

Software Development at Microsoft Observed:
It’s about people … working together

 Gina Venolia User Interface Architect gina.venolia@microsoft.com

 Rob DeLine Researcher rob.deline@microsoft.com

 Thomas LaToza Intern (Summer 2005) tlatoza@cs.cmu.edu

Microsoft Research

Human Interactions in Programming team

http://research.microsoft.com/hip/

© 2005 Microsoft Corporation. All Rights Reserved.

ABSTRACT

To understand Microsoft developers’ typical tools and work habits and their level of satisfaction

with these, we performed two surveys and eleven interviews with developers across all business

divisions. This report provides a summary of the resulting data. From the set of potential

problems we gave them, the top three that Microsoft developers agree they have are:

understanding the rationale behind a piece of code (66%); having to switch tasks often because of

requests from teammates or managers (62%); and being aware of changes to code elsewhere that

impact their own code (61%). The most notable take-away from the data is that developers go to

great lengths to create and maintain rich mental models of code and don’t rely on external

representations. The mental nature of these models requires frequent, disruptive, face-to-face

meetings to keep individuals’ models in sync, which greatly slow the rate at which a newcomer to

a team can become productive. These interruptions also burden more senior development team

members, as they have to recover what they were doing in the code following the interruption

from team members.

Software Development at Microsoft Observed Page 2 of 10

INTRODUCTION

The Human Interactions in Programming (HIP) team in Microsoft Research applies human-

centered research techniques to builds tools that improve the software development process. The

joke goes, “we build tools as if software were made by people … working together.”

As a human-centered effort, we draw from various research fields including human-computer

interaction, information visualization, computer-supported cooperative work, and social

computing. The central tenet of these fields is that one needs to understand the user in order to

design tools to support them. To this end we have initiated a series of investigations to understand

software development at Microsoft. Our research builds on a rich history of research into

professional software development practices [1, 2, 4, 5, 6, and 7]. This document describes the

process we used, what we learned, and directions for future user research.

METHODOLOGY

We performed two surveys and several face-to-face interviews of developers at Microsoft during

the summer of 2005. The first survey contained 205 questions asking how developers spend their

time, what tools they use, and the severity of various problems they face. We deployed it to 1000

architects, software developers and software test developers randomly selected from the

Microsoft address book by job title. We received 157 responses, though the data presented here

includes only the 104 responses from the developers.

Next we performed semi-structured interviews with six software development leads and five

software developers drawn from our survey respondents. Each was done by two interviewers,

who took copious notes. Each interview lasted about an hour. Most were recorded on audio. To

find the themes latent in the notes we transcribed them onto ~800 3x5” cards and did a massive

card sort exercise (see Figure 1).

The interviews and survey lead us to several preliminary hypotheses. We developed a second

survey to test the hypotheses and investigate them more deeply. We deployed the 187-question

follow-up survey to 1000 randomly-selected software developers and software development

leads, excluding those who received the first survey. We received 187 responses.

Software Development at Microsoft Observed Page 3 of 10

Figure 1: We analyzed notes from the interviews using a card sort, some of which is captured in

this photo.

OBSERVATIONS

Obviously we have a tremendous amount of data about software development at Microsoft.

Rather than recount it in detail, this whitepaper presents the key observations that we drew from

our research, which fall into three themes:

• Developers go to great lengths to create and maintain rich mental models of code and

don’t rely on external representations.

• Understanding the rationale behind code is the biggest problem for developers. When

trying to understand a piece of code developers turn first to the code itself and, when that

fails, to their social network.

• Developers and development managers use a variety of tools and work practices, and are

actively looking for better solutions.

The next sections present details of and evidence for these observations.

Software Development at Microsoft Observed Page 4 of 10

Mental Models

Developers create and maintain intricate mental modes of the code. Through our interviews we

know that developers can talk spontaneously about the architecture, how it’s implemented, who

owns what parts, the history of the code, to-dos, wish-lists, and meta-information about the code.

For the most part this knowledge is never written down, except transient forms such as sketches

on a whiteboard. One of our interviewees summed it up well, saying, “Lots of design information

is kept in peoples’ heads.”

Personal Code Ownership

Mental models are expensive to create and maintain. Developers have a strong notion of personal

code ownership, which constrains the amount of code they have to understand in detail. In our

follow-up survey, 77% of respondents agreed1 with the statement, “There is a clear distinction

between code that I own and the code owned by my teammates.” (On the other hand some teams

have a policy to avoid personal code ownership because it makes individuals too indispensable

and promotes, in the words of one of our interviewees, “too much passion around the code.”)

Code ownership is a long-term proposition, reducing the number of times that a developer has to

learn a new code base. In our first survey, the average time on the current code base was 2.6

years, with 32% reporting 6 years or more. Personal code ownership is usually tacit, i.e. part of

the mental model; written records of ownership, when present, are often out-of-date and

distrusted.

We received conflicting information about design documents for issues within a team. In the

interviews design docs were described almost as write-only media, serving to structure the

developer’s thinking and as an artifact to design-review, but seldom read later and almost never

kept up-to-date. On the other hand our follow-up survey respondents reported a different picture

of design documents for issues within the team: their feature teams wrote an average of 8.0

documents in the prior year, and kept 51% of them up-to-date. We were surprised with these

numbers and can’t reconcile them with the results of the interviews.

Team Code Ownership and the “Moat”

Even stronger than personal code ownership is a notion of team code ownership. A whopping

92% agreed with the statement, “There is a clear distinction between the code my feature team

owns and the code owned by other teams.” (For this survey the term feature team was explicitly

defined as “the core group of developers you work with.”) Feature teams are small – an

1 Throughout this document, the word agree means that the participant selected either “Somewhat agree”, “Agree”, or
“Strongly agree” from a seven-point Likert scale.

Software Development at Microsoft Observed Page 5 of 10

overwhelming 93% stated that their feature team consisted of 2-4 people (including the

respondent). There seems to be a sweet-spot at three-person feature teams, reported by 49%.

Feature teams are almost always collocated, facilitating informal knowledge sharing.

One of the ways that developers keep their mental model of the team’s code up-to-date is by

subscribing to check-in messages by email, though several interviewees disliked the lack of detail

provided by teammates.

Small feature teams and their strong code ownership form a kind of moat around the team,

isolating them from outside perturbations. The moat is defined by design documents, which

specify the interface across the moat. Design docs for cross-team issues were less common than

those relevant to issues within the team. The average number of design docs written by the

respondent’s team in the last year for cross-team issues was 4.8, vs. 8.0 for within-team issues.

On the other hand cross-team design docs are slightly more likely to be design reviewed (87% vs.

83%) and kept up-to-date (63% vs. 51%). The greater care taken with cross-team design docs

reflects their important role in defining the moat.

Unit tests, used by 79% of our respondents, are an important part of the development process for

many reasons. One of their surprising functions is to help to defend the moat against outside

perturbations – 54% of respondents agreed that an important benefit of unit testing is that “they

isolate dependencies between teams.”

Dependencies that cross the moat are anathema to development teams. One of the ways they have

to avoid them is what we call clone-and-own, where a development team takes a snapshot of

another team’s code and integrates it into their own code. This might be done initially because the

donor team will not ship at the required time or will not add a feature needed by the cloning team.

Despite this practice’s obvious long-term costs, it is often the most rational decision in the short

term. It’s not generally perceived to be a problem – only 29% agreed that their team’s code is

made more difficult to manage by “a large body of code imported from another team into my

team.”

Almost all teams have a team historian who is the go-to person for questions about the code.

Often this person is the development lead and has been with the code base the longest.

Newcomers

Creating a mental model from scratch requires a lot of energy for the new team member and the

team as a whole. Often the newcomer is assigned a mentor, often the team historian, designated

as the first point of contact for questions about the code. The mentor helps to jumpstart the

newcomer’s mental model and social network. Newcomers are much more likely to read the

team’s design documents than seasoned team members. Some teams maintain documents

Software Development at Microsoft Observed Page 6 of 10

specifically for newcomers. Unguided exploration of the code is rare; more commonly the

newcomer is assigned bugs specifically to introduce them to the code while minimizing risk.

Rationale behind the Code

Understanding the rationale behind code is the most serious problem that developers face. In our

initial survey, 66% of the respondents agreed that “understanding the rational behind a piece of

code” was a serious problem (see Table 1 for the complete list problems we asked about). There

are many facets to the rational problem: 82% agree that it takes a lot of effort to understand “why

the code is implemented the way it is,” 73% “whether the code was written as a temporary

workaround,” 69% “how it works,” and 62% “what it’s trying to accomplish.”

Problem % Agree
Code Understanding

Understanding the rationale behind a piece of code 66%
Understanding code that someone else wrote 56%
Understanding the history of a piece of code 51%
Understanding code that I wrote a while ago 17%

Task Switching
Having to switch tasks often because of requests from my teammates or manager 62%
Having to switch tasks because my current task gets blocked 50%

Modularity
Being aware of changes to code elsewhere that impact my code 61%
Understanding the impact of changes I make on code elsewhere 55%

Links between Artifacts
Finding all the places code has been duplicated 59%
Understanding who “owns” a piece of code 50%
Finding the bugs related to a piece of code 41%
Finding code related to a bug 28%
Finding out who is currently modifying a piece of code 16%

Team
Convincing managers that I should spend time rearchitecting, refactoring, or
rewriting code 43%
Convincing developers on other teams within Microsoft to make changes to code I
depend on 42%
Getting enough time with senior developers more knowledgeable about parts of
code I'm working on 34%

Expertise Finding
Finding the right person to talk to about a piece of code 39%
Finding the right person to talk to about a bug 38%
Finding the right person to review a change before check-in 19%

Table 1: Percent of developers who agreed that “This is a serious problem for me.” (The

survey participants were presented the questions in a different order, and without

categorization.)

Software Development at Microsoft Observed Page 7 of 10

Investigating Code Rationale

When investigating a piece of code the developer first turns to the code itself: on average

respondents to the survey spent 42% of the time examining the source code, 20% using the

debugger, 16% examining check-in comments or version diffs, 9% examining the results, 8%

using debug or trace statements, and 5% using other means. In other words, the code itself is the

best source of information about the code. However it is not flawless. It is common for

developers to become disoriented in source code, and it is often difficult to discern the

relationships between observed behavior and the source code.

When the code itself does not give the answers the developer needs, one might expect them to

turn next to the vast amount of information that’s written about it – the bug reports, the specs, the

design documents, the emails, etc. This however is emphatically not the case.

The second recourse for investigating the rationale behind code is in fact the social network. If

the developer thinks that someone within his team might be able to provide the needed

information (or the name of the person who might), he will walk down the hall to talk with the

teammate. Unplanned, face-to-face meetings happen frequently with teammates, averaging 8.4 in

the prior week, and much less frequently with non-teammates, averaging 2.6. Email is used

instead of face-to-face meetings when the issue is low priority, involves multiple people, or

crosses the team moat, averaging 16.1 sent to teammates in the prior week and 5.9 to non-

teammates. (Note that these data show that communication within the team is much more

common than communication across teams, indicating that the culture of informal communication

works well and that the team boundaries are typically drawn in the right places.)

Once the developer has the desired information, he returns to his office, applies the newfound

information, and gets on with his work. This information is precious: it is demonstrably useful,

demonstrably hard to ascertain from the code, and was obtained at a high cost. Yet it is

exceedingly rare for the developer to write this morsel down anywhere. The next person who

encounters the same information need has to go through the same laborious discovery process.

There are plenty of reasons that a developer would choose to not record the information – the

overhead of checking the code out, editing it, and checking it back in (possibly triggering check-

in review processes, merge conflicts, test suite runs, etc.) is enough to dissuade the developer

from recording the information as a comment in the code. But the loss of this precious knowledge

is, from an organizational perspective, a crying shame.

Interruptions

Each of these unplanned, face-to-face meetings represents an interruption of at least one person.

Recovering from these interruptions is a substantial problem, ranking second with 62% of

developers agreeing that this is the case (Table 1). People have adopted various strategies to

mitigate the effects of interruptions on themselves, such as using a closed office door, “do not

Software Development at Microsoft Observed Page 8 of 10

disturb” sign, or closed relight blinds to deflect interruptions, working on complicated tasks at

times of the day when interruptions are infrequent, staving off an interruption for a moment while

finishing a thought, or scheduling “office hours.” Other strategies mitigate the effects of

interruptions on the other person, such as using email instead of face-to-face for a low-priority

issue or emailing a warning 10 minutes before the office visit. While many (though not all)

interviewees indicated that they received too many interruptions, all acknowledged that

interruptions were an important part of the way work happens at Microsoft. Interestingly, two

interviewees indicated that interruptions were more of a problem since their teams had adopted

agile processes.

An Environment of Experimentation

Developers and development teams are constantly trying new tools and work practices to try to

optimize their work. Developers use a variety of tools to do their job. When writing code, 49%

use two or more tools, and 19% use three or more.

Visual Studio has become the dominant development environment within Microsoft. An average

of 53% of the time developers spend writing or editing code is in Visual Studio. Source Insight2 is

a distant second, accounting for 17% of the time.

In our interviews we found several development teams that were experimenting with “agile

practices,” a collection of behaviors intended to make the software development process more

efficient3. Some teams were gingerly dipping a toe into the agile water, while others were

jumping in with both feet. In our follow-up survey we found little overall use of agile practices

(see Table 2). On the other hand 48% of respondents to the follow-up survey agreed that their

team was using two or more of the eight practices, 32% to three or more, and 20% to four or

more. Six respondents (3%) reported that their teams use seven or all eight of the practices. Most

developers want to continue the adoption of agile practices (53% agreed that they thought their

team “should adopt agile software development methodologies more aggressively”) while a few

were skeptical (14% agreed that their team should adopt less aggressively).

The degree of experimentation suggests that there is ample opportunity for our team to

successfully deploy tools to Microsoft developers.

2 http://www.sourceinsight.com/

3 http://agilemanifesto.org/

Software Development at Microsoft Observed Page 9 of 10

FUTURE WORK

Surveys and interviews are good tools but they are limited because they rely on what the

participants perceive and say about their own actions. Both methods are notoriously biased, and

are limited in the types of questions they can answer. There is much we still don’t know. Here are

just a few of the things we can’t learn from surveys and interviews but we think are important to

know:

• We know that when trying to understand existing code developers mostly just read it.

What are the patterns and strategies that developers use when trying to understand code?

• Developers have told us that they can get disoriented when browsing through code. What

are the strategies and tools that developers use to avoid disorientation, become aware that

they are disoriented, and recover from disorientation?

• We know that the “hallway culture” is a primary resource – when a developer can’t

figure out code by examining it, he turns to his social network. What transpires in those

spontaneous, face-to-face conversations?

• We know that developers have rich mental models of the code, and that these models are

rarely externalized. What happens when two developers talk about code? How do they

align their mental models?

More user research needs to be done to address these questions.

Agile Practice % Agree
Collective code ownership within the team 49%
“Sprints,” i.e. a development cycle that last four (or so) weeks 42%
An intentional policy to involve customers (internal or external) deeply into
design and planning 33%
“Scrum meetings,” i.e. a brief daily status meeting including all stakeholders 25%
“Burndown” estimate or chart, i.e. a measure of the time remaining in the sprint 24%
An intentional policy of preferring face-to-face over electronic communications 16%
Pair programming, i.e. developers working together, shoulder-to-shoulder on a
problem 16%
A “bullpen” or other open-floorplan space for the team 10%

Table 2: Percent of developers who agreed that their teams use these agile development

practices. Adoption of agile methodologies is happening piecemeal and in islands around the

company.

Software Development at Microsoft Observed Page 10 of 10

BIBLIOGRAPHY

1. Ko, A., Aung, H., and Myers, B., “Eliciting Design Requirements for Maintenance-Oriented

IDEs – a Detailed Study of Corrective and Perfective Maintenance Tasks,” in Proc. ICSE’05.

2. Kraut, R., and Streeter, L., “Coordination in Software Development,” in CACM 38(3), pp. 69-

81, 1995.

3. Hill, W.C., Hollan, J. D., Wroblewski, D., and McCandless, T., “Edit Wear and Read Wear,”

in Proc. CHI’92.

4. Perry, D., Staudenmayer, N., and Votta, L. G., “People, Organizations, and Process

Improvement,” in IEEE Software 11(4), pp. 36-45, 1994.

5. Singer, J., “Practices in Software Maintenance,” in Proc. ICSM’98.

6. Singer, J., Lethbridge, T., Vinson, N., and Anquetil, N., “An Examination of Software

Engineering Work Practices,” in Proc. CASCON’97, Toronto, pp. 209-223.

7. Walz, D., Elam, J., and Curtis, W., “Inside a Software Design Team: Knowledge Acquisition,

Sharing, and Integration,” in CACM 36(10), pp. 63-77, 1993.

