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Abstract 

This paper discusses our general approach to load 
management in a distributed system, as well as its 
application to a particular system, Farsite.  Farsite is a 
peer-to-peer distributed file system that uses its 
constituent machines to maintain consistency of file 
system metadata and replicated file content.  We argue 
that control theory is inappropriate for load 
management in this and other similar systems, and give 
alternative techniques for preventing overload of 
limited resources such as CPU and disk.  We describe 
our method of workflow graphs, which allows a system 
designer to describe the potential sources of overload 
and ensure all are managed properly, and we apply 
this method to Farsite.  We also describe novel 
techniques for load management, including clown-car 
compression and a scheme for achieving 
approximately even file replication without central 
coordination or global knowledge. 

1. Introduction 

This paper addresses the problem of load 
management for distributed systems in general, and for 
our Farsite [1] system in particular.  The goal of load 
management is to prevent the system from placing 
more load on system resources, such as disk space or 
network bandwidth, than these resources can handle.  
This is particularly difficult for distributed systems, in 
which each machine has an incomplete view of the 
system and thus may easily create more load than the 
system can handle. 

Farsite is a large-scale file system implemented 
entirely without centralized servers.  Its directories are 
maintained using Byzantine-fault-tolerant (BFT) 
replicated state machines [5], and its files are replicated 
and distributed among the machines that use the file 
system.  It is easy for a client to apply substantial load 
to this system, e.g., by simply untarring or recursively 
copying a large directory tree.  Under stresses of this 
sort, things tend to break:  Work backs up, queues 
overflow, timeouts expire, messages get lost, and 
resources get depleted. 

Most system designers focus on correctness and 
performance issues and tend to ignore load 
management.  However, expecting that underlying 
subsystems such as the operating system scheduler and 
TCP will prevent overload is dangerous.  Fig. 1 
(discussed in detail in section 5) shows the importance 

of explicit load management.  We ran a simple 
experiment in which we created a number of 
directories in two different versions of Farsite, one with 
all our load management techniques enabled, and one 
with a single load manager turned off.  Removing just 
this one instance of load management caused the 
system’s use of memory to perpetually grow, 
eventually exhausting memory and causing a system 
crash.  Our experiences with Farsite show that there are 
many such crashes waiting to happen if designers 
ignore explicit load management. 

Feedback control theory provides one way to deal 
with load.  When machines begin to get overwhelmed 
with load, they send feedback signals to the machines 
generating it; these machines slow down their 
operation and relieve the overload.  However, 
conventional control does not work well for Farsite, for 
at least three reasons.  First, there is substantial lag 
between the generation of workload and when it is 
noticed, so feedback arrives much later than needed.  
Second, since every file creation leads to several 
replicas being made, there is a multiplicative effect of 
activity on workload, amplifying the effect of 
inaccurate feedback.  Third, machines are 
heterogeneous and are not dedicated solely to Farsite, 
so it is difficult to predict the effect on the system of a 
given control. 

Therefore, instead of using conventional control 
for Farsite and other similar systems, we recommend 
the following approach.  First, reduce the effective 
workload by various standard techniques including 
caching and compression, or by a novel technique 
called squelching that stops unnecessary load from 
being produced.  Next, prevent possible overload of 
bandwidth-limited resources such as CPU and network 
bandwidth by queuing or shedding requests that find 
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such resources saturated.  Finally, prevent possible 
overload of resources with fixed amounts of space, 
such as memory and disk, with either throttling or 
infinite-load management, terms which we now 
describe in more detail. 

Throttling stops the flow of load to a component 
whenever its load reaches a certain threshold, and 
infinite-load management allows a component to deal 
with an arbitrary amount of offered load.  Infinite-load 
management can be achieved with various techniques, 
including premature release, shedding, and our novel 
clown-car compression.  Premature release means a 
component releases load early to a downstream 
component if it reaches its limit.  Shedding means a 
component simply drops load, relying on rectification 
processes to correct any resultant inaccuracies later.  
Clown-car compression means compressing an 
arbitrary amount of load into a fixed amount of space. 

Large-scale systems may contain many sites that 
are susceptible to overload.  To help a system designer 
identify such sites, and to assist in determining whether 
each potential overload has been appropriately 
addressed, we develop the method of workflow graphs.  
After we describe this method in general, we 
demonstrate its use in Farsite as we apply our 
workload-management techniques to that system. 

Our work has yielded several contributions, 
including:  (1)  a successful demonstration of applying 
workload management in a working distributed system; 
(2) the method of workflow graphs for methodically 
identifying and eliminating potential overloads; (3) the 
technique of clown-car compression to accumulate an 
arbitrary amount of load; and (4) a mechanism for 
achieving approximately even file replication without 
central coordination or global knowledge. 

This paper is organized as follows.  Section 2 
briefly describes Farsite.  Section 3 discusses load 
management: what it is, why we believe conventional 
control theory is inapplicable, the techniques we 
suggest, and our method of workflow graphs.  Section 
4 shows how Farsite uses our load management 
techniques and applies our method of workflow graphs 
to that system.  Section 5 shows experimental results 
demonstrating the effectiveness of our load 

management techniques in Farsite.  Section 6 surveys 
related work, and section 7 summarizes and concludes. 

2. Background: the Farsite file system 

Farsite [1] is a distributed file system under 
development at Microsoft Research.  Its goal is to run a 
file system entirely on untrusted client workstation 
machines, with minimal administrative control or trust, 
in well-connected environments on the scale of 
100,000 nodes.  Rather than relying on administrators 
to anticipate and provision for growth, it exploits 
unused storage space on client computers, which grows 
in aggregate as the computing installation size grows. 

Farsite assumes a cooperative environment in 
which users allow others to use the spare disk capacity 
of their workstations.  This assumption is most 
reasonable within an organization that owns all the 
machines on which users work, such as a university or 
corporation.  As a consequence of this assumption, 
Farsite views disk space as a shared resource that needs 
to be managed from a global perspective. 

Fig. 2 shows a stylized view of a Farsite file 
system. Every machine in the system has three roles: 
client, directory server group member, and file host. As 
a client, the machine provides an interface to the file 
system for local applications.  As a directory server 
group member, the machine serves as one member of a 
replicated state machine managing file system 
metadata.  As a file host, the machine stores replicas of 
file data on behalf of the overall system. 

Although we expect most users of Farsite to 
cooperate, we allow for the possibility that some act 
maliciously.  Thus, the replicated state machines used 
for directory groups are Byzantine-fault-tolerant [5], 
i.e., they tolerate arbitrary failure of participants, 
including failure to act appropriately.  BFT state 
machines require a high degree of replication: 3f+1 
machines tolerate f failures.  Therefore, storing actual 
file data in BFT state machines is impractical.  Instead, 
Farsite replicates file contents on file hosts, where 
simple replication on f+1 machines tolerates f failures. 

To scale to 100,000 nodes, a single Farsite 
installation will contain many independent directory 
server groups, each implementing a small subset of the 
file system namespace. Each client may interact with 
many such directory server groups. 

2.1 System architecture 
Fig. 3 illustrates the software architecture running 

on each host.  Three managers implement the three 
roles a host assumes in the system:  The client manager 
manages locally-used metadata and file data. The file 
host manager manages file replicas stored on the local 
disk.  The directory manager, serving as a single 
replica in a BFT state machine, manages metadata. 

Fig. 2: Network interactions in Farsite 

directory 
server 
replica 

logical directory server 

 

client client 

metadata 
traffic 

 

file content 
traffic 

 

file 
host 

file 
host 

replication 
control 
traffic 

 



3 

 In addition to these three role managers, Farsite 
includes two other main software components:  A 
kernel-level file-system driver exports a file-system 
interface; it services data-intensive read and write 
operations directly, and relays most operations to the 
user-level client manager.  The object manager, which 
serves all three role managers, manages the on-disk and 
in-memory storage of data other than file contents. 

Persistent disk storage is used for several purposes, 
in addition to its direct use by applications and the 
operating system.  The client manager and file host 
manager store encrypted file contents in NTFS files 
[16].  These files are exported remotely to enable 
access by other clients and replication by other file 
hosts.  The object manager is a front-end to a 
conventional database system that also uses local disk. 

2.2 System operation 
When the Farsite kernel driver receives an 

application request to open a file, it handles the request 
as follows.  If a copy of the file is in the local cache, it 
opens the file and returns a handle to the application.  
If the file is not present locally, it calls up to the user-
level component of the client manager, which asks the 
directory server for a list of file hosts with replicas of 
the file.  The client contacts one of these file hosts and 
copies the file to its cache.  It then notifies the driver, 
which opens a handle to the file and returns it to the 
application.  The file remains cached locally until it has 
gone unused for several days; while it is cached, open 
and read operations can be serviced by the driver alone. 

When applications modify directories or files, the 
driver logs the updates and passes them up to the client 
manager at user level.  The client manager sends the 
updates to the directory server in batches.  These 
update messages include changes to directory 
information, such as created or deleted files, and 
notifications of writes to files.  They do not include 
updated file contents, just a hash of them. 

After the directory server learns of a new file 
having been written, it randomly selects a set of file 
hosts and tells them to make copies of the new file.  
When the server learns of an update to an existing file, 
it tells the file hosts that store old versions of the file to 
make up-to-date copies.  The server inserts a write-
absorption delay of one hour before telling file hosts to 
copy a recently written file, to provide an opportunity 
to absorb subsequent writes to the same file.  Studies 
have shown that files are often overwritten or deleted 
soon after they are written [4, 20]. 

When a file is created or modified, the client 
marks the local copy of the file dirty, meaning the file 
is the only copy in the system and must not be ejected. 
Once another copy is made, the directory server 
notifies the client, and the client clears the dirty flag. 

2.3 Omissions 
This system requires a mechanism for ensuring file 

consistency.  Farsite employs a pessimistic strategy in 
which a server locks a file when a client requests it for 
write access.  Lock management is an involved and 
orthogonal topic, so we do not discuss it further herein. 

Similarly, there are obvious security concerns with 
storing files on clients.  Encryption can protect against 
inappropriate reading of files, but there are more 
involved issues regarding destruction or damage of file 
copies.  As with consistency, security is beyond the 
scope of this paper but is discussed elsewhere [1]. 

3. Load management 

In this section, we discuss load management in 
systems such as Farsite.  Our goal is to prevent system 
resources from becoming overloaded.  Some of these 
resources, such as disk space, have limited size; we call 
them static resources.  Others, such as CPU and 
network bandwidth, have limited bandwidth, i.e., their 
capacity is measured in units that include time, such as 
MB/s.  We call these dynamic resources. 

3.1 Problems with conventional control 
One approach to load management is to use a 

conventional control system [12], which applies an 
adjustment to a process to limit the deviation of one or 
more controlled variables from their desired values.    
Control systems operate by adjusting the values of one 
or more manipulated variables so as to indirectly affect 
the values of the controlled variables. For example, in 
Farsite, the load on each resource is a variable we 
would like to control and the rate at which clients are 
permitted to perform file system operations is a 
variable we can manipulate. 

Control systems are either open-loop or closed-
loop.  Open-loop controllers base their manipulations 
on a predictive model of the controlled systems’ 
response; closed-loop controllers base manipulations 
on observations of the controlled systems’ response.  
Open-loop controllers need accurate models of system 
behavior and precise measurement of system input to 

Fig. 3: Software architecture 
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choose the magnitude and direction of their control.  
Closed-loop controllers can use simpler models to 
inform the direction of their control, allowing feedback 
to progressively refine the magnitude. 

Open-loop control is not practical for Farsite, or 
most other distributed systems, since for such systems 
accurate models are infeasible.  Machines cannot 
independently predict the load effect of their activity, 
since load is a function of all machines’ activity.  We 
would need a scalable, high-speed mechanism to gather 
and distribute load information among machines, 
which would add great complexity to the system if it 
were even possible.  Furthermore, in Farsite, machines 
are randomly selected, heterogeneously configured, 
and externally perturbed, making accurate load 
estimation especially difficult. 

A closed-loop controller also will not work for 
Farsite, or any other system in which activity has an 
effect on load far in the future.  In Farsite, the hour-
long write-absorption delay between the time files are 
updated and the time file replicas are made means that 
feedback for a closed-loop control system would arrive 
long after it was most needed.  This long feedback 
delay also means that, to be even somewhat helpful in 
limiting load spikes, the delayed backpressure would 
have to be very aggressive, drastically retarding the 
completion of file I/O operations on the client and 
making the user experience very unpleasant. 

Another problem with using a control system for 
Farsite is that the cost of generating future workload is 
far lower than the cost of processing that workload.  
Every file a client creates is replicated three to four 
times system-wide, so the bandwidth used for 
replication is many times the disk bandwidth used by 
the client.  Also, workload generation uses local disk 
bandwidth, but replication uses remote disk bandwidth 
and network bandwidth, and the latter is far scarcer.  
The difference in relative cost gives the control loop a 
high forward gain, which magnifies any inaccuracy in 
the value of the applied control signal and necessitates 
aggressive feedback. 

3.2 Load reduction 
The first step in controlling load on resources is 

load reduction, i.e., lessening it.  This does not prevent 
overload, but merely reduces its probability.  There are 
countless examples of reduction techniques.  Here, we 
give three illustrative examples that are used frequently 
in Farsite:  caching, compression, and squelching. 

Caching is storing results so later operations can 
reuse them and thereby place less load on the system. 

Compression is combining multiple operations 
into one aggregate operation when performing the 
aggregate operation will produce less load than 
performing the operations separately.  For example, in 
Farsite, file system updates are delayed in the hope that 

they can be combined with subsequent ones.  Coda 
[14] also uses compression, replacing log entries with 
smaller, semantically equivalent sequences of entries. 

Squelching is the prevention of unnecessary load 
production.  For example, if a file host knows it will 
reject a certain subset of file replica requests, it can tell 
the server this and thereby prevent the server from 
unnecessarily introducing work items into the system.  
Squelching is especially useful when the rejecter and 
the item producer are on different machines, since the 
squelching reduces network load. 

3.3 Preventing dynamic overload 
There are two methods for preventing overload of 

dynamic resources:  shedding and queuing.  Shedding 
drops a work item when there are insufficient resources 
to handle it; this requires that the system designer add 
rectification processes to correct for deficiencies due to 
dropped work items.  Queuing delays work until there 
are sufficient resources to handle it.  This converts 
dynamic load temporarily into static load, namely  the 
disk or memory space taken by the queued work item.   

  Often, queuing is implicit and requires no special 
implementation effort.  For example, if one creates 
more jobs than processors can currently handle, the 
operating system scheduler will automatically block 
jobs until CPU bandwidth is available.  However, this 
is not necessarily beneficial, since the resulting static 
load may not be apparent.  For instance, if a system is 
loaded with far more jobs than it can handle, the large 
number of blocked thread stacks may cause memory 
overload.  The system designer must foresee such 
scenarios and make the static load more explicit so that 
she can apply the techniques we will describe in later 
subsections for preventing static overload.  Since not 
all such scenarios can be foreseen, stress testing the 
system is useful for identifying where static load 
caused by queuing is a problem. 

3.4 Preventing static overload 

3.4.1  Identifying potential static overloads 

We have developed the workflow graph 
methodology to aid system designers in enumerating 
potential static overloads and ensuring there are 
sufficient mechanisms for preventing them all.  In this 
subsection, we discuss the first step in this 
methodology:  identifying and graphing the locations 
where static overload can occur in the system. 

We call a place in the system where static load can 
accumulate a reservoir.  Examples of reservoirs in 
Farsite are the queue of file replications needing to be 
made but for which bandwidth is currently unavailable, 
the set of file updates waiting for an hour before they 
are processed in the hope they can be compressed, and 
the set of file replicas stored on the local disk. 
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The first step in our methodology is to graph the 
reservoirs and load flows in the system.  A sample 
workflow graph is shown in Fig. 4.  In such a graph, a 
box denotes a reservoir and an arrow denotes a load 
flow.  An arrow between boxes shows where load can 
come out of one reservoir and enter another.  The load 
removed from the first may be different than the load 
added to the second; for instance, a reservoir of replica 
creation requests may pass load into a reservoir of file 
replicas on disk, reflecting the fact that after making a 
file replica one deletes the replica request.  An arrow 
with a sink but no source shows where load enters the 
system; e.g., this might represent an application 
modifying a file, thereby increasing load on the 
reservoir of updates to send to a server.  An arrow with 
a source but no sink shows where load exits the 
system; e.g., an arrow out of a reservoir of local file 
copies could represent those files getting deleted. 

Since most systems are large and complex, it is 
useful to break the system into possibly-overlapping 
subsystems and graph each separately.  Furthermore, 
breaking the system into subsystems allows each graph 
to consist solely of reservoirs and load flows within a 
single machine, which is important for reasons we will 
describe later.  Wherever dividing into subsystems 
separates the source and sink of a load-flow arrow, we 
depict this as an arrow getting rid of load in one 
subsystem and another arrow creating load in the other 
subsystem.  For instance, when we divide the workflow 
graph of Fig. 4a into subsystems in Fig. 4b, the arrow 

from B to C becomes an out-arrow from B and an in-
arrow to C.  As a special case, if load can travel out of 
a subsystem, through external reservoirs, then back into 
the subsystem, we need to depict this flow.  We call 
this an itinerant edge and depict it with a double-arrow.  
For instance, going from Fig. 4a to Fig. 4b, we needed 
to add an itinerant edge from D to H. 

Every reservoir in the graph is a potential source 
of static overload that must be addressed with one of 
the methods in the next subsection.  By annotating the 
graph as described in that subsection, we can ensure 
that these reservoirs are immune to static overload. 

3.4.2  Static overload prevention techniques 

We prevent static overload by ensuring that each 
reservoir is incapable of becoming overloaded.  We 
have two ways to prevent overload of a reservoir:  
throttling, which prevents load in excess of its capacity 
from ever reaching it, or infinite-load management, 
which allows it to deal with arbitrary amounts of load. 

Throttling means setting a limit on a reservoir’s 
load and temporarily cutting off the flow of load to that 
reservoir when the reservoir reaches that limit.  We call 
this limit the throttling threshold.  For example, in 
Farsite, one of our reservoirs is the set of client updates 
waiting to be sent to the server.  If it reaches a certain 
threshold, it tells the file system it temporarily cannot 
submit updates, and the file system then temporarily 
disables completion of certain file system operations. 

A reservoir’s throttle need not stop a load flow 
directly into that reservoir; instead, it may stop load 
flow at an earlier point.  For instance, in Fig. 4, 
reservoir G might throttle the flow from E to F, 
ultimately preventing flow to G.  However, this can be 
problematic if the throttling delay, i.e., the time it takes 
load to flow from the throttled link to the reservoir 
applying the throttle, is significant.  The problem arises 
because the reservoir decides to engage or disengage 
the throttle based on its own load, so these decisions 
are late by the throttling delay.  When the throttle is 
engaged late, load has already flowed arbitrarily 
quickly across it, potentially causing a load spike; 
when the throttle is disengaged late, work is 
unnecessarily halted waiting for it.  In particular, we do 
not throttle across Farsite’s write-absorption delay 
because the system would oscillate too much.  Initially, 
applied work would not be regulated at all; once the 
threshold was reached, work would be stopped for 
some arbitrarily long period while the system handled 
the load generated during the hour-long delay.  This 
type of behavior is very unpleasant to users. 

The throttling threshold is an important parameter 
of a throttle.  To set it, first determine the reservoir’s 
capacity, i.e., the most load it should ever contain.  Set 
the threshold equal to this capacity minus the total 
capacity of all reservoirs between the throttling 
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reservoir and the throttled link.  The rationale is that 
even with the throttled link stopped, load may still flow 
from reservoirs after the link to the throttling reservoir, 
and it must be able to store that load in addition to what 
it already has.  Note that since the threshold must be 
positive, this constrains how far back in a load flow 
one can throttle:  one cannot throttle across reservoirs 
unless their total capacity is less than the throttling 
reservoir’s capacity.  Note also that in some cases a 
reservoir’s capacity may change with time; for 
instance, the space available for Farsite files will 
change as unrelated applications use and release space. 

Although we noted earlier that control theory is 
generally inappropriate for distributed systems like 
Farsite, throttling is actually a degenerate instance of a 
discrete, closed-loop control system.  This implies that 
one should apply throttling only when there is minimal 
feedback delay, low forward gain, and deterministic 
responsiveness.  These conditions all hold in the areas 
in Farsite where we use throttling. 

Infinite-load management is the alternative to 
throttling, and refers to any technique that allows a 
reservoir to deal with an arbitrary amount of load.  
Examples of such techniques are premature release, 
clown-car compression, and shedding. 

Premature release means that whenever the load on 
a reservoir reaches a certain limit, it sends load on its 
normal course out of the reservoir immediately rather 
than waiting for the normal time it would release load 
in this way.  This ensures that its load never exceeds 
that limit.  For instance, one reservoir in Farsite is the 
set of file system updates held in the file system kernel 
buffer.  These updates are normally sent to user level 
periodically to avoid crossing the kernel-user boundary 
for every update.  However, if the kernel buffer grows 
beyond a certain limit, it sends the updates to user level 
immediately, rather than when the periodic process 
next would; this means the reservoir cannot overload. 

Premature release is infeasible if load cannot 
always be released faster than it is accrued, e.g., if 
releasing load in some cases requires a disk access.  If 
releasing load requires remote processing, one cannot 
count on arbitrary speed from the network or a remote 
node, and thus cannot use premature release.  
Throttling can also preclude the use of premature 

release, as follows.  Making a link throttled means the 
source of that link cannot always count on being able 
to dispatch load across it; thus, that source cannot use 
premature release to prevent overload. 

Clown-car compression manages arbitrary load via 
compression that can fit an arbitrarily large load in a 
fixed amount of space (much as one can stuff in a 
clown car as many clowns as show up).  In Farsite, we 
do this by mapping a set of work items onto a bounded-
size set of objects, thus compressing arbitrary amounts 
of work into a finite amount of space.  Specifically, the 
set of objects is the set of files in the file system, 
guaranteed by quotas and other mechanisms to be 
within a bounded size.  We discuss our use of clown-
car compression in more detail in subsection 4.3. 

Shedding is simply discarding load.  We have 
already seen how shedding can prevent dynamic 
overload; we can also prevent static overload by 
discarding items taking up space beyond a reservoir’s 
capacity.  As with shedding for dynamic resources, 
shedding for static resources also requires rectification 
processes, to correct deficiencies due to dropped load. 

We use symbols in workflow graphs to indicate 
static overload prevention.  A throttle is depicted by a 
dashed arrow from the throttling reservoir to the 
throttled flow.  Infinite-load management is indicated 
by an ∞ symbol beneath the reservoir, unless it uses 
shedding.  For shedding, we highlight the fact that 
items are dropped and a rectification process is needed 
by using a different symbol:  a dotted arrow pointing 
downward from the shedding reservoir.  Fig. 5 shows a 
sample workflow graph with such symbols. 

As stated earlier, a reservoir cannot overload if 
either (1) it can deal with an arbitrary amount of load 
or (2) load in excess of its capacity can never reach it.  
From this, we deduce the following method for 
determining whether a reservoir in a workflow graph is 
immune to overload:  it is so if either (1) it uses 
infinite-load management, or (2) every path along 
which load can enter the system and eventually reach 
that reservoir contains a link throttled by that reservoir.  
Furthermore, if no static overload exists in a set of 
subsystems, and together those subsystems cover all 
reservoirs in the system, then the system is immune to 
static overload. 

3.4.3  Choosing overload prevention techniques 

In a distributed system, a reservoir on one machine 
should not rely on another machine to prevent overload 
since it may be slow, connected by a slow link, 
disconnected entirely, or off.  In Farsite, it may even be 
malicious.  Thus, we consider it an important general 
principle that overload prevention in a distributed 
system must not use the network.  Load reduction may 
use the network, but overload prevention must not.  For 
this reason, as discussed earlier, we suggest that all 
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subsystems depicted in a workflow graph be contained 
within a single machine. 

Choosing which overload prevention technique to 
use for each reservoir is an art.  Here, we offer some 
general principles from experience.  Shedding should 
be a last resort, since it requires a rectification process 
and furthermore this process itself can add load.  
Throttling is good for matching workload creation rate 
to workload processing rate, but can only be used when 
throttling delay is short, there is a mechanism for 
halting load flow across the throttled link, and the 
throttling reservoir’s capacity exceeds the total 
capacity of reservoirs between it and the throttled link.  
Premature release, clown-car compression, and 
infinite-load management techniques are generally 
preferable to throttling, since they do not block the 
flow of load in the system; however, such techniques 
are not always applicable.  Premature release, for 
instance, is only possible when load can always be 
released faster than it accrues.  Also, be aware that 
premature release can sometimes increase load; for 
example, ejecting a cached file prematurely can 
increase load on the system if the file is accessed again. 

In some cases, using one of our overload 
prevention techniques necessitates complex system 
changes with far-reaching consequences.  Examples of 
this will come up in the next section, where we apply 
our load-management techniques to Farsite. 

4. Load management in Farsite 

4.1 Disk space management 
We begin with a discussion of Farsite’s 

management of disk capacity, since the local disk is a 
critical limited resource used by several of its 
subsystems.  The main technique Farsite uses for this is 
premature release, i.e., deleting cached files or file 
replicas earlier than they normally would be deleted.  
However, even after choosing the general technique to 
use, there are still many details of implementation to 
resolve.  In this subsection, we describe the approach 
Farsite uses to decide which files to delete and when to 
delete them.  Its goals are (1) prioritizing local over 
public usage of a machine’s disk, and (2) making 
optimal use of the public portion of a machine’s disk. 

The first goal is readily achieved by dividing disk 
usage into five priority categories, as shown in Table 1.  
As described in section 2, Farsite’s files are maintained 
on the local disk, and its object store uses databases 
also on the local disk, so Farsite essentially competes 
with the operating system and applications for use of 
this space.  Since Farsite is able to operate, albeit 
inefficiently, with little local storage, highest priority is 
given to non-Farsite uses.  Next-highest priority is 
maintaining a free-space target as a buffer and to 
reduce disk fragmentation.  Next is the set of cached 

files, which are copied locally on first access and 
cached for several days so access by local applications 
is efficient.  Next is the set of file replicas, since public 
use is given lower priority than local use.  The lowest 
priority is cached files that have become cold, i.e., not 
accessed for several days.  There is no reason to waste 
available space, so we keep these if there is room. 

The second goal, making best global use of space 
for file replicas, is more complicated.  We would like 
to have an equal number of replicas of each file in the 
system, so we employ a decentralized approximation of 
the following centralized solution:    Keep track of the 
copy count of each file.  Also, keep track of the global 
ideal copy count, equal to the number of storage bytes 
available divided by the number of file bytes.  
Wherever possible, eject replicas of files whose copy 
counts exceed the ideal copy count by 1.0 or more, and 
replace them with replicas of files whose copy counts 
are less than the ideal by 1.0 or more. 

Since Farsite is decentralized, neither file hosts nor 
servers have enough information to compute an ideal 
copy count.  Therefore, Farsite manages file replicas as 
follows.  When a server tells a file host to make a copy 
of a file, it tells it the rank of the copy.  The first copy 
of each file has rank 1; the second has rank 2; etc.  
Replicas on a machine are prioritized according to their 
rank, so file hosts will eject rank 4 copies before 
ejecting rank 3 ones, etc.  Also, each server prioritizes 
creating new replicas according to the lowest non-
existing rank of each file. 

Clearly, this technique uses no global knowledge 
or central coordination.  To see that it achieves our 
goal, consider a system with enough space for two 
copies of each file.  File A has only one copy, and file 
B has three.  Therefore, some file host has a rank 3 (or 
possibly greater) copy of file B.  The server of file A 
will contact file hosts and try to make a rank 2 copy of 
file A.  Once it contacts the file host with the rank 3 
copy of file B, that file host will eject that file to make 
room for the new rank 2 copy of file A. 

A complication is that there may be few file hosts 
willing to accept copies of a particular rank that a 
server would like to make.  In this case, a server may 
have to make the request many times before finding a 
file host that will accept it.  Therefore, Farsite uses 
squelching to manage the network load of copy-request 
messages, as follows.  Each file host knows its rank 

Table 1: Disk space-usage priorities 

Priority Category Sorted by 
   1 (max)    non-Farsite use    n/a 
   2    free-space target    n/a 
   3    cached files (hot)    last-use time 
   4    file replicas    copy rank 
   5 (min)    cached files (cold)    last-use time 
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ceiling, the highest-rank copy it is willing to make.  
When a file host replies to a server’s copy request, or 
when the file host’s rank ceiling increases, it sends the 
server its rank ceiling value.  Servers will not send 
copy requests for ranks that exceed a host’s ceiling. 

The file host maintains its rank ceiling as follows:  
Once per hour, if the disk free space is at least double 
the free-space target, the ceiling is incremented, 
because more space is available for replicas.  It also 
increments the ceiling every 24 hours, because the 
passage of time makes cache files cold.  If a file host 
ever rejects or ejects a copy, it sets the ceiling to one 
less than the copy’s rank, since this rank is no longer 
within the acceptable range.  On a new, empty 
machine, we do not initialize the ceiling to a large 
value just because there is plenty of space, since this 
would allow the host to accept high-rank copies which 
would likely be ejected as the disk fills up.  To prevent 
this waste of effort, we initialize the ceiling to zero and 
allow it to climb gradually. 

We extend the above technique by using 
probabilistic squelching to avoid hotspots.  If a small 
number of file hosts have higher rank ceilings than 
most other file hosts, they may be disproportionately 
besieged by copy requests.  For example, if many 
servers want to make rank 4 copies and only a few file 
hosts have rank ceilings above 3, these servers will 
send all their copy requests to these few file hosts.  In 
large installations, this problem can be significant. 

To address this issue, servers probabilistically 
limit their requests to match the rank-acceptance 
criteria of file hosts, as follows.  As described above, 
servers know the reported rank ceilings of all file hosts 
on which they store files.  Each server maintains a rank 
ceiling of its own, which it sets every 10 minutes to the 
rank ceiling of a randomly selected file host.  This way, 
the rank ceiling follows the distribution of the file 
hosts’ rank ceilings.  Each server restricts its copy 

requests to copy ranks no higher than its current rank 
ceiling.  Thus, if a small number of file hosts have high 
ceiling values, a proportionally small number of 
servers will make high-rank requests at any given time. 

Incidentally, the above algorithm requires periodic 
communication between every file host and every 
server, which will not scale to large systems.  The 
following algorithm, which we have not yet 
implemented, solves this problem:  File hosts report 
their rank ceilings only when asked by servers.  Every 
10 minutes, each server asks a single random host for 
its rank ceiling and sets its own ceiling to that value. 

4.2 Client subsystem 
The first Farsite subsystem we discuss is the client 

subsystem, which exports a file system interface to 
applications on the local machine so they can perform 
operations on the Farsite namespace.  Fig. 6 shows the 
workflow graph for this subsystem, which we will now 
describe in detail.  To distinguish the reservoirs labeled 
A, B, C, etc. in Fig. 6 from reservoirs in other figures, 
we refer to them in the text as 6A, 6B, 6C, etc. 

The client subsystem manages metadata using 
reservoirs 6A – 6D, as follows.  Applications using the 
file system interface generate file system updates in the 
kernel driver.  These are stored in reservoir 6A, the set 
of updates held in the kernel buffer.  Periodically, these 
updates are sent across the kernel-user boundary to 
reservoir 6B, the user-level update set, since most of 
the client subsystem runs in user level.  Periodically, 
these updates are sent to the directory server.  While 
the directory server is processing the updates, they are 
held locally in reservoir 6C, the list of updates waiting 
to be acknowledged as received by the directory server.  
Eventually, the server processes the updates and 
notifies the client that a replica was made.  These 
notifications are held in reservoir 6D until they can be 
processed; processing involves persistently marking the 
local file clean, i.e., no longer the only valid copy of 
the file in the system. 

The client subsystem manages file content using 
reservoirs 6E and 6F, as follows.  When an application 
creates a new Farsite file, the client subsystem stores 
its contents in a new local NTFS file.  This file is dirty, 
i.e., it cannot be deleted until a replica is made 
elsewhere.  Creating such a file thus adds load to 
reservoir 6E, the set of dirty local files; load also enters 
the system into this reservoir when a file is extended.  
When the server notifies the client that an updated file 
has been replicated, it becomes clean and moves to 
reservoir 6F, the set of clean cached files.  Load also 
enters the system into this reservoir when a client 
accesses a non-local file, causing it to become cached 
locally.  Files can leave this reservoir and enter 
reservoir 6E if a local application modifies the file. 

∞ (premature release) 

Fig. 6: Client subsystem 
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The client subsystem has many mechanisms for 
load reduction.  Files are cached upon access so they 
need not be fetched every time they are subsequently 
accessed.  Updates gathered in the user buffer are not 
immediately passed on so they can be combined and 
compressed.  Updates generated in the kernel are 
buffered to reduce the frequency of expensive kernel-
user crossings.  These mechanisms reduce load, but do 
not guarantee prevention of static overload, so other 
techniques are used for this, as follows. 

Reservoir 6C, which holds requests sent to the 
directory server but not yet acknowledged, cannot use 
premature release since it cannot release load until a 
remote node processes it.  So, it throttles load coming 
in from reservoir 6B, the user-level update buffer.  
This, in turn, prevents reservoir 6B from using 
premature release, so it uses throttling instead. When it 
gets too full, it throttles the driver by signaling it to 
temporarily stop completing application I/O requests.  
Together, these throttles limit client workload 
generation to the rate of server workload acceptance 
(albeit not the rate of workload processing).  This 
throttle is engaged only when the applied load is very 
high, and its throttling delay is only a few seconds, so it 
will not create the unpleasant user experience we 
would get by using feedback control across the entire 
update/replication path, which takes at least an hour. 

Reservoir 6A, the kernel update buffer, is 
amenable to premature release, so we use it.  Whenever 
the buffer reaches a certain size, it is immediately sent 
across the kernel-user boundary instead of waiting for 
the next periodic send. 

Reservoir 6D stores notifications from the server 
that files are clean.  It cannot use premature release 
since it performs a disk operation to release load.  Also, 
it cannot throttle any earlier flow in the subsystem 
without incurring a high throttling delay including all 
remote processing along the itinerant edge.  Thus, we 
reluctantly use shedding:  it drops notifications when 
its load exceeds a limit.  This necessitates a 
rectification process:  the client periodically contacts 
the server and queries file clean/dirty status.  Without 
this process, some files might never be marked clean 
and then could never be deleted. 

Reservoir 6F, the set of clean cached files, uses 
premature release, as described in subsection 4.1:  if 
space needs to be made available, cold cache files are 
released prematurely, and if the disk space shortage is 
severe, hot cache files are also released.  If there is so 
little disk space that there is no room for additional 
files in the cache, Farsite will begin giving applications 
out-of-space errors whenever they perform file system 
operations that would increase the size of the local 
cache.  Essentially, this is a throttle from reservoir 6E, 
the set of dirty files, to all paths that allow file cache 
load to enter the system. 

4.3 Directory server subsystem 
Next, we discuss the directory server subsystem, 

which is responsible for managing file system 
metadata, including the location of file replicas on file 
hosts.  Fig. 7 shows the workflow graph for this 
subsystem, which we now describe in detail. 

The directory server subsystem receives file 
system updates from clients, which it stores in reservoir 
7A, the set of updates waiting for the write-absorption 
delay before they will be processed.  Once this delay 
passes, the updates become work items reflecting the 
need to make initial replicas of the updated files.  If the 
server cannot make replica requests immediately due to 
dynamic load constraints, it queues them in reservoir 
7B, the set of such requests waiting to be sent.  As 
described earlier, replica requests with a lower rank 
have priority over requests with a higher rank, so 
reservoir 7B is actually a multi-queue, one queue for 
each rank.  When resources are available to send 
replication requests, they are sent, and they are placed 
in reservoir 7C, the set of replication requests sent but 
not acknowledged as completed by the remote file host.  
When a request is acknowledged as completed, the 
directory server decides whether another replica needs 
to be made, and if so adds load back to reservoir 7B.  If 
no further replicas need to be made, the load is 
removed from the system. 

The main reduction the directory server performs 
is compression in reservoir 7A, delaying updates so 
they can be combined with later updates for more 
efficient processing.  The rest of this subsection 
discusses our techniques for preventing static overload. 

Reservoir 7C cannot use premature release, since 
its outgoing link involves processing by a remote 
machine.  Thus, it uses throttling:  once a threshold 
number of replica requests outstanding is reached, 
requests must wait in reservoir 7B to be dispatched. 

Reservoirs 7A and 7B use our novel clown-car 
compression technique to avoid static overload.  There 
are three factors that allow us to use clown-car 
compression here: (1) the semantics of file update, (2) 
the dynamic partitioning of workload among directory 
server groups, and (3) quotas that limit total file-system 
space usage. 

Fig. 7: Directory server subsystem 
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The relevant semantics of file update is that when 
successive updates are made to a single file’s metadata 
(including its content hash), all updates except the last 
are obsolete.  Thus, all metadata updates except the last 
can be discarded, and reservoirs 7A and 7B need to 
hold at most one update per file in the system.  
Furthermore, each server only receives updates to files 
that it manages, so the maximum size of these two 
reservoirs is proportional to the count of files managed 
by the server group.  The actual clown-car compression 
technique is to maintain these reservoirs merely as 
annotations in the server’s database, such that an 
update to a managed file is “in the reservoir” if a 
particular field of the file’s database record has a value 
indicating so.  There is thus no overload as long as the 
server can support the files it supposed to manage. 

To ensure this latter condition, the Farsite 
architecture includes a mechanism (designed but not 
yet implemented) for dynamically partitioning file 
management among all server groups in the system, so 
each group’s load will not grow beyond what it can 
manage.  This mechanism prevents overloading of any 
particular server group as long as the entire system can 
support the count of files stored in it by clients.  This 
condition, in turn, is ensured by quotas.  The semantics 
of a file system include a limitation on the amount of 
available space:  if a client attempts to store more files 
that the system is willing to support, the client’s file 
creation requests fail with an out-of-space error. 

4.4 File host subsystem 
Next, we discuss the file host subsystem, 

responsible for storing file replicas and making them 
available to clients who need to access them.  Fig. 8 
shows the workflow graph, which we now discuss. 

The file host subsystem receives requests from 
directory servers to make file replicas, and services 
them as soon as dynamic load constraints allow.  While 
they wait to be serviced, they sit in reservoir 8A, the 
queue of replication requests waiting to be serviced.  
We found it important to make this queue explicit, 
since if we simply issued every request as soon as it 
arrived and relied on the scheduler to implicitly queue 
requests for which CPU or disk bandwidth was 
unavailable, the set of threads in the system grew 
without bound.  When a replica is made, a file is added 
to reservoir 8B, the set of replicas on the local disk. 

Reservoir 8A cannot use premature release since it 
relies on disk bandwidth, and it cannot use throttling 
since load comes from another machine.  Thus, we use 
shedding to prevent static overload:  the file host drops 
any requests that arrive when 60 are outstanding.  This 
requires a rectification process, which is that the file 
host tells the server to have another file host make the 
replica, and even if this message is lost the server 
eventually times out the request and does this anyway.  
Note that the server informs the file host of its timeout 
value when it sends the original replication request; if 
the file host finds that the timeout has expired when it 
dequeues the request and is about to initiate it, it drops 
the request since executing it would be pointless. 

Reservoir 8B, the set of replicas stored on the local 
disk, uses premature release.  We discussed such disk 
space management earlier in subsection 4.1. 

4.5 Object pager subsystem 
The last Farsite subsystem we discuss is the object 

pager subsystem, responsible for caching persistent 
objects in memory and paging them to and from disk.  
The pager manages memory consumed by directory 
data and meta-level file data; memory consumed by 
file contents is managed by the operating system’s 
cache manager [16] and so is out of our control.  A 
typical pager prevents overload by slowing down the 
rate at which objects are written [11, pp. 300–303], but, 
as we discuss below, our pager achieves this goal by 
throttling the object lookup rate.  Fig. 9 shows the 
workflow graph for the object pager. 

When system code requests an object that is not 
cached, a lookup request is placed in reservoir 9A, the 
set of pending lookup requests.  When the request 
completes, the fetched object X is kept in memory in 
reservoir 9B as long as X remains referenced. When X 
is no longer referenced, it is not immediately discarded; 
instead, it is retained in the cache in the hope of 
satisfying imminent requests.  If X is dirty, it cannot be 
discarded anyway until it is written out to disk and 
thereby cleaned.  Cached dirty objects are held in 

Fig. 8: File host subsystem 
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reservoir 9C.  Cached dirty objects are written out, i.e., 
cleaned, after having remained unreferenced for three 
minutes.  While an object is being cleaned, it is placed 
in reservoir 9E; it is moved to reservoir 9D, the set of 
cached clean objects, after cleaning is complete.  
Eventually, if an object in reservoir 9D has not been 
accessed for a while, it is discarded. 

When system code requests a cached object, it is 
moved from reservoir 9C or 9D to reservoir 9B, the set 
of referenced objects. Note that no static load is 
actually added to the subsystem on such a cache hit. 

We now discuss the static overload prevention 
techniques the object pager uses.  Reservoirs 9A and 
9E prevent overload by simply throttling their inputs. 

We also use throttling for reservoir 9C, but, unlike 
most pagers, we do not throttle this reservoir’s 
incoming link directly.  Instead of blocking operations 
that mark an object dirty when the count of dirty 
unreferenced objects exceeds a threshold, we instead 
block object lookups in this case, for the following 
reason.  We use an event-driven programming model 
that frequently relies on the atomicity of non-blocking 
calls [2].  We already have to mark object lookups as 
non-atomic, since they may involve a disk operation on 
a cache miss.  To avoid also marking set-object-dirty 
calls as blocking, we do not throttle these calls.  Note 
that stopping object lookups while waiting for the 
cleaner to clean an object cannot cause deadlock, 
because the cleaner simply writes objects to disk and 
thus never requires object lookups. 

The throttle applied by reservoir 9C is not a typical 
throttle in that it does not simply stop flow across the 
link as long as its size exceeds a threshold.  Our design 
accounts for the fact that we expect Farsite to 
sometimes be more constrained in CPU bandwidth than 
disk bandwidth, and sometimes the other way around.  
This is because Farsite runs on a collection of 
heterogeneous machines with heterogeneous CPU and 
disk bandwidths, and also because those machines are 
running other applications, which can dynamically 
cause Farsite to become CPU-limited or disk-limited.  
When Farsite is disk-limited, it will tend to dirty 
objects faster than it cleans them, so in this case we 
want to throttle object lookup so that it is rate-matched 
with the cleaner.  However, when Farsite is CPU-
limited, it will tend to clean objects faster than it dirties 
them and such rate-matching is not needed.  Thus, 
although we want to apply hysteresis before switching 
to the rate-matched state, we want to promptly switch 
back to the non-rate-matched state when we can.  We 
now describe the algorithm we use to achieve this goal. 

When the count of dirty unreferenced objects 
exceeds the dirty-object threshold (2000 objects), 
lookups are disallowed and the cleaner starts cleaning 
dirty unreferenced objects even before their three-
minute timers have expired.  When the count of dirty 

unreferenced objects is between one and the dirty-
object threshold, the lookup dequeues a single waiting 
request each time the cleaner cleans an object, i.e., it 
rate-matches lookup to cleaning.  When the cleaner 
removes the last object from the cleaner queue, the 
system dequeues a batch of waiting lookup requests, 
where the batch size is limited to the dirty-object 
threshold.  This last case is the transition from the rate-
matched to the non-rate-matched state. 

Static overload in reservoir 9D is prevented with 
premature release: if its size reaches a threshold, the 
least-recently-referenced object is prematurely 
discarded.  Note that this is not shedding since the 
normal way to release load from reservoir 9D is to 
discard it.  Thus, it requires no rectification process. 

The workflow graph indicates a potential static 
overload in reservoir 9B, the set of referenced objects. 
We cannot throttle the lookup queue as we do for 
reservoir 9C, because this throttle would get passed 
back to the code making uncached object requests.  If 
this code is blocked, it will not have an opportunity to 
release its references, resulting in a deadlock.  We 
cannot use premature release since there is no 
mechanism to force code to release a reference.  Also, 
we cannot use shedding because this would break code 
that relies on referenced objects remaining in memory 
until explicitly dereferenced. 

Therefore, our only recourse to prevent overload is 
to ensure that the load placed in this reservoir never 
exceeds a reasonable bound via careful code design.  
We limit the size of work batches; we process work in 
a FIFO fashion; and we cache unreferenced objects in 
the object pager, which is sensitive to its memory 
usage, rather than caching these objects in an ad-hoc 
manner (which could result in holding unneeded 
references in the system code). It is somewhat 
unsatisfying to rely on this approach since we cannot 
prove that this reservoir is completely free of possible 
static overload. However, this is no different than the 
way programmers commonly write code to keep 
memory footprints low. 

5. Experimental results 

In this section, we describe the results of 
experiments we performed on Farsite to demonstrate 
the efficacy of our load management techniques. 

5.1 Effect of throttling 
The first experiment we run tests the efficacy of 

the throttle we use to limit the set of dirty unreferenced 
objects, i.e., reservoir C in Fig. 9.  We ran Farsite twice 
with the same set of four machines and the same client 
workload, once with the throttle enabled and once with 
it disabled.  The workload was simply a breadth-first 
creation of a tree of directories, each directory of which 
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had 100 subdirectories.  Fig. 1, presented in the 
introduction, shows the count of directories created by 
all four machines, and the count of dirty unreferenced 
objects on a particular machine.  With the throttle 
disabled, the count of dirty unreferenced objects kept 
increasing, until memory was exhausted and Farsite 
was unable to proceed due to a memory allocation 
failure.  With the throttle enabled, the count of dirty 
unreferenced objects eventually stabilized thanks to the 
throttle on object lookups.  This throttle slowed down 
file system operation, so directories were created less 
quickly, but since it did not crash it was eventually able 
to create more directories than without the throttle. 

5.2 Long-term stability 
To demonstrate the effectiveness of our load-

management techniques, we ran a stressful experiment 
on a 58-machine Farsite system.  We used machines 
several years out of date partly because these were 
what we could scrounge up but also because using slow 
machines increases the relative load on the system.  
Fig. 10 illustrates the characteristics of the machines 
and shows that they are quite heterogeneous.  A system 
of this small size does not require decentralized 

servers, but to test our techniques, we configured all 
machines identically.  Thus, we had 58 clients and 58 
server groups.  Since each server is a replicated state 
machine running on four machines, each machine 
participated in four directory server groups. 

We drove Farsite with an enormous offered load 
by copying images of whole file systems from normal 
users’ desktop machines onto the Farsite clients.  The 
copied file systems were taken from machines at 
Microsoft, and their high-level size characteristics are 
graphed in Fig. 11.  Altogether, we created roughly 1.5 
TB of file data in 10.5 million files.  Since we made 
5.25 TB total available to Farsite, there was enough 
room for a single local cached copy, plus an average of 
2.5 remote replicas, of each file. 

This experiment places tremendous load on the 
system; the mere fact that Farsite can make it through 
this workload without crashing is a significant 
testament to our load-management techniques.  The 
heterogeneity of machines presents many opportunities 
for slow machines to be swamped by load from faster 
machines, and for machines with large disks to be 
overwhelmed by requests to create replicas.  
Furthermore, the heterogeneity of the traces made it 
difficult to ensure each file received its fair share of 
global public storage. 

At time 0, we began the experiment by starting the 
file-system copies on all clients at once.  The copy 
operations completed in a mean of 8 hours. The range 
was 16 minutes to 100 hours with a median of 4 hours 
and a standard deviation of 15 hours.  The large skew 
is due both to the nearly three-order-of-magnitude 
difference in input size and the speed difference of the 
machines in the experiment.  This extremely skewed 
distribution presents a challenge to Farsite, because the 
small systems had an opportunity to make high rank 
replicas when free disk space was plentiful, which then 
had to be removed as the larger, slower ones 
completed.  We ran the experiment for a total of 100 
hours, at which point we stopped to submit this paper. 

Farsite replicates files much more slowly than it 
creates them for several reasons.  First, disk bandwidth 
is greater than network bandwidth.  Second, the 
application that created the load did not actually write 
all of the bytes (it just set the end of file), but this 
optimization was not used for network copies.  Third, 
because the file host component of Farsite is designed 
to be nice to the owner of the workstation on which it 
runs, it limits file replication operations to at most 80% 
of real time.  Our lab has an over-provisioned switched 
Ethernet infrastructure, so network congestion was 
unlikely to have had much effect. 

Fig. 12 shows the evolution of the reservoirs on a 
single representative directory server.  Tier n refers to 
requests in the replication multi-queue to make rank n 
replicas of a file.  For efficiency, the implementation 
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makes no distinction between (a) files waiting to have 
an initial replica made because they are waiting for an 
hour and (b) files waiting to have an initial replica 
made because the replication multi-queue output link is 
throttled; thus, the line depicting the number of files 
waiting for their first replica includes both these types 
of files.  The main point of this graph is that the system 
works as we intended.  The write-absorption wait 
queue grows steadily for the first hour as file updates 
accumulate.  An hour later, when rank 1 replicas begin 
to be made, work items begin moving from the wait 
queue to the second tier of the replication multi-queue.  
At hour 3, the copy completes and files stop arriving in 
the wait queue.  When all rank 1 replicas are made at 
about hour 18, rank 2 file replicas begin being made, so 
the second tier shrinks and the third tier grows.  When 
a directory server sees several consecutive failures to 
replicate a file, it considers it possible that the failures 
may be at the data source(s) rather than the 
destinations, so it returns the file to the wait queue; this 
is the source of the small number of files that reappear 
from time to time in that queue (e.g., around hours 37 
and 80–86).  As file hosts fill up with low-rank 
replicas, they will eject higher-rank replicas to make 
space, and these will return to the replication multi-
queue.  This is (barely) visible on the tier 2 queue 
around hour 67. 

As rank 3 copies are made for files in the third tier, 
disks begin to fill up, so probabilistic squelching slows 
down the copying rate.  Eventually, rank 3 copies begin 
to be ejected from disks, causing servers to make new 
requests on the third tier, and so the third tier grows 
occasionally, such as at hour 72. 

Fig. 13 shows files’ copy count versus time.  In 
our experimental configuration, there is room for an 
average of 2.5 replicas per file, so eventually all files 
should have at least two copies, half of all files should 
have three copies, and no files should have more than 
three.  Unfortunately, our experiment stopped before 
we reached steady state, but the trend toward the 

correct values is visible near the right edge of the 
graph:  The percentage of files with at least one copy 
(beyond the one cached on the writing machine) is 
rising slowly toward 100%.  The percentage of files 
with at least two copies is rising faster.  The 
percentages with at least three or four copies have 
leveled off, and given more time the four-copy line 
would drop as rank 4 replicas were ejected to make 
space for rank 2 replicas of the remaining files that 
have only one copy. 

6. Related work 

Other researchers have designed and built 
decentralized file systems [3, 18], but to the best of our 
knowledge, Farsite is the first to address the problem of 
load management. 

Several researchers have applied feedback control 
to managing load in software systems.  Some [17, 23] 
have proposed a general architecture of exposing the 
queues between components to enable an external 
controller to adjust resource allocations; others [24] 
advocate more general interfaces.  Other systems 
researchers [6, 7, 10, 21, 22] have employed adaptive 
control, wherein long-term data is gathered to refine a 
system model that is in turn used to tune the parameters 
of a control system.  Neither feedback nor adaptive 
control is responsive enough to overcome our long 
loop delay without painfully aggressive throttling. 

Farsite’s distributed disk prioritization scheme 
gives highest priority to local applications and then 
attempts to share remaining capacity in an egalitarian 
fashion.  This has been done before in other contexts, 
including global memory [9], content distribution [19], 
and file-system caching [8]. 

Throttling pagers is a standard technique in 
operating systems [11, 15].  Farsite’s pager is new only 
in that it has a non-blocking write path and a 
mechanism to switch between rate-matching and non-
rate matching modes. 
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7. Summary and conclusions 

Farsite is a decentralized file system intended to 
scale to tens of thousands of machines.  Yet, even in 
small installations, machines can be overwhelmed by 
unmanaged load from other machines, causing 
backups, overflows, timeouts, and depleted resources.  
For this reason, we developed methods for load 
management for distributed systems in general, and 
applied them to Farsite. 

Managing load using feedback control theory is 
impractical because of non-locality, long delay, and 
high forward gain; and using open-loop control is 
infeasible because of machines’ physical distribution, 
heterogeneity, and unpredictability.  Thus, we propose 
an alternate method for managing load in Farsite and 
other similar distributed systems.  (1) Reduce load to 
the extent possible using techniques such as caching, 
compression, and squelching; (2) make clear where 
implicit queuing can cause dynamic load to be 
converted to static load; and (3) prevent overload of 
static resources. 

To prevent static overload, each reservoir where 
static load can accumulate must use either throttling or 
infinite-load management.  Our techniques for infinite-
load management include premature release, clown-car 
compression, and shedding.  Clown-car compression is 
a novel extension of standard compression techniques 
that, by mapping an arbitrarily large set of operations 
onto a fixed-size set, enables the system to handle an 
arbitrary applied load. 

We developed the method of workflow graphs to 
help system designers enumerate the potential sources 
of overload and ensure each is managed appropriately.  
A workflow graph of a subsystem shows the reservoirs 
in that subsystem, the load flows to and from those 
reservoirs, and the load management techniques used 
on each reservoir. 

Some techniques for load management require 
complex system design.  For instance, in Farsite we 
manage disk space in part using a novel mechanism for 
achieving approximately even file replication without 
central coordination or global knowledge. 

Two experiments demonstrate the efficacy of our 
load-management techniques.  In one, we show that 
one of our throttles makes the difference between 
crashing and running stably.  In the other, a long-
running 58-machine experiment, we demonstrate that 
the system is able to run without overloading despite an 
enormous offered load. 
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