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Abstract

We consider undirected graphical models for
discrete, finite variables. Lauritzen (1996)
provides alternative definitions of such mod-
els and describes their relationships. We ex-
tend his analysis by considering another def-
inition describing conditionally specified dis-
tributions. We describe the relationship of
this model class with the previously described
classes. In addition, we show that all defini-
tions capture the same set of strictly positive
distributions.
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1 Introduction

Lauritzen (1996, Ch. 3) provides alternative defini-
tions of undirected models for discrete variables with
finite state spaces. In particular, given an undirected
graph G, he defines the following families of distribu-
tions:

• MP (G): The family of distributions satisfying the
pairwise Markov property relative to G,

• ML(G): The family of distributions satisfying the
local Markov property relative to G,

• MG(G): The family of distributions satisfying the
global Markov property relative to G,

• MF (G): The family of distributions that can be
written as a product of potentials over the maxi-
mal cliques in the graph

• ME(G): The family of distributions that can
be written as a limit of positive distributions in
MF (G).

In addition, he defines families of distributions limited
to strictly positive distributions among the first four
families just listed, denoted M+

P (G), M+
L(G), M+

G(G),
and M+

F (G), respectively. He proves that these posi-
tive families are equal, and denotes the common family
M+(G). He further proves that M+(G) ⊆ MF (G) ⊆
ME(G) ⊆ MG(G) ⊆ ML(G) ⊆ MP (G) and demon-
strates, with examples, that each inclusion is strict. A
summary of this work is shown in the Venn diagram
in Figure 1a.

In this note, we consider another definition of an
undirected graphical model for G: the family of con-
ditionally specified distributions, which we denote
MC(G). Conditionally specified distributions have
been described in Arnold, Castillo, and Sarabia (1999)
and Heckerman, Chickering, Meek, Rounthwaite and
Kadie (2000). We analyze the relationships between
this family and those defined in Lauritzen (1996). A
summary of our work is shown in Figure 1b.

2 Notation and Definitions

In this section, we review some basic graph-theoretic
definitions and notation and define conditionally spec-
ified graphical models.

We use G = (V,E) to denote an undirected graph
where V = {A,B,C, . . .} denotes the set of vertices
and E is the set of edges. We will denote an edge
between two vertices A and B by A − B and denote
the set of neighbors of a vertex A by ne(A).

In order to associate a distribution with a graph we
associate a variableXA with each vertex A. We denote
the set of variables corresponding to a set of vertices
C by XC and denote the set of all variables by X =
XV. We assume that each variable takes a finite set of
possible values. We define the family of conditionally
specified distributions for graph G as follows:

MC(G) = {P | ∀A ∈ V,XA ⊥⊥P X \ {XA}|Xne(A)

and ∀µ(∀A µPA = µ) implies µ = P}
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Figure 1: (a) Relationships among definitions of undirected graphical models as described by Lauritzen (1996).
(b) Additional relationships among the definitions in (a) and MC(G)—the family of conditionally specified
distributions. Labeled points correspond to example distributions demonstrating the non-emptiness of cells in
the Venn diagram. Example distributions in Lauritzen (1996) and this note are prefixed with “L” and “D”,
respectively.



where XA ⊥⊥P X \ {XA}|Xne(A) means that the vari-
able XA is independent of the variables X\{XA} given
Xne(A) in distribution P and where PA = P (XA |
XV\{A}) is the transition matrix for a Gibbs sam-
pler updating vertex A. In words, this is the set of
distributions P which obey the local Markov prop-
erty with respect to G (i.e., MC(G) ⊆ ML(G)), and
for which there exists a (single-site) Gibbs sampler
whose unique stationary distribution is P . Note that,
due to the restriction to local Markov distributions,
PA = P (XA | X \ {XA}) = P (XA | Xne(A)). Thus,
a conditionally specified model is defined in terms of
the family of conditional distributions whose form is
defined by the graph.

In addition, let M+
E(G) and M+

C(G) be the families
ME(G) and MC(G), respectively, limited to strictly
positive distributions.

3 Relating the definitions

In the remainder of this note, we examine the relation-
ship between the various families for graph G.

3.1 Positive distributions

As mentioned, Lauritzen (1996) shows that M+
F (G) =

M+
G(G) = M+

L(G) = M+
P (G). Here, we show that

M+
F (G) = M+

E(G) = M+
C(G).

Lemma 1 M+
E(G) = M+

F (G) = M+
C(G).

Proof: From the definition of MF , we know that
M+

F (G) ⊆ M+
E(G). Furthermore, we know that

ME(G) is a subset of the set of global Markov distribu-
tions MG(G) (Lauritzen 1996, p. 42) and M+

F (G) =
M+

G(G) (Lauritzen 1996, p. 34). From these facts we
have M+

F (G) = M+
E(G).

From the definition of MC , we know that M+
C(G) ⊆

M+
L(G). Furthermore, the set of positive pairwise

Markov distributions M+
P (G) and M+

G(G) are equal
to M+

L(G) (see, e.g., Lauritzen 1996, p. 34). From
the Hammersley-Clifford Theorem, M+

F (G) = M+
P (G)

(see, e.g., Lauritzen 1996, p. 36). Therefore, we have
established M+

C(G) ⊆ M+
F (G). Thus, to establish the

lemma we only need to show that M+
F (G) ⊆ M+

C(G).
Let P be in M+

F (G). The factorization of the distri-
bution guarantees that P is in ML(G). Furthermore,
the conditionals Pi are all well-defined for all values of
the conditioning set due to the positivity. Hence the
Markov chain is irreducible and ergodic which guaran-
tees that P ∈ MC(G). QED

3.2 ML(G) \ (MG(G) ∪ MC(G)) �= ∅
In the remainder of Section 3, we show that certain
cells in the Venn diagram of Figure 1b are not empty.
We do so with specific examples. Example distribu-
tions given by Lauritzen (1996) are prefixed with the
letter “L.” New examples are prefixed with the letter
“D.” We first consider examples from Lauritzen (1996)
as some of the examples we introduce are based on
them.

Example 3.5 in Lauritzen (1996) illustrates that there
are distributions that are locally Markov but neither
globally Markov nor able to be conditionally specified.

L3.5 A distribution P for five variables XU , XW ,
XX , XY , and XZ where XU and XZ are indepen-
dent, P (XU = 1) = P (XZ = 1) = P (XU = 0) =
P (XZ = 0) = 1/2, and XW = XU , XY = XZ , and
XX = XWXY .

For the graph GC , U—W—X—Y—Z, Lauritzen
(1996) shows that this distribution is in ML(GC) but
not MG(GC). The distribution is not in MC(GC) be-
cause any two points of support have a Hamming dis-
tance of two or more.

3.3 MG(G) \ (ME(G) ∪ MC(G)) �= ∅
The following distribution from Lauritzen (1996, Ex-
ample 3.15) and Matus and Studeny (1995) illustrates
that there are distributions that are globally Markov
but neither extended Markov nor able to be condition-
ally specified.

L3.15 A distribution P for variables XA, XB , XC ,
and XD, where all variables have three possible values
a, b, and c, and each of the following nine states have
probability equal to 1/9:

(a, a, a, a) (b, a, b, c) (c, a, c, b)
(a, b, b, b) (b, b, c, a) (c, b, a, c)
(a, c, c, c) (b, c, a, b) (c, c, b, a)

For the four-cycle graph G4 that contains the edges
A B, B C, C D and A D, Lauritzen (1996)
and Matus and Studeny (1995) show that this distribu-
tion is in MG(G4) but not ME(G4). The distribution
is not in MC(G4) because any two points of support
differ in three variables.

3.4 (ME(G) ∩ MC(G)) \ MF (G) �= ∅
The following distribution from Lauritzen (1996, Ex-
ample 3.10) and Moussouris (1974) illustrates that



there are distributions that cannot be factored but are
in the set of extended Markov distributions and can
be conditionally specified.

L3.10 A distribution P for four binary variables
XA, XB , XC , XD with support only on the points

(0, 0, 0, 0) (1, 0, 0, 0) (1, 1, 0, 0) (1, 1, 1, 0)
(0, 0, 0, 1) (0, 0, 1, 1) (0, 1, 1, 1) (1, 1, 1, 1)

and equal probability mass on each point. That is, for
instance, P (XA = 0, XB = 0, XC = 0, XD = 0) = 1/8.

Consider the four-cycle graph G4, as used in the previ-
ous example. This distribution is not in MF (G4) (Lau-
ritzen 1996, p. 37) but is in ME(G4) (Lauritzen 1996,
p.40). It is straightforward to verify that the univari-
ate conditionals of the distribution define a univariate
Gibbs sampler with the correct stationary distribu-
tion. In particular, note that each point with support
is Hamming distance one from two other points with
support and that every point with support is reachable
from every other point. Therefore, the distribution is
in MC(G4).

3.5 MF (G) \ MC(G) �= ∅
We now come to new examples.

The following distribution illustrates that there are
distributions that cannot be conditionally specified
but factor.

D1 A uniform distribution for two binary random vari-
ables XA, XB with support only on the points (0, 0),
(1, 1).

Such a distribution is in MF (A B) because the
graph is complete and all distributions for two vari-
ables can be represented by the trivial factorization.
The distribution is not in MC(A B) because the
two points of support have a Hamming distance of
two, which means that there is no way for a single-
site Gibbs sampler to visit both of the points in the
support of the distribution (infinitely often) without
visiting points not in the support.

3.6 (MF (G) ∩ MC(G)) \ M+
C(G) �= ∅

The following distribution illustrates that there are
non-positive distributions that factor and can be con-
ditionally specified.

D2 A distribution for two binary random variables
XA, XB with support only on the point (0,0).

As argued for distribution D1 above, such a distribu-
tion is in MF (A B) and ME(A B). In addition,
the distribution is in MC(A B) because one can de-
fine a single-site Gibbs sampler that deterministically
stays at the same point. Clearly, this distribution is
not strictly positive.

3.7 MC(G) \ MG(G) �= ∅
We now present a distribution that is in MC(G) but
not MG(G). The construction is based on Example
3.5 in Lauritzen (1996) (see §3.2 above).

The support of the distribution in this example does
not permit it to be sampled from via a univari-
ate Gibbs sampler, since there are only four support
points:

(0, 0, 0, 0, 0) (1, 1, 0, 0, 0) (0, 0, 0, 1, 1) (1, 1, 1, 1, 1)

and they are all separated by Hamming distance at
least two.

To define our distribution, we add an additional
variable T to the graph, which is a neighbor of
{U,W,X, Y, Z}.

D3 The distribution over 6 binary vari-
ables {XT , XU , XW , XX , XY , XZ} where
P (XT = 1) = 0.5, P (XU , XW , XX , XY , XZ |XT =
0) = 2−5 (i.e., uniform over the states)
and P (XU , XW , XX , XY , XZ |XT = 1) =
P (XU |XT = 1)P (XZ |XT = 1)P (XW |XU , XT =
1)P (XY |XZ , XT = 1)P (XX |XW , XY , XT = 1) where

P (XU = 1|XT = 1) = 0.5
P (XZ = 1|XT = 1) = 0.5

P (XW = a|XU = a,XT = 1) = 1.0
P (XY = a|XZ = a,XT = 1) = 1.0

P (XX = ab|XW = a,XY = b,XT = 1) = 1.0

where a, b are the possible values (0 or 1) of the vari-
ables.

The resulting distribution
P (XT , XU , XW , XX , XY , XZ) has support on the 36
point space:

{0} × {0, 1}5 ∪ {1}×
{(0, 0, 0, 0, 0), (1, 1, 0, 0, 0), (0, 0, 0, 1, 1), (1, 1, 1, 1, 1)}

It is simple to see that there is now a path between any
two points in the support space such that each pair



of adjacent points has Hamming distance one. The
Markov chain resulting from the Gibbs sampler will be
irreducible and ergodic, and hence will have a unique
limiting distribution. This limiting distribution will be
as described above.

It now only remains to observe that the distribution
obeys all of the conditional independence relations re-
quired by the Local Markov property applied to the
graph:

XU ⊥⊥XX , XY , XZ | XW , XT

XW ⊥⊥XY , XZ | XU , XX , XT

XX ⊥⊥XU , XZ | XW , XY , XT

XY ⊥⊥XU , XW | XX , XZ , XT

XZ ⊥⊥XU , XW , XX | XY , XT

but does not obey the global property, since

XW �⊥⊥XY | XX , XT .

3.8 (MC(G) ∩ MG(G)) \ ME(G) �= ∅
We apply a similar construction to that used in Sec-
tion 3.7 to Example 3.15 in Lauritzen (1996) (see §3.3).

D4 The distribution over ternary variables
XA, XB , XC , XD and binary variable XT ,
where P (XT = 0) = P (XT = 1) = 0.5,
P (XA, XB , XC , XD|XT = 0) = 3−4, and
P (XA, XB , XC , XD|XT = 1) is the distribution
specified in L3.15.

The resulting distribution is globally Markov with re-
spect to the graph G given by:

A T B C T D A B C D A

because given XT = 0, the variables XA, XB , XC , XD

are marginally independent, whereas we have

XA ⊥⊥XC | XB , XD, XT = 1

since the conditional distribution over (XA, XC) is de-
generate. Likewise, we have

XB ⊥⊥XD | XA, XC , XT = 1.

To demonstrate that the distribution is not in ME(G),
we follow the argument given in Lauritzen (1996), p.42.
First note that each of the pairs (XA, XB), (XB , XC),
(XC , XD), (XA, XD) are uniformly distributed under
P given T = 0 and given T = 1. Hence, each of the
triples

(XA, XB , XT ), (XB , XC , XT ),

(XC , XD, XT ), (XA, XD, XT )

are uniformly distributed on the 18 element space:
{a, b, c} × {a, b, c} × {0, 1}. Hence P has the same
clique marginals as the uniform distribution Q defined
by taking Q(XA, XB , XC , XD, XT ) = 2−13−4. Q is
clearly in ME(G). It then follows by Lemma 3.14
in Lauritzen (1996) that P /∈ ME(G), since distribu-
tions in ME(G) are uniquely identified via their clique
marginals.

Finally, we observe that P ∈ MC(G) since every point
with support is reachable from every other point via
a sequence of points which are Hamming distance one
apart.

3.9 ME(G) \ (MF (G) ∪ MC(G)) �= ∅
The following distribution illustrates that there are
distributions in the set of extended Markov distribu-
tions that do not factor and cannot be conditionally
specified.

D5 A distribution P over 5 binary variables
{XA, XB , XC , XD, XE} with support only on the
points

(0, 0, 0, 0, 0) (1, 0, 0, 0, 0) (1, 1, 0, 0, 0) (1, 1, 1, 0, 0)
(0, 0, 0, 1, 0) (0, 0, 1, 1, 0) (0, 1, 1, 1, 0) (1, 1, 1, 1, 0)

(0, 1, 0, 0, 1) (0, 1, 0, 1, 1) (1, 1, 0, 1, 1) (1, 0, 0, 1, 1)
(0, 1, 1, 0, 1) (0, 0, 1, 0, 1) (1, 0, 1, 0, 1) (1, 0, 1, 1, 1)

and equal probability mass on each point. That is, for
instance, P (XA = 0, XB = 0, XC = 0, XD = 0, XE =
0) = 1/16.

We consider the graph G5 that contains the edges
A B, B C, C D, A D, E A, E B,
E C and E D. Every point in the second set
of eight support points is Hamming distance greater
than or equal to two from every other point in the
first set of eight points in the support thus the dis-
tribution is not in MC(G5). Next we show that the
distribution is not in ME(G5) using the same tech-
nique as Lauritzen does for his Example 3.10 (Lau-
ritzen 1996, p. 38). Aiming at a contradiction,
we assume that the distribution factors using factors
ψABE(·), ψBCE(·), ψCDE(·), ψADE(·). Then

1/16 = P (0, 0, 0, 0, 0) =

ψABE(0, 0, 0)ψBCE(0, 0, 0)ψCDE(0, 0, 0)ψADE(0, 0, 0).

But also
0 = P (0, 0, 1, 0, 0) =



ψABE(0, 0, 0)ψBCE(0, 1, 0)ψCDE(1, 0, 0)ψADE(0, 0, 0).

From which it follows that

ψBCE(0, 1, 0)ψCDE(1, 0, 0) = 0.

Since
1/16 = P (0, 0, 1, 1, 0) =

ψABE(0, 0, 0)ψBCE(0, 1, 0)ψCDE(1, 1, 0)ψADE(0, 1, 0)

it must be the case that ψBCE(0, 1, 0) �= 0. It follows
that ψCDE(1, 0, 0) = 0. However, this contradicts the
fact that

1/16 = P (1, 1, 1, 0, 0) =

ψABE(1, 1, 0)ψBCE(1, 1, 0)ψCDE(1, 0, 0)ψADE(1, 0, 0).

It remains to show that P ∈ ME(G5). We use the
same proof technique as Lauritzen (1996; p. 40) and
describe a sequence of distributions Pn ∈ MF (G5)
whose limit as n → ∞ is distribution D5:

Pn(a, b, c, d, e) =

ne(1−(ab+bc+cd−ad−b−c+1))+(1−e)(ab+bc+cd−ad−b−c+1)

16 + 16n
The expression in the exponent of the numerator is one
for each point in the support and zero otherwise which
justifies the normalizing constant. Each distribution
Pn factors according to G5 because each product of
variables that occurs in the numerator is a subset of
the cliques of the graph.

4 Discussion

We have shown that all definitions agree on positive
distributions. Also, for decomposable graphs G, Lau-
ritzen (1996) shows that ME(G) = MF (G). Because
the graphs corresponding to examples D3 and D4 are
decomposable, however, MC(G) �= ME(G) for this
class of graphs. An interesting set of questions is
whether there are non-trivial classes of graphs and/or
distributions for which MC(G) is equal to one or more
of ML(G), MG(G), ME(G), or MF (G).
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