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1. Introduction

The `th modular polynomial, φ`(x, y), parameterizes pairs of elliptic curves with an isogeny of de-
gree ` between them. Modular polynomials provide the defining equations for modular curves, and
are useful in many different aspects of computational number theory and cryptography. For exam-
ple, computations with modular polynomials have been used to speed elliptic curve point-counting
algorithms ([BSS99] Chapter VII).

The standard method for computing modular polynomials consists of computing the Fourier ex-
pansion of the modular j-function and solving a linear system of equations to obtain the integral
coefficients of φ`(x, y) ([Elk98]). The computer algebra package MAGMA [BC03] incorporates a
database of modular polynomials for ` up to 59.

The idea of the current paper is to compute the modular polynomial directly modulo a prime p,
without first computing the coefficients as integers. Once the modular polynomial has been com-
puted for enough small primes, our approach can also be combined with the Chinese Remainder
Theorem (CRT) approach as in [ALV03] to obtain the modular polynomial with integral coeffi-
cients or with coefficients modulo a much larger prime using Explicit CRT. Our algorithm does not
involve computing Fourier coefficients of modular functions.

The idea of our algorithm is as follows. Mestre’s algorithm, Methode de graphes [Mes86], uses
the `th modular polynomial modulo p to navigate around the connected graph of supersingular
elliptic curves over Fp2 in order to compute the number of edges (isogenies of degree `) between
each node. From the graph, Mestre then obtains the `th Brandt matrix giving the action of the
`th Hecke operator on modular forms of weight 2. The main idea of our algorithm is to do the
reverse: we compute the `th modular polynomial modulo p by computing all the isogenies of degree
` between supersingular curves modulo p via Vélu’s formulae. Specifically, for a given j-invariant
of a supersingular elliptic curve over Fp2 , Algorithm 1 computes φ`(x, j) modulo p by computing
the ` + 1 distinct subgroups of order ` and computing the j-invariants of the ` + 1 corresponding
`-isogenous elliptic curves. Algorithm 2 then uses the connectedness of the graph of supersingular
elliptic curves over Fp2 to move around the graph, calling Algorithm 1 for different values of j until
enough information is obtained to compute φ`(x, y) modulo p via interpolation.

There are several interesting aspects to Algorithms 1 and 2. Algorithm 1 does not use the fac-
torization of the `-division polynomials to produce the subgroups of order `. Instead we generate
independent `-torsion points by picking random points with coordinates in a suitable extension
of Fp and taking a scalar multiple which is the group order divided by `. This turns out to be
more efficient than factoring the `th division polynomial for large `. This approach also gives as a
corollary a very fast way to compute a random `-isogeny of an elliptic curve over a finite field for
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large `.

Algorithm 2 computes φ`(x, y) modulo p by doing only computations with supersingular elliptic
curves in characteristic p even though φ`(x, y) is a general object giving information about isogenies
between elliptic curves in characteristic 0 and ordinary elliptic curves in characteristic p. The
advantage that we gain by using supersingular elliptic curves is that for all but at most 4 of the
isomorphism classes of supersingular elliptic curves, we can show that the full `-torsion is defined
over an extension of degree O(`) of the base field Fp2 , whereas in general the field of definition can
be of degree O(`2).

2. Local computation of φ`(x, j)

The key ingredient of the algorithm is the computation of the univariate polynomial φ`(x, j) mod-
ulo a prime p given a j-invariant j. We describe the method to do this here.

Algorithm 1
Input: Two distinct primes p and `, and j the j-invariant of a supersingular elliptic curve E over
a finite field Fq of degree at most 2 over a prime field of characteristic p.
Output: The polynomial φ`(x, j) =

∏
E′ `-isogenous to E(x− j(E′)) ∈ Fp2 [x].

Step 1 Find the generators P and Q of E[`]:
(a) Let n be such that Fq(E[`]) ⊆ Fqn .
(b) Let S = ]E(Fqn), the number of Fqn rational points on E.
(c) Set s = S/`k, where `k is the largest power of ` that divides S (note k ≥ 2).
(d) Pick two points P and Q at random from E[`]:

(i) Pick two points U, V at random from E(Fqn).
(ii) Set P ′ = sU and Q′ = sV , if either P ′ or Q′ equals O then repeat step (i).
(iii) Find the smallest i1, i2 such that `i1P ′ 6= O and `i2Q′ 6= O but `i1+1P ′ = O and

`i2+1Q′ = O.
(iv) Set P = `i1P ′ and Q = `i2Q′.

(e) Using Shanks’s Baby-steps-Giant-steps algorithm check if Q belongs to the group gen-
erated by P . If so repeat step (d).

Step 2 Find the j-invariants j1, · · · , j`+1 in Fp2 of the ` + 1 elliptic curves that are `-isogenous to
E.
(a) Let G1 = 〈Q〉 and G1+i = 〈P + (i− 1) ∗Q〉 for 1 ≤ i ≤ `.
(b) For each i, 1 ≤ i ≤ `+1 compute the j-invariant of the elliptic curve E/Gi using Vélu’s

formulas.
Step 3 Output φ`(x, j) =

∏
1≤i≤`+1(x− ji).

The following lemma gives the possibilities for the value of n in Step (1a).

Lemma 2.1. Let E/Fq be an elliptic curve, and let ` be a prime not equal to the characteristic of
Fq. Then E[`] ⊆ E(Fqn) where n is a divisor of either `(`− 1) or `2 − 1.

Proof : The Weil-pairing tells us that if E[`] ⊆ Fqn then µ` ⊆ Fqn ([Sil86] Corollary 8.1.1). We
seek, however, an upper bound on n, to do this we use the Galois representation coming from the
`-division points of E. Indeed, we have an injective group homomorphism ([Sil86] Chapter III, §7)

ρ` : Gal(Fq(E[`])/Fq) → Aut(E[`]) ∼= GL2(F`).
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The Galois group Gal(Fq(E[`])/Fq) is cyclic, thus by ρ` the possibilities for Gal(Fq(E[`])/Fq) are
limited to cyclic subgroups of GL2(F`). We study the following map

GL2(F`)
ψ−→ SL2(F`) −→ PSL2(F`),

where the map ψ is given by ψ(M) = 1
detMM . By a theorem of Dickson (see [Hup67] Hauptsatz

8.27) the cyclic subgroups of PSL2(F`) are either of order ` or of cardinality dividing (` ± 1)/k,
where k = gcd(` − 1, 2). If C is a cyclic subgroup of GL2(F`) then its image in PSL2(F`) is anni-
hilated by either ` or ` ± 1. Since the image is obtained by quotienting out by scalars and then
a group of order 2, C is annihilated by either `(` − 1) or (` − 1)(` + 1) = `2 − 1. Thus the de-
gree of the field extension containing the `-torsion points on E must divide either `(`−1) or `2−1. �

We will try step (1) with n = `2 − 1, if steps (1d - 1e) do not succeed for some K (a constant)
many trials, we repeat with n = `(`− 1). The analysis that follows shows that a sufficiently large
constant K will work.

For step (1b) we do not need a point counting algorithm to determine S. Since E is a supersingular
elliptic curve, we have the following choices for the trace of Frobenius aq:

aq =

{
0 if E is over Fp
0,±p,±2p if E is over Fp2 .

Not all the possibilities can occur for certain primes, but we will not use this fact here (see [Sch87]).
If the curve is over Fp2 we can determine probabilistically the value of aq as follows. Pick a point
P at random from E(Fq) and check if (q + 1 + aq)P = O. Since the pairwise gcd’s of the possible
group orders divide 4p which is O(

√
]E(Fq)), with high probability only the correct value of aq

will annihilate the point. Thus in O(log2+o(1) q) time we can determine with high probability the
correct value of aq. Once we know the correct trace aq, we can find the roots (in Q), π and π, of
the characteristic polynomial of the Frobenius φ2 − aqφ + q. Then the number of points lying on
E over the field Fqn is given by qn + 1 + πn + πn, this gives us S.

Note: We could have used a deterministic point counting algorithm to find ]E(Fq) but this would
have cost O(log6 q) field operations.

Next, we analyze the probability with which step (1d) succeeds.

Lemma 2.2. For a random choice of the points U and V in step (1d i) the probability that step
(1d ii) succeeds is at least (

1− 1
`2

)2

.

Proof : As a group E(Fqn) ∼= Z/NZ × Z/MNZ, where N = `N ′ since `-torsion points of E are
Fqn rational. Using this isomorphism one sees that the probability that sU = O is bounded above
by N ′

N
MN ′

MN = 1
`2

. �

At the end of step (1d) we have two random `-torsion points of E namely, P and Q. The probability
that Q belongs to the cyclic group generated by P is `

`2
= 1

` . Thus with high probability we will
find in step (1e) two generators for E[`].

Lemma 2.3. The expected running time of Step 1 is O(`4+o(1) log2+o(1) q).
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Proof : The finite field Fqn can be constructed by picking an irreducible polynomial of degree
n. A randomized method that requires on average O

(
(n2 log n+ n log q) log n log log n

)
operations

over Fq is given in [Sho94]. Thus the field can be constructed in O(`4+o(1) log2+o(1) q) time since
n ≤ `2. Step (1d) requires picking a random point on E. We can do this by picking a random
element in Fqn treating it as the x-coordinate of a point on E and solving the resulting quadratic
equation for the y-coordinate. Choosing a random element in Fqn can be done in O(`2 log q) time.
Solving the quadratic equation can be done probabilistically in O(`2 log q) field operations. Thus
to pick a point on E can be done in O(`4+o(1) log2+o(1) q) time. The computation in steps (1d i –
iv) computes integer multiples of a point on the elliptic curve, where the integer is at most qn, and
this can be done in O(`4+o(1) log2+o(1) q) time using the repeated squaring method and fast multi-
plication. Shanks’s Baby-steps-giant-steps algorithm for a cyclic group G requires O(

√
|G|) group

operations. Thus step (1e) runs in time O(`
5
2
+o(1) log1+o(1) q), since the group is cyclic of order `. �

Let C be a subgroup of E, Vélu in [Vel71] gives explicit formulas for determining the equation
of the isogeny E → E/C and the Weierstrass equation of the curve E/C. Let E is given by the
equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

and let S be a set of representatives for (C − {O})/± 1. We define the following two functions in
Fq(E) for Q = (x, y) a point on E − {O} define

gx(Q) = 3x2 + 2a2x+ a4 − a1y

gy(Q) = −2y − a1x− a3,

and set

t(Q) =

{
gx(Q) if Q = −Q on E;
2gx(Q)− a1g

y(Q) otherwise,

u(Q) = (gy(Q))2

t =
∑
Q∈S

t(Q)

w =
∑
Q∈S

(u(Q) + x(Q)t(Q)).

Then the curve E/C is given by the equation

Y 2 +A1XY +A3Y = X3 +A2X
2 +A4X +A6

where

A1 = a1, A2 = a2, A3 = a3,

A4 = a4 − 5t, A6 = a6 − (a2
1 + 4a2)t− 7w.

From the Weierstrass equation of E/C we can easily determine the j-invariant of E/C. It is clear
that this procedure can be done using O(`) elliptic curve operations for each of the groups Gi,
1 ≤ i ≤ ` + 1. Thus step 2 can be done in O(`4+o(1) log1+o(1) q) time steps. Step 3 requires only
O(`) field operations and so the running time of the algorithm is dominated by the running time
of steps 1 and 2. Note that the polynomial obtained at the end of Step 3 φ`(x, j) has coefficients
in Fp2 [x] since all the curves `-isogenous to E are supersingular and hence their j-invariants belong
to Fp2 . In summary, we have the following:
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Theorem 2.4. Algorithm 1 computes φ`(x, j) ∈ Fp2 [x], in fact, the list of roots of φ`(x, j), and
has an expected running time of O(`4+o(1) log2+o(1) q).

For our application of Algorithm 1 we will need the dependence of the running time in terms of
the quantity n. We make the dependence explicit in the next theorem.

Theorem 2.5. With notation as above, Algorithm 1 computes φ`(x, j) ∈ Fp2 [x] together with the
list of its roots and has an expected running time of O(n2+o(1) log2+o(1) q +

√
`n1+o(1) log1+o(1) q +

`2n1+o(1) log q).

In the case of ordinary elliptic curve, step (1) of Algorithm 1 can still be used, once the number of
points on E/Fq has been determined, by Lemma 2.1 the degree of the extension, n, is still O(`2).
This leads to the following two results:

Corollary 2.6. If E/Fq is an elliptic curve, we can pick a random `-torsion point on E(Fq) in
time O(`4+o(1) log2+o(1) q + log6+o(1) q).

Corollary 2.7. If E/Fq is an elliptic curve, we can construct a random `-isogenous curve to E in
time O(`4+o(1) log2+o(1) q + log6+o(1) q).

3. Computing φ`(x, y) mod p

In characteristic p > 2 there are exactly

S(p) =
⌊
p

12

⌋
+ εp

supersingular j-invariants where

εp = 0, 1, 1, 2 if p ≡ 1, 5, 7, 11 mod 12.

In this section we provide an algorithm for computing φ`(x, y) mod p provided S(p) ≥ `+ 1. The
description of the algorithm follows:

Algorithm 2
Input: Two distinct primes ` and p with S(p) ≥ `+ 1.
Output: The polynomial φ`(x, y) ∈ Fp[x, y].

(1) Find the smallest (in absolute value) discriminant D < 0 such that
(
D
p

)
= −1.

(2) Compute the Hilbert Class polynomial HD(x) mod p.
(3) Let j0 be a root of HD(x) in Fp2 .
(4) Set i = 0.
(5) Compute φi = φ`(x, ji) ∈ Fp2 using Algorithm 1.
(6) Let ji+1 be a root of φk for k ≤ i which is not one of j0, · · · , ji.
(7) If i < ` then set i = i+ 1 and repeat Step 5.
(8) Writing φ`(x, y) = x`+1 +

∑
0≤k≤` pk(y)x

k, we have `+ 1 systems of equations of the form
pk(ji) = vki for 0 ≤ k, i ≤ `. Solve these equations for each pk(y), 0 ≤ k ≤ `.

(9) Output φ`(x, y) ∈ Fp[x, y].

We argue that the above algorithm is correct and analyze the running time. For step 1, we note that
if p ≡ 3 mod 4, then D = −4 works. Otherwise, −1 is a quadratic residue and writing (without
loss of generality) D as −4d, we are looking for the smallest d such that

(
d
p

)
= −1. A theorem

of Burgess ([Bur62]) tells us that d � p
1

4
√

e , and under the assumption of GRH the estimate of
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Ankeny ([Ank52]) gives d � log2 p. Computing HD(x) mod p can be done in O(d2(log d)2) time
[LL90] §5.10. Thus step 2 requires O(

√
p log2 p) time , and under the assumption of GRH requires

O
(
log4 p(log log p)2

)
time. Since

(
D
p

)
= −1 all the roots of HD(x) are supersingular j-invariants

in characteristic p. HD(x) is a polynomial of degree h(
√
−D), the class number of the order of

discriminant D, and this is � |D|
1
2
+ε, by Siegel’s theorem. Finding a root of HD(x) ∈ Fp2 can

be done in O(d1+ε log2+o(1) p) time using probabilistic factoring algorithms, where d = |D|. The
graph with supersingular j-invariants over charactertistic p as vertices and `-isogenies as edges is
connected (see [Mes86]), consequently, we will always find a j-invariant in step 6 that is not one of
j0, · · · , ji. Thus the loop in steps (5) · · · (7) is executed exactly ` + 1 times under the assumption
that S(p) ≥ `+ 1. Even though Algorithm 1 requires Õ(`4 log2 q) time1 in the worst case, we will
argue that for almost all of the iterations of the loop it actually runs in Õ(`3 log2 q) time.

Lemma 3.1. Let E1, · · · , ES(p) be the supersingular elliptic curves (unique up to isomorphism)
defined over Fp2. Then for all but (possibly) four elliptic curves the extension degree

[Fp2(Ei[`]) : Fp2 ], 1 ≤ i ≤ S(p)

divides 6(`− 1).

Proof : Let E/Fp2 be a supersingular curve and let t be the trace of Frobenius. Then the Frobenius
map φ satisfies

φ2 − tφ+ p2 = 0.

Suppose t = ±2p, then the characteristic equation of Frobenius factors as (φ±p)2. Thus the action
of Frobenius on the vector space of `-torsion points is not irreducible. In particular, there is a
non-zero eigenspace V ⊆ E[`], where φ acts as multiplication by ±p. Thus there is a non-zero
vector v ∈ V whose orbit under Frobenius is of size dividing ` − 1. Let P be the `-torsion point
corresponding to v. Then [Fp2(P ) : Fp2 ] divides `− 1. Since E is supersingular, its embedding de-
gree is 6, thus the extension Fp2(E[`])/Fp2(P ) is of degree dividing 6. The number of isomorphism
classes of elliptic curves with trace 0 or ±p over Fp2 is at most 4 by a theorem of Schoof [Sch87],
this proves the result. �

Thus, except for possibly 4 iterations of the loop in steps (5) · · · (7), Algorithm 1 can be run with
the quantity n = 6(` − 1) (and we can test efficiently if this value of n works). Thus Algorithm 1
runs in expected time O(`3+o(1) log2+o(1) p) for all except (possibly) 4 iterations of the loop. Thus
the loop runs in expected time O(`4+o(1) log2+o(1) p).

Writing the modular polynomial φ`(x, y) as x`+1 +
∑

0≤k≤` pk(y)x
k, we know that p0(y) is monic

of degree `+ 1 and deg(pk(y)) ≤ ` for 1 ≤ k ≤ `. Thus at the end of the loop in steps (5) · · · (7) we
have enough information to solve for the pk(y) in step (8). We are solving `+1 systems of equations,
each requiring an inversion of a matrix of size (`+1)× (`+1). This can be done in O(`4 log1+o(1) p)
time. Since the polynomial φ`(x, y) mod p is the reduction of the classical modular polynomial, a
polynomial with integer coefficients, the polynomial that we compute has coefficients in Fp. Thus
we have proved the following theorem:

Theorem 3.2. Given ` and p distinct primes such that S(p) ≥ ` + 1, Algorithm 2 computes
φ`(x, y) ∈ Fp[x, y] in expected time O(`4+o(1) log2+o(1) p + log4 p log log p) under the assumption of
GRH.

Hence, we can compute φ`(x, y) modulo a prime p in Õ(`4 log2 p+ log4 p) time if p ≥ 12`+ 13.

1We use the soft-Oh Õ notation when we ignore factors of the form log ` or log log p.
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