over 125MB of data. Such
large TCP transfers ensure repeatability of results. We had
previously determined empirically that TCP connections of 1
minute duration were of sufficient length to overcome startup
effects and give reproducible results. To be conservative, we
used 3 minute transfers in these experiments. 2 Only one TCP
transfer was active at any time. The total time required for the
experiment was just over 25 hours. We repeated the experi-
ment for each metric.

In Figure 7 we show the median throughput of the 506 TCP
transfers for each metric. We choose median to represent
the data instead of the mean because the distribution (which
includes transfers of varying path lengths) is quite skewed.
The height error bars represent the semi-inter quartile range
(SIQR), which is defined as half the difference between 25th
and 75th percentile of the data. SIQR is the recommended
measure of dispersion when the central tendency of the data is
represented by the median [17]. Since each connection is run
between a different pair of nodes the relatively large error bars
indicate that we observe a wide range of throughputs across
all the pairs. The median throughput using the HOP metric is
1100Kbps, while the median throughput using the ETX metric
is 1357Kbps. This represents an improvement of 23.1%.

In contrast, De Couto et al. [10] observed almost no im-

2We chose to fix the transfer duration, instead of the amount of data trans-
ferred for practical reasons. We shared our testbed with other researchers, and
it was important that the running time of each experiment be predictable for
scheduling purposes.
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Figure 11: All Pairs: Throughput as a function of path
length under HOP. The metric does a poor job of se-
lecting multi-hop paths.
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Figure 12: All Pairs: Throughput as a function of path
length under ETX. The metric does a better job of
selecting multi-hop paths.

provement for ETX in their DSR experiments. There are
several possible explanations for this. First, they used UDP
instead of TCP. A bad path will have more impact on the
throughput of a TCP connection (due to window backoffs,
timeouts etc.) than on the throughput of a UDP connection.
Hence, TCP amplifies the negative impact of poor route se-
lection. Second, in their testbed the radios were set to their
lowest sending rate of 1Mbps, whereas we allow the radios to
set transmit rates automatically (auto-rate). We believe links
with lower loss rates also tend to have higher data rates, fur-
ther amplifying ETX’s improvement. Third, our testbed has 6-
7 hop diameter whereas their testbed has a 5-hop diameter [9].
As we discuss below, ETX’s improvement over HOP is more
pronounced at longer path lengths.

The RTT metric gives the worst performance among the four
metrics. This is due to the phenomenon of self-interference
that we previously noted in Section 2.2. The phenomenon
manifests itself in the number of paths taken by the connec-
tion. At the beginning the connection uses a certain path. How-
ever, due to self-interference, the metric on this path soon rises.
The connection then chooses another path. This is illustrated
in Figure 8. The graph shows the median number of paths
taken by a connection. The RTT metric uses far more paths
per connection than other metrics. The HOP metric uses the
least number of paths per connection - the median is just 1.

The PktPair metric performs better than RTT, but worse than
both HOP and ETX. This is again due to the phenomenon
of self-interference. While the RTT metric suffers from self-
interference on all hops along the path, the PktPair metric elim-
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Figure 13: All Pairs: Throughput as a function of path
length under RTT. The metric does a poor job of se-
lecting even one hop paths.
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Figure 14: All Pairs: Throughput as a function of path
length under PktPair. The metric finds good one-hop
paths, but poor multi-hop paths.

inates the self-interference problem on the first hop. The im-
pact of this can be seen in the median number of paths (12)
tried by a connection using the PktPair metric. This number is
lower than median using RTT (20.5), but substantially higher
than HOP and ETX.

Note that the ETX metric also uses several paths per con-
nection: the median is 4. This is because for a given node pair,
multiple paths that are essentially equivalent can exist between
them. There are several such node pairs in our testbed. Small
fluctuations in the metric values of equivalent paths can make
ETX choose one path over another. We plan to investigate
route damping strategies to alleviate this problem.

The self-interference, and consequent route flapping expe-
rienced the RTT metric has also been observed in wired net-
works [3, 21]. In [21], the authors propose to solve the prob-
lem by converting the RTT to utilization, and normalizing the
resulting value for use as a route metric. In [3], the authors pro-
pose to use hysteresis to alleviate route flapping. We are cur-
rently investigating these techniques further. Our initial results
show that hysteresis may reduce the severity of the problem,
but not significantly so.

5.4 Impact of Path Length

The HOP metric produces significantly shorter paths than the
three other metrics. This is illustrated in Figure 9. The bar
chart shows the median across all 506 TCP transfers of the av-
erage path length of each transfer. To calculate the average
path length of a TCP transfer, we keep track of the paths taken

by all the data-carrying packets in the transfer. We calculate
the average path length by weighting the length of each unique
path by the number of packets that took that path. The error
bars represent SIQR. The HOP metric has the shortest median
path length (2), followed by ETX (3.01), RTT (3.43) and Pkt-
Pair (3.58).

We now look at ETX and HOP path lengths in more de-
tail. In Figure 10, we plot the average path length of each
TCP transfer using HOP versus the average path length us-
ing ETX. Again, the ETX metric produces significantly longer
paths than the HOP metric. The testbed diameter is 7 hops
using ETX and 6 hops using HOP.

We also examined the impact of average path length on TCP
throughput. In Figure 12 we plot the throughput of a TCP
connection against its path length using ETX while in Fig-
ure 11 we plot the equivalent data for HOP. First, note that
as one would expect, longer paths produce lower throughputs
because channel contention keeps more than one link from be-
ing active. Second, note that ETX’s higher median through-
put derives more from avoiding lower throughputs than from
achieving higher throughputs. Third, ETX does especially
well at longer path lengths. The ETX plot is flat from around 5
through 7 hops, possibly indicating that links at opposite ends
of the testbed do not interfere. Fourth, ETX avoids poor one-
hops paths whereas HOP blithely uses them.

We now look at the performance of RTT and PktPair in more
detail. In Figure 13 we plot TCP throughput versus average
path length for RTT while in Figure 14 we plot the data for
PktPair. RTT’s self-interference is clearly evident in the low
throughputs and high number of connections with average path
lengths between 1 and 2 hops. With RTT, even 1-hop paths
are not stable. In contrast, with PktPair the 1-hop paths look
good (equivalent to ETX in Figure 12) but self-interference is
evident starting at 2 hops.

5.5 Variability of TCP Throughput using HOP
and ETX

To measure the impact of routing metrics on the variability of
TCP throughput, we carry out the following experiment. We
select 6 nodes on the periphery of the testbed, as shown in Fig-
ure 2. Each of the 6 nodes then carried out a 3-minute TCP
transfer to the remaining 5 nodes. The TCP transfers were set
sufficiently apart to ensure that no more than one TCP trans-
fer will be active at any time. There is no other traffic in the
testbed. We repeated this experiment 10 times. Thus, there
were a total of 6 × 5 × 10 = 300 TCP transfers. Since each
transfer takes 3 minutes, the experiment lasts for over 15 hours.

In Figure 15 we show the median throughput of the 300 TCP
transfers using each metric. As before, the error bars represent
SIQR. Once again, we see that the RTT metric is the worst per-
former, and the ETX metric outperforms the other three met-
rics by a wide margin.

The median throughput using the ETX metric is 1133Kbps,
while the median throughput using the HOP metric is 807.5.
This represents a gain of 40.3%. This gain is higher than the
23.15% obtained in the previous experiment because these ma-
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Figure 15: 30 Pairs: Median throughput with differ-
ent metrics. The difference between HOP and ETX is
higher than it is for All Pairs.
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Figure 16: 30 Pairs: Each point is a CoV of through-
puts of 10 TCP transfers between a given source-
destination pairs using ETX and HOP. The CoVs are
much lower under ETX, indicating that ETX chooses
stable links.

chines are on the periphery of the network, and thus, the paths
between them tend to be longer. As we have noted in Sec-
tion 5.4, the ETX metric tends to perform better than HOP on
longer paths. The higher median path lengths substantially de-
grades the performance of RTT and PktPair, compared to their
performance shown in Figure 7.

The HOP metric selects the shortest path between a pair of
nodes. If multiple shortest paths are available, the metric sim-
ply chooses the first one it finds. This introduces a certain
amount of randomness in the performance of the HOP metric.
If multiple TCP transfers are carried out between a given pair
of nodes, the HOP metric may select different paths for each
transfer. The ETX metric, on the other hand, selects “good”
links. This means that it tends to choose the same path between
a pair of nodes, as long as the link qualities do not change dras-
tically. Thus, if several TCP transfers are carried out between
the same pair of nodes at different times, they should yield sim-
ilar throughput using ETX, while the throughput under HOP
will be more variable. This fact is illustrated in Figure 16.

The figure uses coefficient of variation (CoV) as a measure
of variability. CoV is defined as standard deviation divided
by mean. There is one point in the figure for each of the 30
source-destination pairs. The X-coordinate represents CoV
of the throughput of 10 TCP transfers conducted between a
given source-destination pair, and the Y co-ordinate represents
the CoV using HOP. The CoV values are significantly lower
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Figure 17: Throughputs with multiple simultaneous
TCP connections.

with ETX. Note that a single point lies well below the diago-
nal line, indicating that HOP provided more stable throughput
than ETX. This point represents TCP transfers from node 23 to
node 10. We are currently investigating these transfers further.
It is interesting to note that for the reverse transfers, i.e. from
node 10 to node 23, ETX provides lower CoV than than HOP.

5.6 Multiple Simultaneous TCP Transfers

In the experiments described in the previous section, only one
TCP connection was active at any time. This is unlikely to be
the case in a real network. In this section, we compare the per-
formance of ETX, HOP and PktPair for multiple simultaneous
TCP connections. We do not consider RTT since its perfor-
mance is poor even with a single TCP connection.

We use the same set of 6 peripheral nodes shown in Fig-
ure 2. We establish 10 TCP connections between each distinct
pair of nodes. Thus, there are a total of 6 × 5 × 10 = 300
possible TCP connections. Each TCP connection lasts for 3
minutes. The order in which the connections are established is
randomized. The wait time between the start of two successive
connections determines the number of simultaneously active
connections. For example, if the wait time between starting
consecutive connections is 90 seconds, then two connections
will be active simultaneously. We repeat the experiment for
various numbers of simultaneously active connections.

For each experiment we calculate the median throughout of
the 300 connections, and multiply it by the number of simulta-
neously active connections. We call this product the Multiplied
Median Throughput (MMT). MMT should increase with the
number of simultaneous connections, until the load becomes
too high for the network to carry.

In Figure 17 we plot MMT against the number of simultane-
ous active connections. The figure shows that the performance
of the PktPair metric gets significantly worse as the the number
of simultaneous connections increase. This is because the self-
interference problem gets worse with increasing load. In the
case of ETX, the MMT increases to a peak at 5 simultaneous
connections. The MMT growth is significantly less than lin-
ear because there is not much parallelism in our testbed (many
links interfere with each other) and the increase that we are
seeing is partly because a single TCP connection does not fully
utilize the end-to-end path. We believe the MMT falls beyond
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5 simultaneous connections due to several factors, including
802.11 MAC inefficiencies and instability in the ETX metric
under very high load. The MMT using HOP deteriorates much
faster than it does with ETX. As discussed in Section 5.8, at
higher loads HOP performance drops because link-failure de-
tection becomes less effective.

5.7 Web-like TCP Transfers

Web traffic constitutes a significant portion of the total Internet
traffic today. It is reasonable to assume that web traffic will
also be a significant portion of traffic in wireless meshes such
as the MIT Roofnet [29]. The web traffic is characterized by
the heavy-tailed distribution of flow sizes: most transfers are
small, but there are some very large transfers [24]. Thus, it
is important to examine the performance of web traffic under
various routing metrics.

To conduct this experiment, we set up a web server on host
128. The six peripheral nodes served as web clients. The web
traffic was generated using Surge [6]. The Surge software has
two main parts, a file generator and a request generator. The
file generator generate files of varying sizes that are placed on
the web server. The Surge request generator models a web
user that fetches these files. The file generator and the request
generator offer a large number of parameters to customize file
size distribution and user behaviors. We ran Surge with its
default parameter settings, which have been derived through
modeling of empirical data [6].

Each Surge client modeled a single user running HTTP 1.1
Each user session lasted for 40 minutes, divided in four slots
of 10 minutes each. Each user fetched over 1300 files from
the web server. The smallest file fetched was 77 bytes long,
while the largest was 700KB. We chose to have only one client
active at any time, to allow us to study the behavior of each
client in detail. We measure the latency or each object: the
amount of time elapsed between the request for an object, and
the completion of its receipt. Note that this is not an accurate
estimate of the delay a client will see, since we are ignoring
rendering delays.

In Figure 18, we plot the median latencies experienced by
each client. It can be seen that ETX reduces the latencies ob-
served by clients that are further away from the web server.
This is consistent with our earlier finding ETX tends to per-
form better than HOP on longer paths. For host 23, 100 and
20, the median latency under ETX is almost 20% lower than
the median latency under HOP. These hosts are relatively fur-
ther away from the webserver running on host 128. On the
other hand, for host 1, the median latency under HOP is lower
by 20%. Host 1 is just one hop away from the web server.
These results are consistent with the results in Section 5.4: on
longer paths, ETX performs better than HOP, but on one-hop
paths, the HOP metric sometimes performs better.

To study whether the impact of ETX is limited to large trans-
fers we studied the median response times for small objects,
i.e. files that are less than 1KB in size and large objects, i.e.,
those over 8KB in size. These medians are shown in Fig-
ures 19 and 20, respectively. The benefit of ETX is indeed

more evident in case of larger transfers. However, ETX also
reduces the latency of small transfers by significant propor-
tion. This is particularly interesting as the data sent from the
server to client in such small transfers fits inside a single TCP
packet. It is clear that even for such short transfers, the paths
selected by ETX are better.

5.8 Discussion

We conclude from our results that load-sensitivity is the pri-
mary factor determining the three metrics’ relative perfor-
mance. Although it appears at first to be a desirable attribute,
load-sensitivity makes a metric susceptible to self-interference
and hence causes poor performance. The RTT metric is the
most sensitive to load; it suffers from self-interference even
on one-hop paths and has the worst performance. The Pkt-
Pair metric is not affected by load generated by the probing
node, but it is sensitive to other load on the channel. This
causes self-interference on multi-hop paths and degrades per-
formance. The ETX metric has the least sensitivity to load and
it performs the best. Furthermore, our preliminary measure-
ments of non-rate-limited UDP traffic indicate that extreme
traffic loads can affect ETX accuracy and impair throughput.
De Couto et al. [10] have also observed this effect of non-rate-
limited traffic on ETX.

Our experience with HOP leads us to believe that its per-
formance is very sensitive to competing factors controlling the
presence of poor links in the link cache. Consider the evolu-
tion of a route during a long data transfer. When the transfer
starts, the link cache contains a fairly complete topology, in-
cluding many poor links. The shortest-path Dijkstra computa-
tion picks a route that probably includes poor (lossy or slow)
links. Then as the data transfer proceeds, Route Maintenance
detects link failures and sends Route Error messages, causing
the failed link to be removed from link caches. Since poor links
suffer link failures more frequently than good links, over time
the route tends to improve. However this process can go too
far: if too many links are removed, the route can get longer and
longer until finally there is no route left and the node performs
Route Discovery again. On the other hand, a background load
of unrelated traffic in the network tends to repopulate the link
cache with good and bad links, because of the caching of link
existence from overheard or forwarded packets. The compe-
tition between these two factors, one removing links from the
link cache and the other adding links, controls the quality of
the HOP metric’s routes. For example, originally LQSR sent
Link Info messages when using HOP. When we changed that,
to make LQSR with HOP behave more like DSR, we saw a
significant improvement in median TCP throughput. This is
because the background load of Link Info messages was re-
populating the link caches too quickly, reducing the effective-
ness of the Route Error messages.

Our study has several limitations that we would like to cor-
rect in future work. First, our data traffic is entirely artificial.
We would prefer to measure the performance of real network
traffic generated by real users. Second, we do not investigate
packet loss and jitter with constant-bit-rate datagram traffic.
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Figure 18: Median latency for all files
fetched
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Figure 19: Median latency for files
smaller than 1KB
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Figure 20: Median latency for files
larger than 8KB
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Figure 21: Average Throughput of 45 1-minute TCP
transfers with mobile sender using HOP and ETX.

This would be relevant to the performance of multimedia traf-
fic. We would also like to investigate performance of other
wireless link quality metrics such as signal strength.

6 A Mobile Scenario

In the traffic scenarios that we have considered so far, all the
nodes have been stationary. In community networks like [7,
29, 30] most nodes are indeed likely to be stationary. However,
in most other ad-hoc wireless networks, at least some of the
nodes are mobile. Here, we consider a scenario that involves a
single mobile node, and compare the performance of ETX and
HOP metrics.

The layout of our testbed is shown in Figure 2. We set up
a TCP receiver on node 100. We slowly and steadily walked
around the periphery of the network with a Dell Latitude Lap-
top, equipped with a NetGear card. A process running on this
laptop repeatedly established a TCP connection to the receiver
running on node 100, and transferred as much data as it could
in 1 minute. We did 15 such transfers in each walk-about. We
did 3 such walk-abouts each for ETX and HOP. Thus, for each
metric we did 45 TCP transfers.

The median throughput of these 45 transfers, along with
SIQR is shown in Figure 21. We choose median over mean
since the distribution of throughputs is highly skewed. The
median throughput under HOP metric is 36% higher than the
median throughput under the ETX metric. Note also that the
SIQR for ETX is 173, which is comparable to the SIQR of 188
for HOP. Since the median throughput under ETX is lower, the

higher SIQR indicates greater variability in throughput under
ETX.

As the sender moves around the network, the ETX met-
ric does not react sufficiently quickly to track the changes in
link quality. As a result, the node tries to route its packets us-
ing stale, and sometimes incorrect information. The salvaging
mechanisms built into LQSR do help to some extent, but not
well enough to overcome the problem completely. Our results
with PktPair (not included here) indicate that that this problem
is not limited to just the ETX metric. Any approach that tries
to measure link quality will need some time to come up with
a stable measure of link quality. If during this time the mobile
user moves sufficiently, the link quality measurements would
not be correct. Note that we do have penalty mechanisms built
into our link quality measurements. If a data packet is dropped
on a link, we penalize the metric as described in Section 2. We
are investigating the possibility that by penalizing the metric
more aggressively on data packet drops we can improve the
performance of ETX.

The HOP metric, on the other hand, faces no such problems.
It uses new links as quickly as the node discovers them. The
efficacy of various DSR mechanisms to improve performance
in a mobile environment has been well documented [18]. The
metric also removes from link cache any link on which a node
suffers even one packet loss. This mechanism, which hurts the
performance of HOP metric under heavy load, benefits it in the
mobile scenario.

We stress that this experiment is not an attempt to draw gen-
eral conclusions about the suitability of any metric for routing
in mobile wireless networks. Indeed, such conclusions can not
be drawn from results of a single experiment. This experiment
only serves to underscore the fact that static and mobile wire-
less networks can present two very different sets of challenges,
and solutions that work well in one setting are not guaranteed
to work just as well in another.

7 Related Work

There is a large body literature comparing the performance
of various ad-hoc routing protocols. Most of this work is
simulation-based and the ad-hoc routing protocols studied all
minimize hop-count. Furthermore, many of these studies focus
on scenarios that involve significant node mobility. For exam-
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ple, Broch et al. [8] compared the performance of DSDV [26],
TORA [25], DSR [18], and AODV [27] using ns-2 [13] simu-
lations of mobile nodes.

The problem of devising a link-quality metric for ad-hoc
networking with 802.11 in neighborhood and office environ-
ments has been studied previously. Most notably, De Couto et
al. [10] propose ETX and compare its performance to HOP us-
ing DSDV and DSR with a small-datagram workload. Their
study differs from ours in many aspects, but it is the most
closely-related work of which we know. They conclude that
ETX outperforms HOP with DSDV, but find little benefit with
DSR. De Couto et al. only study the throughput of single,
short (30 second) data transfers using small datagrams. Their
experiments include no mobility. In contrast, we study TCP
transfers. We examine the impact of multiple simultaneous
data transfers. We study variable-length data transfers and in
particular, look at web-like workloads where latency is more
important than throughput. Finally, our work includes a sce-
nario with some mobility. De Couto’s implementation of DSR
differs from ours in several ways, which may partly explain
our different results. Their DSR implementation only discov-
ers link metrics via Route Request / Reply; they do not have
Metric Maintenance mechanisms. In their testbed (as in ours),
the availability of multiple paths means after the initial route
discovery the nodes rarely send Route Requests. Hence dur-
ing their experiments, the sender effectively routes using a
snapshot of the ETX metrics discovered at the start of the ex-
periment. [9] Their implementation takes advantage of 802.11
link-layer acknowledgments for failure detection. This means
their link-failure detection is not vulnerable to loss, or per-
ceived loss due to delay. Their implementation does not sup-
port salvaging. They mitigate this in their experiments by
sending five “priming” packets before starting each data trans-
fer. Their implementation uses a “blacklist” mechanism to
cope with asymmetric links. Finally, their implementation has
no security support and does not use cryptography so it has
much less CPU overhead.

Woo et al. [31] examines the interaction of link quality and
ad-hoc routing for sensor networks. Their work assumes pas-
sive observation of packet reception probability instead of ac-
tive probing. They compare various filters for smoothing the
reception probability. Using this as a basis, they compare
several routing protocols including shortest-path routing with
thresholding to eliminate links with poor quality and ETX-
based distance-vector routing. Their study uses rate-limited
datagram traffic. They conclude that ETX-based routing is
more robust.

Signal strength, or signal-to-noise ratio (SNR), has been
used as a link quality metric in several routing schemes for mo-
bile ad-hoc networks. In [15] the authors use an SNR threshold
value to filter links discovered by DSR Route Discovery. Sim-
ilar ideas have also been explored in [12, 23, 32]. The main
problem with these schemes is that they may end up excluding
links that are poor in quality, but are still necessary to maintain
connectivity. Another approach is used in [14], where links are
still classified as good and bad based on a threshold value, but a
path is permitted to use poor-quality links to maintain connec-

tivity. Punnoose et. al. [28] also use signal strength as a link
quality metric. They convert the predicted signal strength into
a link quality factor, which is used assign weights to the links.
The basic DSR algorithm then chooses the route with overall
best link quality, instead of just the shortest route. Zhao and
Govindan [33]. studied packet delivery performance in sensor
networks, and discovered that high signal strength implies low
packet loss, but low signal strength does not imply high packet
loss. We plan to study the SNR metric in our testbed as part
of our future work. Our existing hardware and software setup
does not provide adequate support to study this metric.

Awerbuch et. al. [5] study impact of automatic rate selection
on performance of ad hoc networks. They propose a routing
algorithm that selects a path with minimum transmission time.
Their metric does not take packet loss into account. It is pos-
sible to combine this metric with the ETX metric, and study
performance of the combined metric. This is also part of our
future work.

An implementation of AODV that uses the link-filtering ap-
proach, based on measurement of loss rate of unicast probes,
was demonstrated in a recent IETF meeting [4, 22]. We tested
this implementation in our testbed, and found it to be too un-
stable to complete our tests. We hope to get an improved ver-
sion of the code soon, after which we will be able to conduct
additional tests. We should note however, that the rate of uni-
cast packet loss is very low in our testbed. The 802.11 MAC
includes an ARQ mechanism retransmits a unicast packet sev-
eral times. Since we are using a static testbed, these retrans-
missions are usually sufficient to ultimately get the packet de-
livered on all except very poor links.

8 Conclusions

We have examined the performance of three candidate link-
quality metrics for ad-hoc routing and compared them to min-
imum hop-count routing. Our results are based on several
months of experiments using a 23-node static ad-hoc network
in an office environment. The results show that with station-
ary nodes the ETX metric significantly outperforms hop-count.
The RTT and PktPair metrics perform poorly because they are
load-sensitive and hence suffer from self-interference. How-
ever, in a mobile scenario hop-count performs better because
it reacts more quickly to fast topology change.
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