
1

Load Management in a Large-Scale Decentralized File System
Atul Adya, William J. Bolosky, Ronnie Chaiken, John R. Douceur,

Jon Howell, and Jacob R. Lorch
 Microsoft Research

Abstract

This paper discusses our general approach to load
management in a distributed system, as well as its
application to a particular system, Farsite. Farsite is a
peer-to-peer distributed file system that uses its
constituent machines to maintain consistency of file
system metadata and replicated file content. We argue
that control theory is inappropriate for load
management in this and other similar systems, and give
alternative techniques for preventing overload of
limited resources such as CPU and disk. We describe
our method of workflow graphs, which allows a system
designer to describe the potential sources of overload
and ensure all are managed properly, and we apply
this method to Farsite. We also describe novel
techniques for load management, including clown-car
compression and a scheme for achieving
approximately even file replication without central
coordination or global knowledge.

1. Introduction

This paper addresses the problem of load
management for distributed systems in general, and for
our Farsite [1] system in particular. The goal of load
management is to prevent the system from placing
more load on system resources, such as disk space or
network bandwidth, than these resources can handle.
This is particularly difficult for distributed systems, in
which each machine has an incomplete view of the
system and thus may easily create more load than the
system can handle.

Farsite is a large-scale file system implemented
entirely without centralized servers. Its directories are
maintained using Byzantine-fault-tolerant (BFT)
replicated state machines [5], and its files are replicated
and distributed among the machines that use the file
system. It is easy for a client to apply substantial load
to this system, e.g., by simply untarring or recursively
copying a large directory tree. Under stresses of this
sort, things tend to break: Work backs up, queues
overflow, timeouts expire, messages get lost, and
resources get depleted.

Most system designers focus on correctness and
performance issues and tend to ignore load
management. However, expecting that underlying
subsystems such as the operating system scheduler and
TCP will prevent overload is dangerous. Fig. 1
(discussed in detail in section 5) shows the importance

of explicit load management. We ran a simple
experiment in which we created a number of
directories in two different versions of Farsite, one with
all our load management techniques enabled, and one
with a single load manager turned off. Removing just
this one instance of load management caused the
system’s use of memory to perpetually grow,
eventually exhausting memory and causing a system
crash. Our experiences with Farsite show that there are
many such crashes waiting to happen if designers
ignore explicit load management.

Feedback control theory provides one way to deal
with load. When machines begin to get overwhelmed
with load, they send feedback signals to the machines
generating it; these machines slow down their
operation and relieve the overload. However,
conventional control does not work well for Farsite, for
at least three reasons. First, there is substantial lag
between the generation of workload and when it is
noticed, so feedback arrives much later than needed.
Second, since every file creation leads to several
replicas being made, there is a multiplicative effect of
activity on workload, amplifying the effect of
inaccurate feedback. Third, machines are
heterogeneous and are not dedicated solely to Farsite,
so it is difficult to predict the effect on the system of a
given control.

Therefore, instead of using conventional control
for Farsite and other similar systems, we recommend
the following approach. First, reduce the effective
workload by various standard techniques including
caching and compression, or by a novel technique
called squelching that stops unnecessary load from
being produced. Next, prevent possible overload of
bandwidth-limited resources such as CPU and network
bandwidth by queuing or shedding requests that find

0

40,000

80,000

120,000

160,000

0 120 240 360 480 600 720
Time (s)

of

 d
ir

ec
to

ri
es

 o
r

ob
je

ct
s

Dirty o bjects (no thro ttling) Directo ries (thro ttling)
Directo ries (no thro ttling) Dirty o bjects (thro ttling)

Fig. 1: Effect of throttling--crash occurs without it

2

such resources saturated. Finally, prevent possible
overload of resources with fixed amounts of space,
such as memory and disk, with either throttling or
infinite-load management, terms which we now
describe in more detail.

Throttling stops the flow of load to a component
whenever its load reaches a certain threshold, and
infinite-load management allows a component to deal
with an arbitrary amount of offered load. Infinite-load
management can be achieved with various techniques,
including premature release, shedding, and our novel
clown-car compression. Premature release means a
component releases load early to a downstream
component if it reaches its limit. Shedding means a
component simply drops load, relying on rectification
processes to correct any resultant inaccuracies later.
Clown-car compression means compressing an
arbitrary amount of load into a fixed amount of space.

Large-scale systems may contain many sites that
are susceptible to overload. To help a system designer
identify such sites, and to assist in determining whether
each potential overload has been appropriately
addressed, we develop the method of workflow graphs.
After we describe this method in general, we
demonstrate its use in Farsite as we apply our
workload-management techniques to that system.

Our work has yielded several contributions,
including: (1) a successful demonstration of applying
workload management in a working distributed system;
(2) the method of workflow graphs for methodically
identifying and eliminating potential overloads; (3) the
technique of clown-car compression to accumulate an
arbitrary amount of load; and (4) a mechanism for
achieving approximately even file replication without
central coordination or global knowledge.

This paper is organized as follows. Section 2
briefly describes Farsite. Section 3 discusses load
management: what it is, why we believe conventional
control theory is inapplicable, the techniques we
suggest, and our method of workflow graphs. Section
4 shows how Farsite uses our load management
techniques and applies our method of workflow graphs
to that system. Section 5 shows experimental results
demonstrating the effectiveness of our load

management techniques in Farsite. Section 6 surveys
related work, and section 7 summarizes and concludes.

2. Background: the Farsite file system

Farsite [1] is a distributed file system under
development at Microsoft Research. Its goal is to run a
file system entirely on untrusted client workstation
machines, with minimal administrative control or trust,
in well-connected environments on the scale of
100,000 nodes. Rather than relying on administrators
to anticipate and provision for growth, it exploits
unused storage space on client computers, which grows
in aggregate as the computing installation size grows.

Farsite assumes a cooperative environment in
which users allow others to use the spare disk capacity
of their workstations. This assumption is most
reasonable within an organization that owns all the
machines on which users work, such as a university or
corporation. As a consequence of this assumption,
Farsite views disk space as a shared resource that needs
to be managed from a global perspective.

Fig. 2 shows a stylized view of a Farsite file
system. Every machine in the system has three roles:
client, directory server group member, and file host. As
a client, the machine provides an interface to the file
system for local applications. As a directory server
group member, the machine serves as one member of a
replicated state machine managing file system
metadata. As a file host, the machine stores replicas of
file data on behalf of the overall system.

Although we expect most users of Farsite to
cooperate, we allow for the possibility that some act
maliciously. Thus, the replicated state machines used
for directory groups are Byzantine-fault-tolerant [5],
i.e., they tolerate arbitrary failure of participants,
including failure to act appropriately. BFT state
machines require a high degree of replication: 3f+1
machines tolerate f failures. Therefore, storing actual
file data in BFT state machines is impractical. Instead,
Farsite replicates file contents on file hosts, where
simple replication on f+1 machines tolerates f failures.

To scale to 100,000 nodes, a single Farsite
installation will contain many independent directory
server groups, each implementing a small subset of the
file system namespace. Each client may interact with
many such directory server groups.

2.1 System architecture
Fig. 3 illustrates the software architecture running

on each host. Three managers implement the three
roles a host assumes in the system: The client manager
manages locally-used metadata and file data. The file
host manager manages file replicas stored on the local
disk. The directory manager, serving as a single
replica in a BFT state machine, manages metadata.

Fig. 2: Network interactions in Farsite

directory
server
replica

logical directory server

client client

metadata
traffic

file content
traffic

file
host

file
host

replication
control
traffic

3

 In addition to these three role managers, Farsite
includes two other main software components: A
kernel-level file-system driver exports a file-system
interface; it services data-intensive read and write
operations directly, and relays most operations to the
user-level client manager. The object manager, which
serves all three role managers, manages the on-disk and
in-memory storage of data other than file contents.

Persistent disk storage is used for several purposes,
in addition to its direct use by applications and the
operating system. The client manager and file host
manager store encrypted file contents in NTFS files
[16]. These files are exported remotely to enable
access by other clients and replication by other file
hosts. The object manager is a front-end to a
conventional database system that also uses local disk.

2.2 System operation
When the Farsite kernel driver receives an

application request to open a file, it handles the request
as follows. If a copy of the file is in the local cache, it
opens the file and returns a handle to the application.
If the file is not present locally, it calls up to the user-
level component of the client manager, which asks the
directory server for a list of file hosts with replicas of
the file. The client contacts one of these file hosts and
copies the file to its cache. It then notifies the driver,
which opens a handle to the file and returns it to the
application. The file remains cached locally until it has
gone unused for several days; while it is cached, open
and read operations can be serviced by the driver alone.

When applications modify directories or files, the
driver logs the updates and passes them up to the client
manager at user level. The client manager sends the
updates to the directory server in batches. These
update messages include changes to directory
information, such as created or deleted files, and
notifications of writes to files. They do not include
updated file contents, just a hash of them.

After the directory server learns of a new file
having been written, it randomly selects a set of file
hosts and tells them to make copies of the new file.
When the server learns of an update to an existing file,
it tells the file hosts that store old versions of the file to
make up-to-date copies. The server inserts a write-
absorption delay of one hour before telling file hosts to
copy a recently written file, to provide an opportunity
to absorb subsequent writes to the same file. Studies
have shown that files are often overwritten or deleted
soon after they are written [4, 20].

When a file is created or modified, the client
marks the local copy of the file dirty, meaning the file
is the only copy in the system and must not be ejected.
Once another copy is made, the directory server
notifies the client, and the client clears the dirty flag.

2.3 Omissions
This system requires a mechanism for ensuring file

consistency. Farsite employs a pessimistic strategy in
which a server locks a file when a client requests it for
write access. Lock management is an involved and
orthogonal topic, so we do not discuss it further herein.

Similarly, there are obvious security concerns with
storing files on clients. Encryption can protect against
inappropriate reading of files, but there are more
involved issues regarding destruction or damage of file
copies. As with consistency, security is beyond the
scope of this paper but is discussed elsewhere [1].

3. Load management

In this section, we discuss load management in
systems such as Farsite. Our goal is to prevent system
resources from becoming overloaded. Some of these
resources, such as disk space, have limited size; we call
them static resources. Others, such as CPU and
network bandwidth, have limited bandwidth, i.e., their
capacity is measured in units that include time, such as
MB/s. We call these dynamic resources.

3.1 Problems with conventional control
One approach to load management is to use a

conventional control system [12], which applies an
adjustment to a process to limit the deviation of one or
more controlled variables from their desired values.
Control systems operate by adjusting the values of one
or more manipulated variables so as to indirectly affect
the values of the controlled variables. For example, in
Farsite, the load on each resource is a variable we
would like to control and the rate at which clients are
permitted to perform file system operations is a
variable we can manipulate.

Control systems are either open-loop or closed-
loop. Open-loop controllers base their manipulations
on a predictive model of the controlled systems’
response; closed-loop controllers base manipulations
on observations of the controlled systems’ response.
Open-loop controllers need accurate models of system
behavior and precise measurement of system input to

Fig. 3: Software architecture

local cached
files

file host
manager

object
store

software component

persistent disk storage

key

object
manager

direct use
by apps / OS

remote
file replicas

directory
manager

file-sys
driver

client
manager

4

choose the magnitude and direction of their control.
Closed-loop controllers can use simpler models to
inform the direction of their control, allowing feedback
to progressively refine the magnitude.

Open-loop control is not practical for Farsite, or
most other distributed systems, since for such systems
accurate models are infeasible. Machines cannot
independently predict the load effect of their activity,
since load is a function of all machines’ activity. We
would need a scalable, high-speed mechanism to gather
and distribute load information among machines,
which would add great complexity to the system if it
were even possible. Furthermore, in Farsite, machines
are randomly selected, heterogeneously configured,
and externally perturbed, making accurate load
estimation especially difficult.

A closed-loop controller also will not work for
Farsite, or any other system in which activity has an
effect on load far in the future. In Farsite, the hour-
long write-absorption delay between the time files are
updated and the time file replicas are made means that
feedback for a closed-loop control system would arrive
long after it was most needed. This long feedback
delay also means that, to be even somewhat helpful in
limiting load spikes, the delayed backpressure would
have to be very aggressive, drastically retarding the
completion of file I/O operations on the client and
making the user experience very unpleasant.

Another problem with using a control system for
Farsite is that the cost of generating future workload is
far lower than the cost of processing that workload.
Every file a client creates is replicated three to four
times system-wide, so the bandwidth used for
replication is many times the disk bandwidth used by
the client. Also, workload generation uses local disk
bandwidth, but replication uses remote disk bandwidth
and network bandwidth, and the latter is far scarcer.
The difference in relative cost gives the control loop a
high forward gain, which magnifies any inaccuracy in
the value of the applied control signal and necessitates
aggressive feedback.

3.2 Load reduction
The first step in controlling load on resources is

load reduction, i.e., lessening it. This does not prevent
overload, but merely reduces its probability. There are
countless examples of reduction techniques. Here, we
give three illustrative examples that are used frequently
in Farsite: caching, compression, and squelching.

Caching is storing results so later operations can
reuse them and thereby place less load on the system.

Compression is combining multiple operations
into one aggregate operation when performing the
aggregate operation will produce less load than
performing the operations separately. For example, in
Farsite, file system updates are delayed in the hope that

they can be combined with subsequent ones. Coda
[14] also uses compression, replacing log entries with
smaller, semantically equivalent sequences of entries.

Squelching is the prevention of unnecessary load
production. For example, if a file host knows it will
reject a certain subset of file replica requests, it can tell
the server this and thereby prevent the server from
unnecessarily introducing work items into the system.
Squelching is especially useful when the rejecter and
the item producer are on different machines, since the
squelching reduces network load.

3.3 Preventing dynamic overload
There are two methods for preventing overload of

dynamic resources: shedding and queuing. Shedding
drops a work item when there are insufficient resources
to handle it; this requires that the system designer add
rectification processes to correct for deficiencies due to
dropped work items. Queuing delays work until there
are sufficient resources to handle it. This converts
dynamic load temporarily into static load, namely the
disk or memory space taken by the queued work item.

 Often, queuing is implicit and requires no special
implementation effort. For example, if one creates
more jobs than processors can currently handle, the
operating system scheduler will automatically block
jobs until CPU bandwidth is available. However, this
is not necessarily beneficial, since the resulting static
load may not be apparent. For instance, if a system is
loaded with far more jobs than it can handle, the large
number of blocked thread stacks may cause memory
overload. The system designer must foresee such
scenarios and make the static load more explicit so that
she can apply the techniques we will describe in later
subsections for preventing static overload. Since not
all such scenarios can be foreseen, stress testing the
system is useful for identifying where static load
caused by queuing is a problem.

3.4 Preventing static overload

3.4.1 Identifying potential static overloads

We have developed the workflow graph
methodology to aid system designers in enumerating
potential static overloads and ensuring there are
sufficient mechanisms for preventing them all. In this
subsection, we discuss the first step in this
methodology: identifying and graphing the locations
where static overload can occur in the system.

We call a place in the system where static load can
accumulate a reservoir. Examples of reservoirs in
Farsite are the queue of file replications needing to be
made but for which bandwidth is currently unavailable,
the set of file updates waiting for an hour before they
are processed in the hope they can be compressed, and
the set of file replicas stored on the local disk.

5

The first step in our methodology is to graph the
reservoirs and load flows in the system. A sample
workflow graph is shown in Fig. 4. In such a graph, a
box denotes a reservoir and an arrow denotes a load
flow. An arrow between boxes shows where load can
come out of one reservoir and enter another. The load
removed from the first may be different than the load
added to the second; for instance, a reservoir of replica
creation requests may pass load into a reservoir of file
replicas on disk, reflecting the fact that after making a
file replica one deletes the replica request. An arrow
with a sink but no source shows where load enters the
system; e.g., this might represent an application
modifying a file, thereby increasing load on the
reservoir of updates to send to a server. An arrow with
a source but no sink shows where load exits the
system; e.g., an arrow out of a reservoir of local file
copies could represent those files getting deleted.

Since most systems are large and complex, it is
useful to break the system into possibly-overlapping
subsystems and graph each separately. Furthermore,
breaking the system into subsystems allows each graph
to consist solely of reservoirs and load flows within a
single machine, which is important for reasons we will
describe later. Wherever dividing into subsystems
separates the source and sink of a load-flow arrow, we
depict this as an arrow getting rid of load in one
subsystem and another arrow creating load in the other
subsystem. For instance, when we divide the workflow
graph of Fig. 4a into subsystems in Fig. 4b, the arrow

from B to C becomes an out-arrow from B and an in-
arrow to C. As a special case, if load can travel out of
a subsystem, through external reservoirs, then back into
the subsystem, we need to depict this flow. We call
this an itinerant edge and depict it with a double-arrow.
For instance, going from Fig. 4a to Fig. 4b, we needed
to add an itinerant edge from D to H.

Every reservoir in the graph is a potential source
of static overload that must be addressed with one of
the methods in the next subsection. By annotating the
graph as described in that subsection, we can ensure
that these reservoirs are immune to static overload.

3.4.2 Static overload prevention techniques

We prevent static overload by ensuring that each
reservoir is incapable of becoming overloaded. We
have two ways to prevent overload of a reservoir:
throttling, which prevents load in excess of its capacity
from ever reaching it, or infinite-load management,
which allows it to deal with arbitrary amounts of load.

Throttling means setting a limit on a reservoir’s
load and temporarily cutting off the flow of load to that
reservoir when the reservoir reaches that limit. We call
this limit the throttling threshold. For example, in
Farsite, one of our reservoirs is the set of client updates
waiting to be sent to the server. If it reaches a certain
threshold, it tells the file system it temporarily cannot
submit updates, and the file system then temporarily
disables completion of certain file system operations.

A reservoir’s throttle need not stop a load flow
directly into that reservoir; instead, it may stop load
flow at an earlier point. For instance, in Fig. 4,
reservoir G might throttle the flow from E to F,
ultimately preventing flow to G. However, this can be
problematic if the throttling delay, i.e., the time it takes
load to flow from the throttled link to the reservoir
applying the throttle, is significant. The problem arises
because the reservoir decides to engage or disengage
the throttle based on its own load, so these decisions
are late by the throttling delay. When the throttle is
engaged late, load has already flowed arbitrarily
quickly across it, potentially causing a load spike;
when the throttle is disengaged late, work is
unnecessarily halted waiting for it. In particular, we do
not throttle across Farsite’s write-absorption delay
because the system would oscillate too much. Initially,
applied work would not be regulated at all; once the
threshold was reached, work would be stopped for
some arbitrarily long period while the system handled
the load generated during the hour-long delay. This
type of behavior is very unpleasant to users.

The throttling threshold is an important parameter
of a throttle. To set it, first determine the reservoir’s
capacity, i.e., the most load it should ever contain. Set
the threshold equal to this capacity minus the total
capacity of all reservoirs between the throttling

I H

K

D C

G

F

E

A

B

Fig. 4: Sample workflow graphs: (a) and (b) are
the same system, with (b) divided into subsystems

I H

K

D C

G

F

E

A

B

Subsystem 1 Subsystem 3 Subsystem 2

(a)

(b)

reservoir load flow itinerant edge

J

J

6

reservoir and the throttled link. The rationale is that
even with the throttled link stopped, load may still flow
from reservoirs after the link to the throttling reservoir,
and it must be able to store that load in addition to what
it already has. Note that since the threshold must be
positive, this constrains how far back in a load flow
one can throttle: one cannot throttle across reservoirs
unless their total capacity is less than the throttling
reservoir’s capacity. Note also that in some cases a
reservoir’s capacity may change with time; for
instance, the space available for Farsite files will
change as unrelated applications use and release space.

Although we noted earlier that control theory is
generally inappropriate for distributed systems like
Farsite, throttling is actually a degenerate instance of a
discrete, closed-loop control system. This implies that
one should apply throttling only when there is minimal
feedback delay, low forward gain, and deterministic
responsiveness. These conditions all hold in the areas
in Farsite where we use throttling.

Infinite-load management is the alternative to
throttling, and refers to any technique that allows a
reservoir to deal with an arbitrary amount of load.
Examples of such techniques are premature release,
clown-car compression, and shedding.

Premature release means that whenever the load on
a reservoir reaches a certain limit, it sends load on its
normal course out of the reservoir immediately rather
than waiting for the normal time it would release load
in this way. This ensures that its load never exceeds
that limit. For instance, one reservoir in Farsite is the
set of file system updates held in the file system kernel
buffer. These updates are normally sent to user level
periodically to avoid crossing the kernel-user boundary
for every update. However, if the kernel buffer grows
beyond a certain limit, it sends the updates to user level
immediately, rather than when the periodic process
next would; this means the reservoir cannot overload.

Premature release is infeasible if load cannot
always be released faster than it is accrued, e.g., if
releasing load in some cases requires a disk access. If
releasing load requires remote processing, one cannot
count on arbitrary speed from the network or a remote
node, and thus cannot use premature release.
Throttling can also preclude the use of premature

release, as follows. Making a link throttled means the
source of that link cannot always count on being able
to dispatch load across it; thus, that source cannot use
premature release to prevent overload.

Clown-car compression manages arbitrary load via
compression that can fit an arbitrarily large load in a
fixed amount of space (much as one can stuff in a
clown car as many clowns as show up). In Farsite, we
do this by mapping a set of work items onto a bounded-
size set of objects, thus compressing arbitrary amounts
of work into a finite amount of space. Specifically, the
set of objects is the set of files in the file system,
guaranteed by quotas and other mechanisms to be
within a bounded size. We discuss our use of clown-
car compression in more detail in subsection 4.3.

Shedding is simply discarding load. We have
already seen how shedding can prevent dynamic
overload; we can also prevent static overload by
discarding items taking up space beyond a reservoir’s
capacity. As with shedding for dynamic resources,
shedding for static resources also requires rectification
processes, to correct deficiencies due to dropped load.

We use symbols in workflow graphs to indicate
static overload prevention. A throttle is depicted by a
dashed arrow from the throttling reservoir to the
throttled flow. Infinite-load management is indicated
by an ∞ symbol beneath the reservoir, unless it uses
shedding. For shedding, we highlight the fact that
items are dropped and a rectification process is needed
by using a different symbol: a dotted arrow pointing
downward from the shedding reservoir. Fig. 5 shows a
sample workflow graph with such symbols.

As stated earlier, a reservoir cannot overload if
either (1) it can deal with an arbitrary amount of load
or (2) load in excess of its capacity can never reach it.
From this, we deduce the following method for
determining whether a reservoir in a workflow graph is
immune to overload: it is so if either (1) it uses
infinite-load management, or (2) every path along
which load can enter the system and eventually reach
that reservoir contains a link throttled by that reservoir.
Furthermore, if no static overload exists in a set of
subsystems, and together those subsystems cover all
reservoirs in the system, then the system is immune to
static overload.

3.4.3 Choosing overload prevention techniques

In a distributed system, a reservoir on one machine
should not rely on another machine to prevent overload
since it may be slow, connected by a slow link,
disconnected entirely, or off. In Farsite, it may even be
malicious. Thus, we consider it an important general
principle that overload prevention in a distributed
system must not use the network. Load reduction may
use the network, but overload prevention must not. For
this reason, as discussed earlier, we suggest that all

A

∞

reservoir

∞
load flow itinerant edge

infinite-load
management

shedding throttle

Fig. 5: Sample workflow graph with static
overload prevention symbols

B C D

7

subsystems depicted in a workflow graph be contained
within a single machine.

Choosing which overload prevention technique to
use for each reservoir is an art. Here, we offer some
general principles from experience. Shedding should
be a last resort, since it requires a rectification process
and furthermore this process itself can add load.
Throttling is good for matching workload creation rate
to workload processing rate, but can only be used when
throttling delay is short, there is a mechanism for
halting load flow across the throttled link, and the
throttling reservoir’s capacity exceeds the total
capacity of reservoirs between it and the throttled link.
Premature release, clown-car compression, and
infinite-load management techniques are generally
preferable to throttling, since they do not block the
flow of load in the system; however, such techniques
are not always applicable. Premature release, for
instance, is only possible when load can always be
released faster than it accrues. Also, be aware that
premature release can sometimes increase load; for
example, ejecting a cached file prematurely can
increase load on the system if the file is accessed again.

In some cases, using one of our overload
prevention techniques necessitates complex system
changes with far-reaching consequences. Examples of
this will come up in the next section, where we apply
our load-management techniques to Farsite.

4. Load management in Farsite

4.1 Disk space management
We begin with a discussion of Farsite’s

management of disk capacity, since the local disk is a
critical limited resource used by several of its
subsystems. The main technique Farsite uses for this is
premature release, i.e., deleting cached files or file
replicas earlier than they normally would be deleted.
However, even after choosing the general technique to
use, there are still many details of implementation to
resolve. In this subsection, we describe the approach
Farsite uses to decide which files to delete and when to
delete them. Its goals are (1) prioritizing local over
public usage of a machine’s disk, and (2) making
optimal use of the public portion of a machine’s disk.

The first goal is readily achieved by dividing disk
usage into five priority categories, as shown in Table 1.
As described in section 2, Farsite’s files are maintained
on the local disk, and its object store uses databases
also on the local disk, so Farsite essentially competes
with the operating system and applications for use of
this space. Since Farsite is able to operate, albeit
inefficiently, with little local storage, highest priority is
given to non-Farsite uses. Next-highest priority is
maintaining a free-space target as a buffer and to
reduce disk fragmentation. Next is the set of cached

files, which are copied locally on first access and
cached for several days so access by local applications
is efficient. Next is the set of file replicas, since public
use is given lower priority than local use. The lowest
priority is cached files that have become cold, i.e., not
accessed for several days. There is no reason to waste
available space, so we keep these if there is room.

The second goal, making best global use of space
for file replicas, is more complicated. We would like
to have an equal number of replicas of each file in the
system, so we employ a decentralized approximation of
the following centralized solution: Keep track of the
copy count of each file. Also, keep track of the global
ideal copy count, equal to the number of storage bytes
available divided by the number of file bytes.
Wherever possible, eject replicas of files whose copy
counts exceed the ideal copy count by 1.0 or more, and
replace them with replicas of files whose copy counts
are less than the ideal by 1.0 or more.

Since Farsite is decentralized, neither file hosts nor
servers have enough information to compute an ideal
copy count. Therefore, Farsite manages file replicas as
follows. When a server tells a file host to make a copy
of a file, it tells it the rank of the copy. The first copy
of each file has rank 1; the second has rank 2; etc.
Replicas on a machine are prioritized according to their
rank, so file hosts will eject rank 4 copies before
ejecting rank 3 ones, etc. Also, each server prioritizes
creating new replicas according to the lowest non-
existing rank of each file.

Clearly, this technique uses no global knowledge
or central coordination. To see that it achieves our
goal, consider a system with enough space for two
copies of each file. File A has only one copy, and file
B has three. Therefore, some file host has a rank 3 (or
possibly greater) copy of file B. The server of file A
will contact file hosts and try to make a rank 2 copy of
file A. Once it contacts the file host with the rank 3
copy of file B, that file host will eject that file to make
room for the new rank 2 copy of file A.

A complication is that there may be few file hosts
willing to accept copies of a particular rank that a
server would like to make. In this case, a server may
have to make the request many times before finding a
file host that will accept it. Therefore, Farsite uses
squelching to manage the network load of copy-request
messages, as follows. Each file host knows its rank

Table 1: Disk space-usage priorities

Priority Category Sorted by
 1 (max) non-Farsite use n/a
 2 free-space target n/a
 3 cached files (hot) last-use time
 4 file replicas copy rank
 5 (min) cached files (cold) last-use time

8

ceiling, the highest-rank copy it is willing to make.
When a file host replies to a server’s copy request, or
when the file host’s rank ceiling increases, it sends the
server its rank ceiling value. Servers will not send
copy requests for ranks that exceed a host’s ceiling.

The file host maintains its rank ceiling as follows:
Once per hour, if the disk free space is at least double
the free-space target, the ceiling is incremented,
because more space is available for replicas. It also
increments the ceiling every 24 hours, because the
passage of time makes cache files cold. If a file host
ever rejects or ejects a copy, it sets the ceiling to one
less than the copy’s rank, since this rank is no longer
within the acceptable range. On a new, empty
machine, we do not initialize the ceiling to a large
value just because there is plenty of space, since this
would allow the host to accept high-rank copies which
would likely be ejected as the disk fills up. To prevent
this waste of effort, we initialize the ceiling to zero and
allow it to climb gradually.

We extend the above technique by using
probabilistic squelching to avoid hotspots. If a small
number of file hosts have higher rank ceilings than
most other file hosts, they may be disproportionately
besieged by copy requests. For example, if many
servers want to make rank 4 copies and only a few file
hosts have rank ceilings above 3, these servers will
send all their copy requests to these few file hosts. In
large installations, this problem can be significant.

To address this issue, servers probabilistically
limit their requests to match the rank-acceptance
criteria of file hosts, as follows. As described above,
servers know the reported rank ceilings of all file hosts
on which they store files. Each server maintains a rank
ceiling of its own, which it sets every 10 minutes to the
rank ceiling of a randomly selected file host. This way,
the rank ceiling follows the distribution of the file
hosts’ rank ceilings. Each server restricts its copy

requests to copy ranks no higher than its current rank
ceiling. Thus, if a small number of file hosts have high
ceiling values, a proportionally small number of
servers will make high-rank requests at any given time.

Incidentally, the above algorithm requires periodic
communication between every file host and every
server, which will not scale to large systems. The
following algorithm, which we have not yet
implemented, solves this problem: File hosts report
their rank ceilings only when asked by servers. Every
10 minutes, each server asks a single random host for
its rank ceiling and sets its own ceiling to that value.

4.2 Client subsystem
The first Farsite subsystem we discuss is the client

subsystem, which exports a file system interface to
applications on the local machine so they can perform
operations on the Farsite namespace. Fig. 6 shows the
workflow graph for this subsystem, which we will now
describe in detail. To distinguish the reservoirs labeled
A, B, C, etc. in Fig. 6 from reservoirs in other figures,
we refer to them in the text as 6A, 6B, 6C, etc.

The client subsystem manages metadata using
reservoirs 6A – 6D, as follows. Applications using the
file system interface generate file system updates in the
kernel driver. These are stored in reservoir 6A, the set
of updates held in the kernel buffer. Periodically, these
updates are sent across the kernel-user boundary to
reservoir 6B, the user-level update set, since most of
the client subsystem runs in user level. Periodically,
these updates are sent to the directory server. While
the directory server is processing the updates, they are
held locally in reservoir 6C, the list of updates waiting
to be acknowledged as received by the directory server.
Eventually, the server processes the updates and
notifies the client that a replica was made. These
notifications are held in reservoir 6D until they can be
processed; processing involves persistently marking the
local file clean, i.e., no longer the only valid copy of
the file in the system.

The client subsystem manages file content using
reservoirs 6E and 6F, as follows. When an application
creates a new Farsite file, the client subsystem stores
its contents in a new local NTFS file. This file is dirty,
i.e., it cannot be deleted until a replica is made
elsewhere. Creating such a file thus adds load to
reservoir 6E, the set of dirty local files; load also enters
the system into this reservoir when a file is extended.
When the server notifies the client that an updated file
has been replicated, it becomes clean and moves to
reservoir 6F, the set of clean cached files. Load also
enters the system into this reservoir when a client
accesses a non-local file, causing it to become cached
locally. Files can leave this reservoir and enter
reservoir 6E if a local application modifies the file.

∞ (premature release)

Fig. 6: Client subsystem

updates in
kernel buffer

updates in
user buffer

updates sent
to server but

not acked C B A

from apps /
FS interface

server processes
updates

dirty local
files

 E

files deleted or
ejected

unprocessed
replica-has-
been-made

notifications D

clean
cached

files F

 files deleted

files created
or extended files

accessed

∞ (premature
 release)

9

The client subsystem has many mechanisms for
load reduction. Files are cached upon access so they
need not be fetched every time they are subsequently
accessed. Updates gathered in the user buffer are not
immediately passed on so they can be combined and
compressed. Updates generated in the kernel are
buffered to reduce the frequency of expensive kernel-
user crossings. These mechanisms reduce load, but do
not guarantee prevention of static overload, so other
techniques are used for this, as follows.

Reservoir 6C, which holds requests sent to the
directory server but not yet acknowledged, cannot use
premature release since it cannot release load until a
remote node processes it. So, it throttles load coming
in from reservoir 6B, the user-level update buffer.
This, in turn, prevents reservoir 6B from using
premature release, so it uses throttling instead. When it
gets too full, it throttles the driver by signaling it to
temporarily stop completing application I/O requests.
Together, these throttles limit client workload
generation to the rate of server workload acceptance
(albeit not the rate of workload processing). This
throttle is engaged only when the applied load is very
high, and its throttling delay is only a few seconds, so it
will not create the unpleasant user experience we
would get by using feedback control across the entire
update/replication path, which takes at least an hour.

Reservoir 6A, the kernel update buffer, is
amenable to premature release, so we use it. Whenever
the buffer reaches a certain size, it is immediately sent
across the kernel-user boundary instead of waiting for
the next periodic send.

Reservoir 6D stores notifications from the server
that files are clean. It cannot use premature release
since it performs a disk operation to release load. Also,
it cannot throttle any earlier flow in the subsystem
without incurring a high throttling delay including all
remote processing along the itinerant edge. Thus, we
reluctantly use shedding: it drops notifications when
its load exceeds a limit. This necessitates a
rectification process: the client periodically contacts
the server and queries file clean/dirty status. Without
this process, some files might never be marked clean
and then could never be deleted.

Reservoir 6F, the set of clean cached files, uses
premature release, as described in subsection 4.1: if
space needs to be made available, cold cache files are
released prematurely, and if the disk space shortage is
severe, hot cache files are also released. If there is so
little disk space that there is no room for additional
files in the cache, Farsite will begin giving applications
out-of-space errors whenever they perform file system
operations that would increase the size of the local
cache. Essentially, this is a throttle from reservoir 6E,
the set of dirty files, to all paths that allow file cache
load to enter the system.

4.3 Directory server subsystem
Next, we discuss the directory server subsystem,

which is responsible for managing file system
metadata, including the location of file replicas on file
hosts. Fig. 7 shows the workflow graph for this
subsystem, which we now describe in detail.

The directory server subsystem receives file
system updates from clients, which it stores in reservoir
7A, the set of updates waiting for the write-absorption
delay before they will be processed. Once this delay
passes, the updates become work items reflecting the
need to make initial replicas of the updated files. If the
server cannot make replica requests immediately due to
dynamic load constraints, it queues them in reservoir
7B, the set of such requests waiting to be sent. As
described earlier, replica requests with a lower rank
have priority over requests with a higher rank, so
reservoir 7B is actually a multi-queue, one queue for
each rank. When resources are available to send
replication requests, they are sent, and they are placed
in reservoir 7C, the set of replication requests sent but
not acknowledged as completed by the remote file host.
When a request is acknowledged as completed, the
directory server decides whether another replica needs
to be made, and if so adds load back to reservoir 7B. If
no further replicas need to be made, the load is
removed from the system.

The main reduction the directory server performs
is compression in reservoir 7A, delaying updates so
they can be combined with later updates for more
efficient processing. The rest of this subsection
discusses our techniques for preventing static overload.

Reservoir 7C cannot use premature release, since
its outgoing link involves processing by a remote
machine. Thus, it uses throttling: once a threshold
number of replica requests outstanding is reached,
requests must wait in reservoir 7B to be dispatched.

Reservoirs 7A and 7B use our novel clown-car
compression technique to avoid static overload. There
are three factors that allow us to use clown-car
compression here: (1) the semantics of file update, (2)
the dynamic partitioning of workload among directory
server groups, and (3) quotas that limit total file-system
space usage.

Fig. 7: Directory server subsystem

updates
delayed for

write
absorption

replicas
waiting to be

made

replica
requests

waiting to be
acked C B A

updates from
client

enough replicas
made

∞ (clown-car) ∞ (clown-car)

10

The relevant semantics of file update is that when
successive updates are made to a single file’s metadata
(including its content hash), all updates except the last
are obsolete. Thus, all metadata updates except the last
can be discarded, and reservoirs 7A and 7B need to
hold at most one update per file in the system.
Furthermore, each server only receives updates to files
that it manages, so the maximum size of these two
reservoirs is proportional to the count of files managed
by the server group. The actual clown-car compression
technique is to maintain these reservoirs merely as
annotations in the server’s database, such that an
update to a managed file is “in the reservoir” if a
particular field of the file’s database record has a value
indicating so. There is thus no overload as long as the
server can support the files it supposed to manage.

To ensure this latter condition, the Farsite
architecture includes a mechanism (designed but not
yet implemented) for dynamically partitioning file
management among all server groups in the system, so
each group’s load will not grow beyond what it can
manage. This mechanism prevents overloading of any
particular server group as long as the entire system can
support the count of files stored in it by clients. This
condition, in turn, is ensured by quotas. The semantics
of a file system include a limitation on the amount of
available space: if a client attempts to store more files
that the system is willing to support, the client’s file
creation requests fail with an out-of-space error.

4.4 File host subsystem
Next, we discuss the file host subsystem,

responsible for storing file replicas and making them
available to clients who need to access them. Fig. 8
shows the workflow graph, which we now discuss.

The file host subsystem receives requests from
directory servers to make file replicas, and services
them as soon as dynamic load constraints allow. While
they wait to be serviced, they sit in reservoir 8A, the
queue of replication requests waiting to be serviced.
We found it important to make this queue explicit,
since if we simply issued every request as soon as it
arrived and relied on the scheduler to implicitly queue
requests for which CPU or disk bandwidth was
unavailable, the set of threads in the system grew
without bound. When a replica is made, a file is added
to reservoir 8B, the set of replicas on the local disk.

Reservoir 8A cannot use premature release since it
relies on disk bandwidth, and it cannot use throttling
since load comes from another machine. Thus, we use
shedding to prevent static overload: the file host drops
any requests that arrive when 60 are outstanding. This
requires a rectification process, which is that the file
host tells the server to have another file host make the
replica, and even if this message is lost the server
eventually times out the request and does this anyway.
Note that the server informs the file host of its timeout
value when it sends the original replication request; if
the file host finds that the timeout has expired when it
dequeues the request and is about to initiate it, it drops
the request since executing it would be pointless.

Reservoir 8B, the set of replicas stored on the local
disk, uses premature release. We discussed such disk
space management earlier in subsection 4.1.

4.5 Object pager subsystem
The last Farsite subsystem we discuss is the object

pager subsystem, responsible for caching persistent
objects in memory and paging them to and from disk.
The pager manages memory consumed by directory
data and meta-level file data; memory consumed by
file contents is managed by the operating system’s
cache manager [16] and so is out of our control. A
typical pager prevents overload by slowing down the
rate at which objects are written [11, pp. 300–303], but,
as we discuss below, our pager achieves this goal by
throttling the object lookup rate. Fig. 9 shows the
workflow graph for the object pager.

When system code requests an object that is not
cached, a lookup request is placed in reservoir 9A, the
set of pending lookup requests. When the request
completes, the fetched object X is kept in memory in
reservoir 9B as long as X remains referenced. When X
is no longer referenced, it is not immediately discarded;
instead, it is retained in the cache in the hope of
satisfying imminent requests. If X is dirty, it cannot be
discarded anyway until it is written out to disk and
thereby cleaned. Cached dirty objects are held in

Fig. 8: File host subsystem

file copier
service queue

 A

copy
requests

from
server

replicas on
disk

 B

files
deleted or

ejected

∞ (premature release)

Fig. 9: Object pager subsystem

unreferenced
(i.e., cached)
dirty objects

objects being
written to

disk
(cleaned)

unreferenced
(i.e., cached)
clean objects

 D E C

pending
lookup
requests

referenced
objects

 A

uncached object requests

 B

∞ (premature release)

hopefully ∞

11

reservoir 9C. Cached dirty objects are written out, i.e.,
cleaned, after having remained unreferenced for three
minutes. While an object is being cleaned, it is placed
in reservoir 9E; it is moved to reservoir 9D, the set of
cached clean objects, after cleaning is complete.
Eventually, if an object in reservoir 9D has not been
accessed for a while, it is discarded.

When system code requests a cached object, it is
moved from reservoir 9C or 9D to reservoir 9B, the set
of referenced objects. Note that no static load is
actually added to the subsystem on such a cache hit.

We now discuss the static overload prevention
techniques the object pager uses. Reservoirs 9A and
9E prevent overload by simply throttling their inputs.

We also use throttling for reservoir 9C, but, unlike
most pagers, we do not throttle this reservoir’s
incoming link directly. Instead of blocking operations
that mark an object dirty when the count of dirty
unreferenced objects exceeds a threshold, we instead
block object lookups in this case, for the following
reason. We use an event-driven programming model
that frequently relies on the atomicity of non-blocking
calls [2]. We already have to mark object lookups as
non-atomic, since they may involve a disk operation on
a cache miss. To avoid also marking set-object-dirty
calls as blocking, we do not throttle these calls. Note
that stopping object lookups while waiting for the
cleaner to clean an object cannot cause deadlock,
because the cleaner simply writes objects to disk and
thus never requires object lookups.

The throttle applied by reservoir 9C is not a typical
throttle in that it does not simply stop flow across the
link as long as its size exceeds a threshold. Our design
accounts for the fact that we expect Farsite to
sometimes be more constrained in CPU bandwidth than
disk bandwidth, and sometimes the other way around.
This is because Farsite runs on a collection of
heterogeneous machines with heterogeneous CPU and
disk bandwidths, and also because those machines are
running other applications, which can dynamically
cause Farsite to become CPU-limited or disk-limited.
When Farsite is disk-limited, it will tend to dirty
objects faster than it cleans them, so in this case we
want to throttle object lookup so that it is rate-matched
with the cleaner. However, when Farsite is CPU-
limited, it will tend to clean objects faster than it dirties
them and such rate-matching is not needed. Thus,
although we want to apply hysteresis before switching
to the rate-matched state, we want to promptly switch
back to the non-rate-matched state when we can. We
now describe the algorithm we use to achieve this goal.

When the count of dirty unreferenced objects
exceeds the dirty-object threshold (2000 objects),
lookups are disallowed and the cleaner starts cleaning
dirty unreferenced objects even before their three-
minute timers have expired. When the count of dirty

unreferenced objects is between one and the dirty-
object threshold, the lookup dequeues a single waiting
request each time the cleaner cleans an object, i.e., it
rate-matches lookup to cleaning. When the cleaner
removes the last object from the cleaner queue, the
system dequeues a batch of waiting lookup requests,
where the batch size is limited to the dirty-object
threshold. This last case is the transition from the rate-
matched to the non-rate-matched state.

Static overload in reservoir 9D is prevented with
premature release: if its size reaches a threshold, the
least-recently-referenced object is prematurely
discarded. Note that this is not shedding since the
normal way to release load from reservoir 9D is to
discard it. Thus, it requires no rectification process.

The workflow graph indicates a potential static
overload in reservoir 9B, the set of referenced objects.
We cannot throttle the lookup queue as we do for
reservoir 9C, because this throttle would get passed
back to the code making uncached object requests. If
this code is blocked, it will not have an opportunity to
release its references, resulting in a deadlock. We
cannot use premature release since there is no
mechanism to force code to release a reference. Also,
we cannot use shedding because this would break code
that relies on referenced objects remaining in memory
until explicitly dereferenced.

Therefore, our only recourse to prevent overload is
to ensure that the load placed in this reservoir never
exceeds a reasonable bound via careful code design.
We limit the size of work batches; we process work in
a FIFO fashion; and we cache unreferenced objects in
the object pager, which is sensitive to its memory
usage, rather than caching these objects in an ad-hoc
manner (which could result in holding unneeded
references in the system code). It is somewhat
unsatisfying to rely on this approach since we cannot
prove that this reservoir is completely free of possible
static overload. However, this is no different than the
way programmers commonly write code to keep
memory footprints low.

5. Experimental results

In this section, we describe the results of
experiments we performed on Farsite to demonstrate
the efficacy of our load management techniques.

5.1 Effect of throttling
The first experiment we run tests the efficacy of

the throttle we use to limit the set of dirty unreferenced
objects, i.e., reservoir C in Fig. 9. We ran Farsite twice
with the same set of four machines and the same client
workload, once with the throttle enabled and once with
it disabled. The workload was simply a breadth-first
creation of a tree of directories, each directory of which

12

had 100 subdirectories. Fig. 1, presented in the
introduction, shows the count of directories created by
all four machines, and the count of dirty unreferenced
objects on a particular machine. With the throttle
disabled, the count of dirty unreferenced objects kept
increasing, until memory was exhausted and Farsite
was unable to proceed due to a memory allocation
failure. With the throttle enabled, the count of dirty
unreferenced objects eventually stabilized thanks to the
throttle on object lookups. This throttle slowed down
file system operation, so directories were created less
quickly, but since it did not crash it was eventually able
to create more directories than without the throttle.

5.2 Long-term stability
To demonstrate the effectiveness of our load-

management techniques, we ran a stressful experiment
on a 58-machine Farsite system. We used machines
several years out of date partly because these were
what we could scrounge up but also because using slow
machines increases the relative load on the system.
Fig. 10 illustrates the characteristics of the machines
and shows that they are quite heterogeneous. A system
of this small size does not require decentralized

servers, but to test our techniques, we configured all
machines identically. Thus, we had 58 clients and 58
server groups. Since each server is a replicated state
machine running on four machines, each machine
participated in four directory server groups.

We drove Farsite with an enormous offered load
by copying images of whole file systems from normal
users’ desktop machines onto the Farsite clients. The
copied file systems were taken from machines at
Microsoft, and their high-level size characteristics are
graphed in Fig. 11. Altogether, we created roughly 1.5
TB of file data in 10.5 million files. Since we made
5.25 TB total available to Farsite, there was enough
room for a single local cached copy, plus an average of
2.5 remote replicas, of each file.

This experiment places tremendous load on the
system; the mere fact that Farsite can make it through
this workload without crashing is a significant
testament to our load-management techniques. The
heterogeneity of machines presents many opportunities
for slow machines to be swamped by load from faster
machines, and for machines with large disks to be
overwhelmed by requests to create replicas.
Furthermore, the heterogeneity of the traces made it
difficult to ensure each file received its fair share of
global public storage.

At time 0, we began the experiment by starting the
file-system copies on all clients at once. The copy
operations completed in a mean of 8 hours. The range
was 16 minutes to 100 hours with a median of 4 hours
and a standard deviation of 15 hours. The large skew
is due both to the nearly three-order-of-magnitude
difference in input size and the speed difference of the
machines in the experiment. This extremely skewed
distribution presents a challenge to Farsite, because the
small systems had an opportunity to make high rank
replicas when free disk space was plentiful, which then
had to be removed as the larger, slower ones
completed. We ran the experiment for a total of 100
hours, at which point we stopped to submit this paper.

Farsite replicates files much more slowly than it
creates them for several reasons. First, disk bandwidth
is greater than network bandwidth. Second, the
application that created the load did not actually write
all of the bytes (it just set the end of file), but this
optimization was not used for network copies. Third,
because the file host component of Farsite is designed
to be nice to the owner of the workstation on which it
runs, it limits file replication operations to at most 80%
of real time. Our lab has an over-provisioned switched
Ethernet infrastructure, so network congestion was
unlikely to have had much effect.

Fig. 12 shows the evolution of the reservoirs on a
single representative directory server. Tier n refers to
requests in the replication multi-queue to make rank n
replicas of a file. For efficiency, the implementation

0

200

400

600

800

1000

0 5 10 15 20 25 30 35 40 45 50 55 60

Machine number

C
P

U
 (M

H
z)

 /M
em

 (M
B

)

0

50

100

150

200

250

300

D
is

k
Sp

ac
e

(G
B

)

CPU Speed Memory Disk space (right axis)

Fig. 10: Characteristics of 58 machines in
experiment; disk space is space available to Farsite

0

10

20

30

40

50

60

70

0 200,000 400,000 600,000 800,000 1,000,000

Files + Directories

T
ot

al
 F

il
e

B
yt

es
 (G

B
)

Fig. 11: Sizes of 58 file systems for applied load

13

makes no distinction between (a) files waiting to have
an initial replica made because they are waiting for an
hour and (b) files waiting to have an initial replica
made because the replication multi-queue output link is
throttled; thus, the line depicting the number of files
waiting for their first replica includes both these types
of files. The main point of this graph is that the system
works as we intended. The write-absorption wait
queue grows steadily for the first hour as file updates
accumulate. An hour later, when rank 1 replicas begin
to be made, work items begin moving from the wait
queue to the second tier of the replication multi-queue.
At hour 3, the copy completes and files stop arriving in
the wait queue. When all rank 1 replicas are made at
about hour 18, rank 2 file replicas begin being made, so
the second tier shrinks and the third tier grows. When
a directory server sees several consecutive failures to
replicate a file, it considers it possible that the failures
may be at the data source(s) rather than the
destinations, so it returns the file to the wait queue; this
is the source of the small number of files that reappear
from time to time in that queue (e.g., around hours 37
and 80–86). As file hosts fill up with low-rank
replicas, they will eject higher-rank replicas to make
space, and these will return to the replication multi-
queue. This is (barely) visible on the tier 2 queue
around hour 67.

As rank 3 copies are made for files in the third tier,
disks begin to fill up, so probabilistic squelching slows
down the copying rate. Eventually, rank 3 copies begin
to be ejected from disks, causing servers to make new
requests on the third tier, and so the third tier grows
occasionally, such as at hour 72.

Fig. 13 shows files’ copy count versus time. In
our experimental configuration, there is room for an
average of 2.5 replicas per file, so eventually all files
should have at least two copies, half of all files should
have three copies, and no files should have more than
three. Unfortunately, our experiment stopped before
we reached steady state, but the trend toward the

correct values is visible near the right edge of the
graph: The percentage of files with at least one copy
(beyond the one cached on the writing machine) is
rising slowly toward 100%. The percentage of files
with at least two copies is rising faster. The
percentages with at least three or four copies have
leveled off, and given more time the four-copy line
would drop as rank 4 replicas were ejected to make
space for rank 2 replicas of the remaining files that
have only one copy.

6. Related work

Other researchers have designed and built
decentralized file systems [3, 18], but to the best of our
knowledge, Farsite is the first to address the problem of
load management.

Several researchers have applied feedback control
to managing load in software systems. Some [17, 23]
have proposed a general architecture of exposing the
queues between components to enable an external
controller to adjust resource allocations; others [24]
advocate more general interfaces. Other systems
researchers [6, 7, 10, 21, 22] have employed adaptive
control, wherein long-term data is gathered to refine a
system model that is in turn used to tune the parameters
of a control system. Neither feedback nor adaptive
control is responsive enough to overcome our long
loop delay without painfully aggressive throttling.

Farsite’s distributed disk prioritization scheme
gives highest priority to local applications and then
attempts to share remaining capacity in an egalitarian
fashion. This has been done before in other contexts,
including global memory [9], content distribution [19],
and file-system caching [8].

Throttling pagers is a standard technique in
operating systems [11, 15]. Farsite’s pager is new only
in that it has a non-blocking write path and a
mechanism to switch between rate-matching and non-
rate matching modes.

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100

Time (hours)

R
es

er
vo

ir
 s

iz
e

(1
00

0s
 o

f f
il

es
)

Wait Tier 2 Tier 3 Tier 4

Fig. 12: Evolution of one server’s reservoirs; tier n

contains requests to make rank-n file replicas

0%

20%

40%

60%

80%

100%

0 20 40 60 80 100

Time (h)

P
er

ce
nt

 o
f

fi
le

s

at least 1 copy at leas t 2 copies
at least 3 copies at leas t 4 copies

Fig. 13: File copy counts over time

14

7. Summary and conclusions

Farsite is a decentralized file system intended to
scale to tens of thousands of machines. Yet, even in
small installations, machines can be overwhelmed by
unmanaged load from other machines, causing
backups, overflows, timeouts, and depleted resources.
For this reason, we developed methods for load
management for distributed systems in general, and
applied them to Farsite.

Managing load using feedback control theory is
impractical because of non-locality, long delay, and
high forward gain; and using open-loop control is
infeasible because of machines’ physical distribution,
heterogeneity, and unpredictability. Thus, we propose
an alternate method for managing load in Farsite and
other similar distributed systems. (1) Reduce load to
the extent possible using techniques such as caching,
compression, and squelching; (2) make clear where
implicit queuing can cause dynamic load to be
converted to static load; and (3) prevent overload of
static resources.

To prevent static overload, each reservoir where
static load can accumulate must use either throttling or
infinite-load management. Our techniques for infinite-
load management include premature release, clown-car
compression, and shedding. Clown-car compression is
a novel extension of standard compression techniques
that, by mapping an arbitrarily large set of operations
onto a fixed-size set, enables the system to handle an
arbitrary applied load.

We developed the method of workflow graphs to
help system designers enumerate the potential sources
of overload and ensure each is managed appropriately.
A workflow graph of a subsystem shows the reservoirs
in that subsystem, the load flows to and from those
reservoirs, and the load management techniques used
on each reservoir.

Some techniques for load management require
complex system design. For instance, in Farsite we
manage disk space in part using a novel mechanism for
achieving approximately even file replication without
central coordination or global knowledge.

Two experiments demonstrate the efficacy of our
load-management techniques. In one, we show that
one of our throttles makes the difference between
crashing and running stably. In the other, a long-
running 58-machine experiment, we demonstrate that
the system is able to run without overloading despite an
enormous offered load.

References
[1] A. Adya, W. Bolosky, M. Castro, R. Chaiken, G. Cermak, J.

Douceur, J. Howell, J. Lorch, M. Theimer, and R. Wattenhofer.
“FARSITE: Federated, available, and reliable storage for an
incompletely trusted environment”, 5th OSDI, Dec 2002.

[2] A. Adya, J. Howell, M. Theimer, W. Bolosky, and J. Douceur.
“Cooperative task management without manual stack
management”, USENIX Technical Conference, Jun 2002.

[3] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli, and
R. Wang. “Serverless network file systems”, 15th SOSP, Dec
1995.

[4] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirriff, and
J. K. Ousterhout. “Measurements of a distributed file system”,
13th SOSP, Oct 1991.

[5] M. Castro and B. Liskov. “Practical Byzantine fault tolerance”,
3rd OSDI, Feb 1999.

[6] J. S. Chase, D. C. Anderson, P. N. Thakar, A M. Vahdat, and R.
P. Doyle, “Managing energy and server resources in hosting
centers”, 18th SOSP, Oct 2001.

[7] C. M. Chen and N. Roussopoulos. “Adaptive database buffer
allocation using query feedback”, 19th VLDB, Aug 1993.

[8] M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A.
Patterson. “Cooperative caching: using remote client memory
to improve file system performance.” 1st OSDI, Nov 1994.

[9] M. J. Feeley, W. E. Morgan, F. H. Pighin, A. R. Karlin, H. M.
Levy, and C. A. Thekkath. “Implementing global memory
management in a workstation cluster”, 15th SOSP, Dec 1995.

[10] J. N. Matthews, D. Roselli, A. M. Costello, R. Y. Wang, and T.
E. Anderson. “Improving the performance of log-structured file
systems with adaptive methods.” 16th SOSP, Oct 1997.

[11] R. Nagar. Windows NT File System Internals. O’Reilly, 1997.
[12] K. Ogata. Modern Control Engineering, 3rd Ed. Prentice Hall,

1997.

[13] D. Saha, S. Mukherjee, and S. Tripathi. “Multi-rate traffic
shaping and end-to-end performance guarantees in ATM
networks.” ICNP, Oct 1994.

[14] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E.
H. Siegel, and D. C. Steere. “Coda: A highly available file
system for a distributed workstation environment”, IEEE Trans
Computers 39(4), 1990.

[15] A. Silberschatz and P. B. Galvin. Operating System Concepts,
4th ed. Addison-Wesley, 1994.

[16] D. A. Solomon and M. Russinovich. Inside Windows 2000, 3rd
Ed. Microsoft Press, 2000.

[17] D.C. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu, and J.
Walpole. “A feedback-driven proportion allocator for real-rate
scheduling”, 3rd OSDI, Feb 1999.

[18] C. A. Thekkath, T. Mann, and E. K. Lee. “Frangipani: a
scalable distributed file system”, 16th SOSP, Oct 1997.

[19] D. Villela and D. Rubenstein. “A queuing analysis of server
sharing collectives for content distribution”, Columbia Univ.
Electrical Engineering Tech Report EE2002-04-121, 2002.

[20] W. Vogels. “File system usage in Windows NT 4.0”, 17th
SOSP, Dec 1999.

[21] C. A. Waldspurger. “Memory resource management in
VMware ESX Server.” 5th OSDI, Dec 2002.

[22] G. Weikum, C. Hasse, A. Mönkeberg, and P. Zabback. “The
Comfort automatic tuning project”, Information Systems 19(5),
pp. 381-432, 1994.

[23] M. Welsh, D. Culler, and E. Brewer. “SEDA: An architecture
for well-conditioned, scalable Internet services”, 18th SOSP,
Oct 2001.

[24] R. Zhang, C. Lu, T. F. Abdelzaher, and J. A. Stankovic.
“ControlWare: A middleware architecture for feedback control
of software performance”, ICDCS, Jul 2002.

