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I. I NTRODUCTION

Perhaps the major technical problem in streaming media on
demand over the Internet is the need to adapt to changing
network conditions. As competing communication processes
begin and end, the available bandwidth, packet loss and packet
delay all fluctuate. Network outages lasting many seconds
can and do occur. Resource reservation and quality of service
support can help, but even they cannot guarantee that network
resources will be stable. If the network path contains a wireless
link, for example, its capacity may be occasionally reduced
by interference. Thus it is necessary for commercial-grade
streaming media systems to be robust to hostile network
conditions. Moreover, such robustness cannot be achieved
solely by aggressive (nonreactive) transmission. Even constant
bit rate transmission with retransmissions for every packet loss
cannot achieve a throughput higher than the channel capacity.
Some degree of adaptivity to the network is therefore required.

End users expect that a good streaming media system will
exhibit the following behavior: content played back on demand
will start with low delay; once started, it will play back
continuously (without stalling) unless interrupted by the user;
and it will play back with the highest possible quality given
the average communication bandwidth available. To meet
these expectations in the face of changing network conditions,
buffering of the content at the client before decoding and
playback is required.

Buffering at the client serves several distinct but simultane-
ous purposes. First, it allows the client to compensate for short-
term variations in packet transmission delay (i.e., “jitter”).
Second, it gives the client time to perform packet loss recovery
if needed. Third, it allows the client to continue playing back
the content during lapses in network bandwidth. And finally,
it allows the content to be coded with variable bit rate, which
can dramatically improve overall quality.1 By controlling the
size of the client buffer over time it is possible for the client
to meet the above mentioned user expectations. If the buffer
is initially small, it allows a low startup delay. If the buffer
never underflows, it allows continuous playback. If the buffer
is eventually large, it allows eventual robustness as well as
high, nearly constant quality. Thus, client buffer management
is a key element affecting the performance of streaming media
systems.

The size of the client buffer can be expressed as the number
of seconds of content in the buffer, called the bufferduration.
The buffer duration tends to increase as content enters the
buffer and tends to decrease as content leaves the buffer.
Content leaves the buffer when it is played out, at a rate
of ν seconds of content per second of real time, whereν
is the playback speed(typically 1 for normal playback, but
possibly more than 1 for high speed playback or less than
1 for low speed playback). Content enters the buffer when
it arrives at the client over the network, at a rate ofra/rc

seconds of content per second of real time, wherera is the
arrival rate, or average number of bits that arrive at the

1Note that even so-called constant bit rate (CBR) coded content is actually
coded with variable bit rate within the constraints of a decoding buffer of
a given size. The larger the decoding buffer size, the better the quality. The
required decoding buffering is part of the larger client buffer.

client per second of real time, andrc is the coding rate,
or average number of bits needed to encode one second
of content. Thus the buffer duration can be increased by
increasingra, decreasingrc, and/or decreasingν (and vice
versa for decreasing the buffer duration). Although the buffer
duration can be momentarily controlled by changingra (cf.
“Fast Start” in Windows Media 9 [1]) or changingν (cf.
“Adaptive Media Playout (AMP)” in [2]), these quantities are
generally not possible to control freely for long periods of
time. The arrival ratera on average is determined by the
network capacity, while the playback speedν on average is
determined by user preference. Thus if the network capacity
drops dramatically for a sustained period, reducing the coding
rate rc is the only appropriate way to prevent arebuffering
eventin which playback stops (ν = 0) while the buffer refills.

Thus, adaptivity to changing network conditions requires
not only a buffer, but also some means to adjust the coding
rate rc of the content. This can be done by stream switching
in combination with multi bit rate (MBR) coding or coarse
grained or fine grained scalable coding. Today’s commercial
streaming media systems [3], [1] rely on MBR coding as well
asthinning, which is a form of coarse grained scalability.2 Fu-
ture commercial systems may support fine grained scalability
(FGS) as well.3 FGS coding offers great flexibility in adapting
to variable network conditions, and can demonstrably improve
quality under such conditions.

In this paper we focus on the problem ofcoding rate control,
that is, dynamically adjusting the coding rate of the content to
control the buffer duration. Outside the scope of this paper is
the problem of transmission rate control. Thetransmission rate
rx is the rate at which the sender application injects bits into
the transport layer and is equal to the arrival ratera on average
if the transport is lossless. Bytransmission rate controlwe
mean congestion control as well as any other mechanisms
affecting the transmission rate such as bursting, tracking the
transmission rate to the available bandwidth, and so on. Thus
we control the buffer duration by adjusting the coding rate
rc at which bits leave the buffer, while letting the the arrival
rate ra at which bits enter the buffer be determined by other
means.

In the streaming media literature, with few exceptions (e.g.,
[9], [10] and the works based thereon; also [14]), there has
been little attention paid to the the distinction between the
coding raterc and the arrival ratera or the transmission rate
rx. Indeed, in typical streaming media systems (e.g., [1]),
after an initial buffering period (in whichν = 0 and possibly

2In MBR coding, semantically identical content is encoded into alternative
bit streams at different coding rates and stored in the same media file at
the server, allowing the content to be streamed at different levels of quality
corresponding to the coding ratesrc, possibly using bit stream switching
[4]. In coarse grained scalable coding (such as MPEG-2/4 temporal or SNR
scalability [5]) the content is encoded into several substreams orlayers, so
that the coding raterc can be changed in large deltas by adding or dropping
(at possibly restricted times) one layer of content at a time. Thinning is a
special case of coarse grained scalability in which dependent video frames
(P and B frames) are dropped before independent video frames (I frames),
which are in turn are dropped before audio frames.

3Fine grained scalable coding (such as 3D SPIHT [6], MPEG-4 FGS [7], or
EAC [8]) allows the coding raterc to change at any time in deltas sometimes
as small as one byte per presentation.
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Fig. 1. (a) Traditional streaming media architecture. (b) Proposed streaming
media architecture with congestion control factored out.

rx/rc > 1), rx/rc is locked toν. A difficulty with locking the
transmission rate to the coding rate via the playout speed is
that it essentially removes any means of controlling the client
buffer duration after the initial buffering period.4 A further
difficulty is that the transmission rate, if it is locked to the
coding rate, will typically be incompatible with transports that
use standard congestion control, such as TCP and TFRC [15].

By decoupling the coding and transmission rates, it is
possible to continually control the client buffer duration. This
allows the buffer to grow over time, for example, providing a
low startup delay, asymptotically high robustness, and eventual
constant quality. Furthermore, decoupling the coding and
transmission rates makes possible an architecture in which the
transport and congestion control protocol may be factored out
of the streaming problem, if desired. Figure 1(a) illustrates
the traditional architecture in which congestion control is
integrated into the streaming media application running on
top of UDP. Figure 1(b) illustrates the proposed architecture
in which congestion control is factored out of the streaming
media application, allowing standard transport mechanisms
(such as TCP and TFRC) to be used, as well as custom
transport solutions using custom transmission rate control over
UDP.

In addition to factoring the problem of network adaptation
into transmission rate control and coding rate control, the
novelty of our approach lies in the following two aspects. First,
we formulate the problem of coding rate control as a standard
problem in linear quadratic optimal control, in which the client
buffer duration is controlled as closely as possible to a target
level while keeping the coding rate (and hence the quality) as
constant as possible. To our knowledge this is the first use of
optimal control theory for client buffer management. Second,
we explicitly take into consideration, using a leaky bucket
model, the natural variation in the instantaneous coding rate
that occurs for a given average coding rate. We incorporate the
leaky bucket model into the control loop so that the changes
in buffer duration due to natural variation in the instantaneous
coding rate are not mistaken for changes in buffer duration
due to network congestion. To our knowledge this is also

4However, congestion, as evidenced by a drop inra and hence a drop in
the buffer duration, can still be alleviated by reducingrx andrc by the same
factor.

the first use of a leaky bucket to model source coding rate
constraints during client buffer management beyond the initial
startup delay.5

We present the major ideas in our paper as follows. In
Section II, we introduce the preliminaries, including temporal
coordinate systems, the leaky bucket model, and the coding
rate control objective. In Section III, we model the client
buffer as the plant in a feedback control system and we
show how to control the buffer duration using optimal linear
quadratic control. In Section IV we address several additional
practical issues related to scalable streaming. In Section V
we explain implementation issues on both sender and receiver
sides. Section VI presents experimental results in ns-2 with
real scalable encoded video data. In Section VII, the optimal
control approach is applied to the multiple bit rate situation
and yields satisfactory performance. We discuss related work
in Section VIII and conclude with Section IX.

II. PROBLEM FORMULATION

A. Temporal Coordinate Systems

It will pay to distinguish between the temporal coordinate
systems, or clocks, used to express time. In this paper,media
time refers to the clock running on the device used to capture
and timestamp the original content, whileclient time refers
to the clock running on the client used to play back the
content. We assume that media time is real time (i.e., one
second of media time elapses in one second of real time)
at the time of media capture, while client time is real time
at the time of media playback. We use the symbolτ to
express media time and the symbolt to express client time,
with subscripts and other arguments to indicate corresponding
events. For example, we useτd(0), τd(1), τd(2), . . . to express
the playback deadlines of frames0, 1, 2, . . . in media time,
while we usetd(0), td(1), td(2), . . . to express the playback
deadlines of frames0, 1, 2, . . . at the client. Content may be
played back at a rateν times real time. Thus the conversion
from media time to client time can be expressed

t = t0 +
τ − τ0

ν
, (1)

wheret0 andτ0 represent the time of a common initial event,
such as the playback of frame 0 (or the playback of the first
frame after a seek or rebuffering event) in media and client
coordinate systems, respectively.

B. Leaky Bucket Model

For the moment we revert to a scenario in which both the
encoder and the decoder run in real time over an isochronous
communication channel. In this case, to match the instanta-
neous coding rate to the instantaneous channel rate, anencoder
buffer is required between the encoder and the channel and
a decoder bufferis required between the channel and the
decoder, as illustrated in Figure 2. Ascheduleis the sequence
of times at which successive bits in the coded bit stream pass a
given point in the communication pipeline. Figure 3 illustrates

5Ribas, Chou, and Regunathan use a leaky bucket to model source coding
rate constraints to reduce initial startup delay [16], while Hsu, Ortega and
Reibman use a leaky bucket to model transmission rate contraints [17].
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the schedules of bits passing the points A, B, C, and D in
Figure 2. Schedule A is the schedule at which captured frames
are instantaneously encoded and put into the encoder buffer.
This schedule is a staircase in which thenth step rises by
b(n) bits at timeτ(n), whereτ(n) is the time at which frame
n is encoded, andb(n) is the number of bits in the resulting
encoding. Schedules B and C are the schedules at which bits
respectively enter and leave the communication channel. The
slope of these schedules isR bits per second, whereR is the
communication rate of the channel. Schedule D is the schedule
at which frames are removed from the decoder buffer and
instantaneously decoded for presentation. Note that Schedule
D is simply a shift of Schedule A. Note also that Schedule B
is a lower bound to Schedule A, while Schedule C is an upper
bound to Schedule D. Indeed, the gap between Schedules A
and B represents, at any point in time, the size in bits of
the encoder buffer, while the gap between Schedules C and D
likewise represents the size of the decoder buffer. The encoder
and decoder buffer sizes are complementary. Thus the coding
schedule (either A or D) can be contained within abuffer tube,
as illustrated in Figure 4, having slopeR, heightB, and initial
offsetF d from the top of the tube (or equivalently initial offset
F e = B − F d from the bottom of the tube). It can be seen
thatD = F d/R is thestartup delaybetween the time that the
first bit arrives at the receiver and the first frame is decoded.
Thus it is of interest to minimizeF d for a givenR.

A leaky bucketis a metaphor for the encoder buffer. The
encoder dumpsb(n) bits into the leaky bucket at timeτ(n),
and the bits leak out at rateR. In general it is possible
for the leak rateR to be high enough so that the bucket
occasionally empties. Thus the encoder buffer fullnessF e(n)
immediately before framen is added to the bucket and the
encoder buffer fullnessBe(n) immediately after framen is
added to the bucket evolve from an initial encoder buffer
fullnessF e(0) = F e according to the dynamical system

Be(n) = F e(n) + b(n), (2)

F e(n + 1) = max{0, Be(n)−R/f(n)}, (3)

media time

bi
ts

τ(n)τ(n−1)

Fd

Fe D
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R[τ(n)−τ(n−1)]

B

slo
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 R
b(n)
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Fig. 4. Buffer tube containing a coding schedule.

where
f(n) =

1
τ(n + 1)− τ(n)

(4)

is the instantaneous frame rate, forn = 0, 1, 2, . . .. If R is
sufficiently low, then the bucket will never run dry (underflow),
but if R is too low the bucket will eventually overflow. We
take the largestR such that the buffer will never run dry to
be the average coding raterc of the bit stream. This is made
more precise in the following two paragraphs.

A leaky bucket with sizeB, rateR, and initial fullnessF e

is said tocontaina stream having a schedule characterized by
the steps{(b(n), τ(n))} if Be(n) ≤ B for all n. We define
the minimum bucket size needed to contain the stream given
leak rateR and initial fullnessF e as

Be
min(R, F e) = min

n
Be(n), (5)

while we define the corresponding initial decoder buffer full-
ness as

F d
min(R, F e) = Be

min(R, F e)− F e. (6)

We denote the minimum of each of these overF e as

Be
min(R) = min

F e
Be

min(R, F e), (7)

F d
min(R) = min

F e
F d

min(R, F e). (8)

It is shown in [16, Proposition 2] that remarkably, these are
each minimized by the same value ofF e, which is hence equal
to

F e
min(R) = Be

min(R)− F d
min(R). (9)

Thus given a bit stream with schedule{(b(n), τ(n))}, for each
bit rate R there is a unique leaky bucket that contains the
stream and that has the minimum buffer sizeB as well as the
minimum startup delayD = F d/R. These parameters can be
computed with the above equations.

For sufficiently low leak ratesR, the leaky bucket does
not underflow, when beginning with initial fullnessF e =
F e

min(R). We may use the maximum such rateR as the
average coding raterc of a bit stream with coding schedule
{(b(n), τ(n))}.

Leak ratesR greater thanrc will also be used in this
paper. It is shown in [16] that bothBe

min(R) andF d
min(R) are

decreasing, piecewise linear, and convex inR. Hence if the
transmission rateR is greater than the average coding raterc,
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the startup delayD = F d
min(R)/R can be reduced compared

to D = F d
min(rc)/R. This fact will be used in Section IV-A.

A leaky bucket with leak rateR = rc, sizeB = Be
min(rc)

and initial decoder buffer fullnessF d = F d
min(rc) thus

corresponds to a straight buffer tube bounding the coding
schedule as in Figure 4. Each stream in the media file has
a coding schedule; thus each stream corresponds to a straight
buffer tube with slope equal to the average coding raterc of
the stream. The sizeB of the buffer tube and its offsetF e (or
F d) relative to the coding schedule can be either computed
by the above formula for a variable bit rate (VBR) stream
(such as a constant-quality substream of a scalable stream),
or obtained from the sizeB and initial stateF e of the actual
encoder buffer used to encode the stream if it is a constant bit
rate (CBR) stream.

In the sequel we will need to consider the gapg(n) at
framen between the buffer tubeupper boundand the coding
schedule, as depicted in Figure 4. Note that the decoder buffer
fullnessF d(n) = B − F e(n) can also be expressed

F d(n) = b(n) + g(n) = g(n− 1) +
rc(n)
f(n)

, (10)

whererc(n) is the coding rate of the buffer tube, now taking
into account that different frames may lie in different buffer
tubes with different coding rates as coding rate control is
applied and streams are switched.

C. Rate Control Model

Assume for the moment that bits arrive at the client at
a constant ratera. Then framen (having sizeb(n)) arrives
at the clientb(n)/ra seconds after framen − 1. Indeed, the
index of a bit is proportional to its arrival time. Dividing the
vertical scale of the schedules in Figure 4 byra, we obtain the
schedules in terms of client time, rather than bits, as shown
in Figure 5. The coding schedule divided byra becomes the
arrival schedule, which provides for eachn the time ta(n)
of arrival of frame n at the client. The buffer tube upper
bound (in bits) divided byra becomes the buffer tube upper
bound (in time), which provides for eachn the time tb(n)
by which framen is guaranteed to arrive. In the same plot
we show theplayback deadline, which is the timetd(n) at
which framen is scheduled to be played (after instantaneous

decoding). Thus the gap between a frame’s arrival time and its
playback deadline is the client buffer duration at the time of the
frame arrival. This must be non-negative to allow continuous
playback.

In reality the arrival rate is not constant. Ifta(n − 1) and
ta(n) are the arrival times of framesn andn−1 respectively,
then we may define

ra(n) =
b(n)

ta(n)− ta(n− 1)
(11)

to be theinstantaneous arrival rateat framen. In practice
we estimate the average arrival rate at framen by a moving
averager̃a(n) of previous values ofra(n), as detailed in
Section IV-C. Hence using (11) we may express the arrival
time of framen in terms of the arrival time of framen− 1 as

ta(n) = ta(n− 1) +
b(n)
ra(n)

(12)

= ta(n− 1) +
b(n)
r̃a(n)

+ v(n), (13)

where thev(n) term is an error term that captures the effect
of using the slowly moving averagẽra(n) instead of the
instantaneous arrival ratera(n). From (10), however, we have

b(n) =
rc(n)
f(n)

+ g(n− 1)− g(n), (14)

whence (substituting (14) into (13)) we have

ta(n) = ta(n− 1) +
rc(n)

f(n)r̃a(n)
+

g(n− 1)
r̃a(n)

− g(n)
r̃a(n)

+ v(n).

(15)
Now defining the buffer tube upper bound (in time) of frame
n as

tb(n) = ta(n) +
g(n)
r̃a(n)

, (16)

so that

tb(n)− tb(n− 1) = ta(n)− ta(n− 1) +
g(n)
r̃a(n)

− g(n− 1)
r̃a(n− 1)

,

(17)
we obtain the following update equation:

tb(n) = tb(n− 1) +
rc(n)

f(n)r̃a(n)
+ w(n− 1), (18)

where

w(n− 1) =
g(n− 1)
r̃a(n)

− g(n− 1)
r̃a(n− 1)

+ v(n) (19)

is again an error term that captures variations around a locally
constant arrival rate.

Using (16), the client can computetb(n − 1) from the
measured arrival timeta(n − 1), the estimated arrival rate
r̃a(n−1), andg(n−1) (which can be transmitted to the client
along with the data in framen− 1 or computed at the client
from g(n−2) andrc(n−1) using (10)). Then using (18), the
client can control the coding raterc(n) so thattb(n) reaches a
desired value, assuming the frame rate and arrival rate remain
roughly constant. From this perspective, (18) can be regarded
as the state transition equation of a feedback control system
and it is thus possible to use a control-theoretic approach to
regulate the coding rate.
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D. Control Objective

With the state transition equation defined in (18), uninter-
rupted playback can be achieved by regulating the coding
rate so that the client buffer does not underflow. To introduce
a margin of safety that increases over time, we introduce a
target schedule, illustrated in Figure 5, whose distance from
the playback deadline grows slowly over time. By regulating
the coding rate, we attempt to control the buffer tube upper
bound so that it tracks the target schedule. If the buffer tube
upper bound is close to the target schedule, then the arrival
times of all frames will certainly be earlier than their playback
deadlines and thus uninterrupted playback will be ensured.
Note that controlling the actual arrival times (rather than their
upper bounds) to the target would result in an approximately
constant number of bits per frame, which would in turn result
in very poor quality overall. By taking the leaky bucket model
into account, we are able to establish a control that allows
the instantaneous coding rate to fluctuate naturally according
to the encoding complexity of the content, within previously
established bounds for a given average coding rate.

Although controlling the upper bound to the target schedule
is our primary goal, we also wish to minimize quality varia-
tions due to large or frequent changes to the coding rate. This
can be achieved by introducing into the cost function a penalty
for relative coding rate differences.

Letting tT (n) denote the target schedule for framen, we
use the following cost function to reflect both of our concerns:

I =
N∑

n=0

((
tb(n)− tT (n)

)2 + σ

(
rc(n + 1)− rc(n)

r̃a(n)

)2)
,

(20)
where the first term penalizes the deviation of the buffer
tube upper bound from the target schedule and the second
term penalizes the relative coding rate difference between
successive frames.N is the control window size andσ is
a Lagrange multiplier or weighting parameter to balance the
two terms.

III. O PTIMAL CONTROL SOLUTION

Before presenting the optimal control solution, we first
describe the design rational of the target schedule.

A. Target Schedule Design

Figure 6 shows an illustrative target schedule. The gap
between the playback deadline and the target schedule is the
desired client buffer duration (in client time). If the gap is
small at the beginning of streaming, then it allows a small
startup delay, while if the gap grows slowly over time, it
gradually increases the receiver’s ability to counter jitter,
delays, and throughput changes.

The slope of the target schedule relates the average coding
rate to the average arrival rate. LettT (n) be the target for
frame n. As illustrated in Figure 6, the slope of the target
schedule at framen is

s(n) =
tT (n + 1)− tT (n)
τ(n + 1)− τ(n)

. (21)
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Fig. 6. Target schedule design.

If the upper boundtb(n) aligns perfectly with the target
schedule (i.e.,tb(n) = tT (n)) and the arrival ratera is
constant (i.e., thew(n− 1) term vanishes), we get from (18)

s(n) =
tb(n + 1)− tb(n)
τ(n + 1)− τ(n)

=
rc(n)
ra

. (22)

Thus initially, when the slope is low, i.e., less than1/ν, ra/rc

is greater thanν and more thanν seconds of content are
received per second of client time, causing the client buffer
(which is playing out onlyν seconds of content per second of
client time) to grow. Over time, as the slope approaches1/ν,
ra/rc approachesν and the buffer remains relatively constant
(except for changes due to variations in the instantaneous
coding rate), since content is received and played back at the
same speedν. We next present two target schedule functions
that illustrate the general design idea.

1) Logarithmic Target Schedule:One way to choose the
target scheduletT is to have the client buffer duration grow
logarithmically over time. Specifically, iftd is the playback
deadline, then for eachtd greater than some start timetd0,

tT = td − b

a
ln(a(td − td0) + 1). (23)

Since by (1),td = td0 + (τd − τd0)/ν, we have

s =
dtT
dτd

=
dtT
dtd

dtd
dτd

=
1
ν
− b

a(τd − τd0) + ν
, (24)

and hence the initial slope at frame 0 (whentd = td0) is
s(0) = (1−b)/ν. Settingb = 0.5 implies that initiallyrc/ra =
0.5/ν, causing the client buffer to grow initially at two times
real time. Further settinga = 0.15 implies that the client
buffer duration will be 7.68 seconds after 1 minute, 15.04
seconds after 10 minutes, and 22.68 seconds after 100 minutes,
regardless ofν.

2) Two-piece Linear Target Schedule:Another way to
choose the target scheduletT is to have the client buffer dura-
tion grow linearly at rateb seconds of media time per second
of client time until the buffer duration reachesa seconds of



6

 0

 10

 20

 30

 40

 50

 60

 0  10  20  30  40  50  60

cl
ie

nt
 ti

m
e 

(s
)

media time (s)

playback deadline
target schedule

(a) logarithmic (a = 0.15, b = 0.5)

 0

 10

 20

 30

 40

 50

 60

 0  10  20  30  40  50  60

cl
ie

nt
 ti

m
e 

(s
)

media time (s)

playback deadline
target schedule

(b) two-piece linear (a = 10, b = 0.5)

Fig. 7. Target schedules.

media time, after which it remains constant. Specifically, for
eachtd greater than some start timetd0,

tT =
{

td − b(td − td0) td ≤ td0 + a/b
td − a td ≥ td0 + a/b

. (25)

The initial slope is agains(0) = (1 − b)/ν. Settingb = 0.5
implies that initiallyrc/ra = 0.5/ν, causing the client buffer
to grow initially at two times real time. Further settinga = 10
implies that the client buffer duration will reach 10 seconds
of media time after 20 seconds of client time, regardless ofν.

Figure 7 shows the above two target schedules. As one can
see, if a client buffer duration of 10 seconds is considered to be
a safe level against jitter, delay and network fluctuations, then
the two-piece linear target schedule reaches the safe level in
20 seconds, much faster than the logarithmic target schedule.
On the other hand, the slope of the two-piece linear target
schedule remains lower for longer (hence the coding rate and
quality are lower for longer) and furthermore experiences an
abrupt change at 20 seconds when its slope changes from
0.5/ν to 1/ν. Consequently, the coding rate will not change
as smoothly as with the logarithmic target schedule, although
it will not be as abrupt as the schedule itself because of
the smoothness objective in the controller design. Hence, we
investigate the effect of both target schedules.

B. Optimal Controller Design

Recall from (18) the fundamental state transition equation,
which describes the evolution of the buffer tube upper bound
tb(n) in terms of the coding raterc(n):

tb(n + 1) = tb(n) +
rc(n + 1)

f r̃a
+ w(n). (26)

Here we now assume that the frame ratef and the average
arrival rate r̃a are relatively constant. Deviations from this
assumption are captured byw(n).

We wish to control the upper bound by adjusting the coding
rate. As each frame arrives at the client, a feedback loop can
send a message to the server to adjust the coding rate. Note,
however, that by the time framen arrives completely at the
client, framen + 1 has already started streaming from the
server. Thus the coding raterc(n + 1) for framen + 1 must
already be determined by timeta(n). Indeed, at timeta(n),
framen + 2 is the earliest frame for which the controller can
determine the coding rate. Hence at timeta(n), the controller’s
job must be to chooserc(n + 2). We must explicitly account
for this one-frame delay in our feedback loop.

For simplicity, we linearize the target schedule around the
time that framen arrives. The linearization is equivalent
to using a line tangent to the original target schedule at a
particular point as an approximate target schedule. Thus we
have

tT (n + 1)− 2tT (n) + tT (n− 1) = 0. (27)

Rather than directly control the evolution of the upper
bound, which grows without bound, for the purposes of
stability we use an error space formulation. By defining the
error

e(n) = tb(n)− tT (n), (28)

we obtain

e(n + 1)− e(n)
= (tb(n + 1)− tT (n + 1))− (tb(n)− tT (n)) (29)

= (tb(n + 1)− tb(n))− (tT (n + 1)− tT (n)) (30)

=
rc(n + 1)

f r̃a
− (tT (n + 1)− tT (n)) + w(n), (31)

from which we obtain in turn

(e(n + 1)− e(n))− (e(n)− e(n− 1))
= [rc(n + 1)− rc(n)]/fr̃a

−(tT (n + 1)− 2tT (n) + tT (n− 1))
+(w(n)− w(n− 1)) (32)

=
rc(n + 1)− rc(n)

f r̃a
+ (w(n)− w(n− 1)). (33)

We next define the control input

u(n) =
rc(n + 2)− r̂c(n + 1)

r̃a
, (34)

wherer̂c(n + 1) is a possibly quantized version ofrc(n + 1)
(as defined in Section IV-D) and we define the disturbance

d(n) =
r̂c(n)− rc(n)

f r̃a
+ w(n)− w(n− 1). (35)
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Then (33) can be rewritten

e(n + 1) = 2e(n)− e(n− 1) +
u(n− 1)

f
+ d(n). (36)

Therefore, defining the state vector

e(n) =




e(n)
e(n− 1)
u(n− 1)


 =




tb(n)
tb(n− 1)

rc(n+1)
r̃a


−




tT (n)
tT (n− 1)

r̂c(n)
r̃a


 , (37)

the error space representation of the system can be expressed

e(n+1) =




2 −1 1
f

1 0 0
0 0 0


 e(n)+




0
0
1


 u(n)+




1
0
0


 d(n), (38)

or e(n+1) = Φe(n)+Γu(n)+Γdd(n) for appropriate matrices
Φ, Γ andΓd.

Assuming the disturbanced(n) is a pure white noise, and
assumingperfect state measurement(i.e., we can measure
all components ofe(n) without using an estimator), the
disturbanced(n) doesnot affect the controller design. Thus
we can use a linear controller represented by

u(n) = −Ge(n), (39)

whereG is a feedback gain. By the time framen is completely
received, all elements ofe(n) are available at the client and
u(n) can thus be computed. The ideal coding rate for frame
n + 2 can then be computed as

rc(n + 2) = r̂c(n + 1)−Ge(n)r̃a. (40)

Finding the optimal linear controller amounts to finding
the feedback gainG∗ that minimizes the quadratic cost func-
tion (20), as defined in Section II-D. Before continuing with
the design, we first check the systemcontrollability matrix C,

C =
[
Γ ΦΓ Φ2Γ

]
=




0 1
f

2
f

0 0 1
f

1 0 0


 , (41)

which has full rank for any frame ratef . Thus, the system
is completely controllable[19] and the statee(n) can be
regulated to any desirable value. Now recall that the cost
function defined in Section II-D is

I =
N∑

n=0

{(
tb(n)− tT (n)

)2

+ σ
(rc(n + 1)− rc(n)

r̃a

)2}

(42)

=
N∑

n=0

{
e(n)T Qe(n) + u(n− 1)T Ru(n− 1)

}
, (43)

whereQ = CT C (with C = [1 0 0]) andR = σ. Then, the
original control problem of tracking the target schedule while
smoothing the coding rate fluctuations (i.e., minimizing the
cost functionI) is converted to a standard regulator problem
in the error space. LettingN → ∞, the infinite horizon
optimal control problem can be solved by applying the results
in [18, Section 3.3] to obtain an optimal regulator in two steps:
1) solving, to getS, the discrete algebraic Riccati equation
(DARE)

S = ΦT {S − SΓ[ΓT SΓ + R]−1ΓT S}Φ + Q, (44)

and 2) computing the optimal feedback gain

G∗ = [ΓT SΓ + R]−1ΓT SΦ. (45)

The existence and uniqueness ofS (and in turn ofG∗) is
guaranteed whenQ is nonnegative definite andR is positive
definite, which is straightforward to verify in our case.

C. Frame Rate

In the previous section, we assumed that the frame rate
is constant. This assumption is reasonable when streaming
a single medium, such as video without audio.6 However,
usually video and audio are streamed together, and their
merged coding schedule may have no fixed frame rate. Even
if there is a fixed frame ratef , we may wish to operate the
controller at a rate lower thanf , to reduce the feedback rate,
for example.

To address these issues, in practice we use the notion of
a virtual frame rate. We choose a virtual frame ratef , for
examplef = 1 frame per second (fps); we partition media
time into intervals of size1/f ; and we model all of the (audio
and video) frames arriving within each interval as avirtual
frame whose decoding and playback deadline is the end of
the interval.

This approach has several advantages. First, it allows us to
design offline a universal feedback gain, which is independent
of the actual frame rate of the stream or streams. Second,
it allows us to reduce the rate of feedback from the client
to the server. And finally, since the interval between virtual
frames is typically safely larger than a round trip time (RTT),
a one-frame delay in the error space model (as described in
the previous section) is sufficient to model the feedback delay.
Otherwise we would have to model the feedback delay with
approximatelyRTT/f additional state variables to represent
the network delay using a shift register of lengthRTT/f .

In the sequel we therefore use a virtual frame ratef = 1
fps, and we refer to this simply as the frame rate.

D. Stability and Robustness

To compute the optimal regulator, it is necessary to choose a
value forσ in (20) or (42)-(43). This can be done by following
the following four steps: 1) pick aσ value to balancee(n) and
u(n); 2) compute the optimal feedback gain; 3) plot the closed-
loop root locus (to check stability) and bode diagram (to check
robustness) [19]; and 4) perform time domain simulations to
verify transient response. Several iterations may be needed to
determine a suitableσ value.

Following the above steps in this paper we selectσ = 50.
With f = 1, the corresponding optimal feedback control gain
is thenG∗ = [0.6307 −0.5225 0.5225], for which the closed-
loop system has poles at0.7387 + 0.1999i, 0.7387− 0.1999i
and 0, which are all inside the unit circle. Therefore, the
closed-loop system is asymptotically stable. Figure 8 shows
the closed-loop root locus and the bode diagram with the
optimal feedback. We can again verify the stability of the

6Variable frame rate video is usually achieved by skipping frames, which
we can accommodate by settingb(n) = 0.
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closed-loop system since all poles are inside the unit circle.
Also, the system has again margin (GM) of 12.60 dB
and a phase margin(PM) of 51.59 degrees. The GM and
PM are usually good indicators of system robustness. In our
case, the PM is much larger than 30 degrees, which is often
judged as the lowest adequate value [19, Section 6.4]. And
this PM is close to 60 degrees, the best PM an optimal
controller could achieve if continuous time feedback control
was allowed. Therefore, the system achieves good robustness.
Finally, Figure 9 provides the time response simulation results,
which show good tracking properties with a fairly stable
coding rate.

E. Controller Interpretation

With the above coefficients forG∗, we are now able to
give an intuitive explanation of the coding rate control (40).
Plugging the coefficients ofG∗ into (40), we obtain

rc(n + 2) = r̂c(n + 1)
−0.1082e(n)r̃a (46)

−0.5225[e(n)− e(n− 1)]r̃a (47)

−0.5225[rc(n + 1)− r̂c(n)]. (48)

Focusing on the first term (46), it can be seen that the coding
rate rc tends to decrease if the current errore(n) = tb(n) −
tT (n) is positive, and it tends to increase ife(n) is negative, in
proportion toe(n) with proportionality constant0.1082 times
the estimated arrival ratẽra. This has the effect of moving
the upper boundtb towards the targettT , whether it is above
or below the target. At the same time, from the second term
(47), it can be seen that the coding rate tends to decrease if
the current errore(n) is numerically greater than the previous
error e(n − 1), whether e(n) is positive or negative. This
has the effect of either stengthening the compensation or
preventing the controller from overcompensating, since ife(n)
is positive thene(n) > e(n− 1) indicates that the magnitude
of the error is still growing, while ife(n) is negative then
e(n) > e(n − 1) indicates that the magnitude of the error
is shrinking too fast to be sustainable. The proportionality
constant for this second effect is0.5225 times r̃a, which is
even larger than that for the first effect. Finally, from the third
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Fig. 9. Time response simulation.

term (48), it can be seen that the coding rate tends to decrease
if it had previously increased, with proportionality constant
0.5225. This ensures appropriate damping and smoothing of
the coding rate.

It is important to emphasize that the optimal feedback gain
G∗ is completely determined givenσ and f , and that it is
independent of the transmission rate and the coding rate. Thus,
G∗ can be obtained off line, and only a linear calculation is
required to compute the coding raterc(n + 2) on the fly.

F. Performance Study

In this section, a series of time response simulations are
performed to examine the responsiveness and robustness of
the optimal controller. The following factors are considered:
1) adding Gaussian noise to the arrival ratera; 2) using
for ra either the instantaneous arrival rate or the average
arrival rate output from a low pass filter; 3) decreasing the
coding rate update frequency by withholding feedback for at
least 5 seconds; and 4) withholding feedback of the coding
rate unless it decreases/increases by more than15%. Various
combinations of these factors and the corresponding results
are summarized in Table I. In the simulations, we assume a
stream with a physical frame rate of 30 fps. When Gaussian
noise is added to the arrival rate, it is added to the arrivals of
the physical frames. However, the virtual frame rate is 1 fps
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Fig. 10. Time response simulation.

Figure Index
9 10 11 12 13 14 15

Added Gaussian noise
(0.15) tora

√ √ √ √ √ √

Used instantaneous
arrival rate asra

√ √

Used average arrival
rate asra

√ √ √ √ √

Withheld rc feedback
for at least 5 s

√ √ √
Withheld feedback
unless rc changed
more than15%

√ √ √

TABLE I

PERFORMANCESTUDY INDEX TO FIGURES

and hence the coding rate update frequency is at most once
per second.

The following conclusions can be drawn from the simulation
results: 1) The arrival rate fluctuations certainly cause a
decrease in the smoothness of the coding rate (Figures 9,
10 and 11). 2) Using the average arrival rate output from
a low pass filter increases the smoothness of the coding
rate (Figures 10, 11, 14 and 15). 3) Decreasing the coding
rate update frequency (here, 5 seconds per update) affects
responsiveness, but still yields acceptable stability (Figures 12,
14 and 15). 4) Withholding coding rate feedback until it
reaches a certain threshold (here,15% difference) yields better
coding rate smoothness while not sacrificing responsiveness
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Fig. 11. Time response simulation.

(Figures 13, 14 and 15).

IV. PRACTICAL ISSUES WITHSTREAMING

A. Fast Startup

As discussed in previous sections, the startup delay is the
length of the period from the time that content first begins to
arrive at the client to the time that playback begins. During
this period, content accumulates in the receiver buffer to
counter packet jitter, retransmission delay, variations in net-
work bandwidth, and variations in instantaneous coding rate.
It is conceivable that a longer startup delay would increase
the chances of being able to maintain continuous playback
in a dynamic network environment. On the other hand, users
expect the startup delay to be as small as possible. Thus, it is
desirable to investigate techniques that can reduce the startup
delay while retaining robustness. One possible approach is
to transmit the content at a faster than normal rate at the
beginning of streaming. Thisbursting technique will certainly
build up the buffer duration in a small amount of time. It,
however, puts extra pressure on the network by demanding a
higher than normal initial bandwidth, which may not even be
available.

In this paper, we use an alternativefast startuptechnique,
which takes advantage of the properties of adaptive media. As
discussed in previous sections, by choosing an initial coding
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Fig. 12. Time response simulation.

rate rc equal to half the arrival ratera (divided if necessary
by the playback speedν), the client buffer duration can grow
at two times real time during playback. Growing the client
buffer during playback enables the startup delay to be low,
because playback can begin while the buffer duration is still
low. Beginning playback while the buffer duration is low is not
particularly risky over the short term, because the probability
of deep congestion occuring in any short interval is low.
However, the probability of deep congestion occuring in a
long interval is high, so it is important for the buffer duration
to be high over the long term. Without the ability to grow
the buffer duration during playback, startup would have to
be delayed until the buffer duration was sufficiently high to
guarantee continuous playback over the long term.

Moreover, if the transmission rate is twice the coding rate,
the startup delay can be further reduced by taking advantage
of properties of the leaky bucket model [16]. As detailed
in Section II-B, the startup delay for a given bit stream is
D = F d

min(R)/R when the stream is transmitted at rateR.
This is ordinarily equal toF d

min(rc)/rc when transmitting
the stream at its coding rate. However, when transmitting the
stream at a ratera > rc (rc = 0.5ra/ν), then the startup delay
drops toF d

min(ra)/ra. Thus the startup delayD decreases both
because the numerator decreases and because the denominator
increases.

Figure 16 illustrates the decrease in the initial decoder buffer
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Fig. 13. Time response simulation.

fullnessF d
min(R) asR changes fromrc to ra. In particular, it

depicts the coding schedule for a given bit stream, as well
as upper and lower bounds, denoted Tube I and Tube II,
corresponding to two leaky buckets with leak ratesrc and
ra respectively, both containing the coding schedule. Tube
II is smaller than Tube I, since the minimum sizeBmin(R)
of a leaky bucket containing a given stream is decreasing
in the leak rateR [16]. Likewise, the initial decoder buffer
fullnessFmin(R) is decreasing inR [16]. Hence the playback
deadline for frame 0 can begin as early as client timet0 II =
F d

min(ra)/ra, instead oft0 I = F d
min(rc)/ra. From there, the

playback deadline advances at1/ν seconds of client time per
second of media time.

B. Controller Initialization

As illustrated in Figure 16, the target schedule starts at the
same time as the playback deadline and grows according to
a predefined function. The controller attempts to control the
upper bound of Tube I to the target schedule. Initially the
upper bound of Tube I is above the target schedule (and is
indeed above the playback deadline, though we know that
this is safe). Hence, when the playback starts, the controller
would try to close the gap by decreasing the coding rate. This,
however, would not be desirable because the current coding
rate is already lower than the arrival rate to allow the client
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Fig. 14. Time response simulation.

buffer to grow. Further reduction of the coding rate would
not be proper. To avoid this effect, we initialize the controller
when the upper bound of Tube I exceeds the target schedule
i.e., at point B in Figure 16. Point B can be found analytically,
but in practice there is no need to explicitly solve for it. The
controller can be initialized as soon as the upper bound of
Tube I exceeds the target.

C. Exponential Averaging of the Arrival Rate

As shown in the performance studies in Section III-F, using
the average arrival rate from a low pass filter (instead of
the instantaneous arrival rate) helps to reduce coding rate
oscillations. This section details our exponential averaging
algorithm for the arrival rate.

Let r̃a(k) andr(k) be the average arrival rate and the instan-
taneous arrival rate, respectively, when packetk is received.
Note that unlike the controlling operation, the rate averaging
operation may be performed after the arrival of everypacket,
rather than after the arrival of everyframe. Hence we use the
discrete packet indexk rather than the frame indexn. Instead
of using the widely adopted exponentially weighted moving
average (EWMA)

r̃a(k) = β(k)r̃a(k − 1) + (1− β(k))ra(k) (49)

with constantβ(k) = β, we perform the exponential averaging
more carefully. In our algorithm, the factorβ(k) is not con-
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stant, but varies according to the packets’ interarrival gaps. Our
algorithm has several advantages over the EWMA algorithm
with constantβ(k). First, the estimate of the average arrival
rate r̃a(k) goes to zero naturally as the gap since the last
packet goes to infinity, rather than being bounded below by
βr̃a(k − 1). Second, the estimate of the average arrival rate
r̃a(k) does not go to infinity as the gap since the last packet
goes to zero. This is especially important, since packets often
arrive in bursts, causing extremely high instantanous arrival
rates. And finally, the estimate of the average arrival rater̃a(k)
does not over-weight the initial condition, as if it represented
the infinite past. This is especially important in the early stages
of estimation.
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As in (11), we define the instantaneous arrival rate after
packetk as

ra(k) =
b(k)

ta(k)− ta(k − 1)
, (50)

where hereb(k) denotes the size of packetk and ta(k)
denotes the arrival time of packetk. We extend the discrete
time functionra(k) to the piecewise constant continuous time
function ra(t) by

ra(t) = ra(k) for all t ∈ (ta(k − 1), ta(k)], (51)

as illustrated in Figure 17. Then we filter the functionra(t)
by the exponential impulse responseαe−αt, t ≥ 0, for some
time constant1/α:

r̃a(k) =

∫ t(k)

t(0)
ra(t′)αe−α(t(k)−t′)dt′

∫ t(k)

t(0)
αe−α(t(k)−t′)dt′

. (52)

(Here and in the remainder of this subsection we sup-
press the subscript from the arrival timeta(k).) Noting
that

∫∞
t

αe−αt′dt′ = e−αt, the denominator integral can
be expressed1 − e−α(t(k)−t(0)). Now, we split the range
of the numerator integral into ranges(t(0), t(k − 1)] and
(t(k − 1), t(k)] to obtain a recursive expression forr̃a(k) in
terms of r̃a(k − 1) andra(k),

r̃a(k)

=
1− e−α[t(k−1)−t(0)]

1− e−α[t(k)−t(0)]
e−α[t(k)−t(k−1)]r̃a(k − 1)

+
1− e−α[t(k)−t(k−1)]

1− e−α[t(k)−t(0)]
ra(k) (53)

= β(k)r̃a(k − 1) + (1− β(k))ra(k), (54)

where

β(k) =
e−α[t(k)−t(k−1)] − e−α[t(k)−t(0)]

1− e−α[t(k)−t(0)]
. (55)

Note that β(k) is numerically stable ask goes to infinity.
However, as the gapδ = t(k) − t(k − 1) goes to zero,1 −
β(k) goes to zero whilera(k) goes to infinity. Their product,
however, is well behaved. Indeed,

r̃a(k) =
1− e−α[t(k−1)−t(0)]

1− e−α[δ+t(k−1)−t(0)]
e−αδ r̃a(k − 1)

+
1− e−αδ

1− e−α[t(k)−t(0)]

b(k)
δ

(56)

→ r̃a(k − 1) +
αb(k)

1− e−α[t(k)−t(0)]
(57)
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Fig. 18. Buffer tube change and control target adjustment.

asδ → 0, using l’Hôpital’s rule. Thus (57) is the update rule
in the case whent(k) = t(k − 1).

D. Choosing a Stream Given a Coding Rate

When the client requests a coding raterc(n), the server
complies by choosing a stream (or substream of a scalable
stream) having coding ratêrc(n) approximately equal to
rc(n). There are several reasons thatr̂c(n) may differ from
rc(n). The first reason is that there are only a finite number
of streams (or substreams) in the media file, even if fine grain
scalable coding is used. Thus there may be no stream in the
media file with average coding rate exactly equal torc(n).
The second reason is that, even if there is a stream in the
media file with average coding rate exactly equal torc(n),
the buffer tube for the stream may be too large to allow
switching to the stream without risk of client buffer underflow.
In fact, whenever the stream switches, there is generally a
discontinuity in the upper bound, which may be either positive
or negative. A positive shift in the upper bound is illustrated
in Figure 18, which, if large, could cause the client buffer to
underflow either immediately or eventually.

Thus the server must choose a stream that causes the upper
bound to shift up no more than some amount∆maxg(n− 1)
supplied to it by the client. The client supplies∆maxg(n− 1)
to the server in its feedback along withrc(n), shortly after
client time ta(n − 2) (after framen − 1 has already begun
streaming). Upon receiving the feedback, the server selects a
stream with coding ratêrc(n) as high as possible such that
r̂c(n) ≤ rc(n) and, if r̂c(n) > r̂c(n− 1) (i.e., if it is a switch
up in rate), thengnew(n− 1)− gold(n− 1) ≤ ∆maxg(n− 1),
wheregnew(n−1) andgold(n−1) are illustrated in Figure 18.
The constraint given by∆maxg(n − 1) is not applied if it is
a switch down in rate.

The client chooses∆maxg(n−1) to limit (its prediction of)
what the upper bound would be at timeta(n− 1) if the new



13

coding rate were in effect, namely,

tnew
b (n− 1)

≈ tb(n− 2) +
r̂c(n− 1)

f r̃a
+

∆g(n− 1)
r̃a

(58)

≤ tT (n− 1) + p[td(n− 1)− tT (n− 1)]. (59)

That is, the client chooses∆maxg(n− 1) to limit tnew
b (n− 1)

so that it would be no more than fractionp of the way from
the targettT (n−1) to the playback deadlinetd(n−1). In our
experiments, we choosep = 1/3.

E. Control Target Adjustment

When a frame with a new average coding rater̂c(n) arrives
at the client at timeta(n), there is a shift in the upper bound.
Real scalable stream data (cf. Figure 20) shows that this shift
can be on the order of seconds and hence, rather than being
negligible, can be confusing to the controller. If the shift is
upward, for example, the controller will immediately try to
reduce the coding raterc(n + 2). If the shift is downward, on
the other hand, the controller will immediately try to increase
the coding raterc(n + 2). Either way is probably not good;
the intention is that̂rc(n) will be maintained unless there is
a disturbance in the arrival rate. Our solution is to introduce
a simultaneous shift in the control target schedule equal to
∆g(n−1)/r̃a, where∆g(n−1) = gnew(n−1)−gold(n−1)
is the actual shift in the upper bound (in bits) at framen− 1
computed at the server, as illustrated in Figure 18. The server
can send this value to the client along with framen. If there
is no stream change, this value is simply zero.

If the control target schedule is adjusted whenever the
coding rate changes, it will no longer follow the designed
target schedule. We refer to the adjusted target schedule as
the control targetschedule to distinguish it from thedesigned
target schedule (or simply thetarget schedule).

The control target schedule, of course, must have a tendency
to approach the designed target schedule. The basic idea is to
decrease the slope of the control target schedule when it is
above the designed target schedule and to increase the slope
when it is below.

For the logarithmic target scheduletT = td− b
a ln(atd +1)

(wheretd = td0 + (τd − τd0)/ν), according to (24) the slope
at media timeτd is

s =
dtT
dτd

=
1
ν
− b

a(τd − τd0) + ν
. (60)

If we defined as the distance between the playback deadline
and the target schedule, namely

d =
b

a
ln

(
a

(
τd − τd0

ν

)
+ 1

)
, (61)

then the slope may be expressed as a function ofd,

s =
1
ν
− b

νe(a/b)d
. (62)

Hence wheneverd is the distance between the playback
deadline and the control target, we set the slope of the control
target tos in (62). Specifically, iftT̂ (n) is the control target
at frame n after the shift, then we resettT̂ (n − 1) to be

TT̂ (n) − s/f . We then usetT̂ (n) and tT̂ (n − 1) in place of
tT (n) andtT (n−1) to compute the error vectore(n) in (37).
The resulting error vector is then used to compute the ideal
coding rate in (40).

For the two-piece linear target schedule, the slope is easy
to compute by using a predefined time period over which
the control target schedule is expected to return to the target
schedule. The slope of the control target schedule can then
be computed from the distanced and the period. We set the
period to 50 seconds in our experiments.

V. I MPLEMENTATION DETAILS

This section highlights implementation details on both the
sender and the receiver side.

A. Generation of Virtual Streams

In our implementation, a fine grained scalable (FGS) stream
comprises a set of data units, each tagged by a Lagrange
multiplier λ representing the per-bit decrease in distortion if
the data unit is received by the client. If theλ for the data
unit is above a threshold, then the data unit is included in a
virtual stream corresponding to that threshold. Each threshold
corresponds to an overall number of bits and hence an average
coding rate for the virtual stream. In our experiments, we
generateN = 50 virtual streams. A threshold is chosen for
each stream such that the resulting streams have coding rates
that are uniformly spaced in the log domain between lower
and upper bounds.

During streaming, when the server reads a data unit from
the media file, it includes the data unit in the virtual stream
currently being transmitted if its Lagrange multiplierλ is
above the threshold for the stream.

B. Leaky Bucket Computations at the Sender

For each virtual stream, leaky bucket parameters
(R, Bmin(R), F d

min(R)) are precomputed off line for
R = Ravg and R = Rmax, whereRavg = rc is the average
coding rate of the stream, andRmax = 2rc. These leaky
bucket parameters are sent to the client in a preamble.

In addition, during streaming the server performs on-line
leaky bucket simulations for each stream. Specifically, when-
ever the server reads a data unit from the media file, it
determines the virtual streams to which the data unit belongs,
using the Lagrange multiplier of the data unit and the list of
thresholds for each stream. The sender then updates, for the
determined streams, the states of those leaky buckets having
leak rates equal to an average coding rateRavg, using (2) and
(3). Once all the data units in a frame are read from the media
file, the sender computesg(n) = Bmin(Ravg) − Be(n) for
each of the virtual streams. On a stream switch (i.e.,r̂c(n) 6=
r̂c(n− 1)), the gapgnew(n) for the new stream is transmitted
to the client along with∆g(n−1) = gnew(n−1)−gold(n−1)
as described below. It is easy to see that the cost of updating
the leaky bucket states is quite low. However, it is also possible
to precompute these values and store them with each data unit
in the media file.
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C. Initial Coding Rate Selection

At the beginning of a streaming session, the sender needs
to have some knowledge of the available network bandwidth
so that it can choose an initial coding rate (usually half
of the bandwidth). The bandwidth estimate can be drawn
from proactive measurements, using approaches such as packet
pair [20], path chirp [21], etc., or reactive approximations
based on history values. The exact form of the initial band-
width estimation is beyond the scope of this work.

D. Coding Rate Switching

The rate control feedback from the client contains the frame
number at which feedback is generated (e.g.,n − 2 in the
previous section) and the maximum allowable shift of the
upper bound in bits (e.g.,∆maxg(n − 1) in the previous
section). If the sender finds a suitable coding rate and makes
a switch at framen, it will transmit three values to the
client along with the frame: the new coding rater̂new

c (n),
the current gap to the upper boundgnew(n), and the shift
∆g(n−1) = gnew(n−1)−gold(n−1). With this information,
the client can properly adjust its control target schedule as well
as its upper bound. Note that coding rate switching always
happens at the beginning of a new frame, never inside a frame.

E. Optimal Rate Control at the Client

Whenever a new coding rate starts, the client receives the
valueg(n) along with the new frame. The values ofg(n) for
successive frames can be then inferred by the client itself based
on the coding ratêrc(n) and the frame sizeb(n). The client
records the arrival frame timeta(n), calculates the buffer tube
upper boundtb(n) and then computes the deviatione(n). If
there is a coding rate switch, it will also compute the buffer
tube shift and adjust the control target schedule accordingly.
Then e(n) is feed to the optimal rate controller, which then
outputs a desired new coding rate. The latest new coding
rate is fed back to the sender whenever there is a feedback
opportunity, which could be generated at regular intervals or
on-demand.

VI. PERFORMANCEEVALUATION

In this section, we evaluate the performance of the optimal
rate control system when streaming a fine grained scalable
(FGS) video stream.

The test video is a 3-minute clip, which we obtain by six
repetitions of the concatenation of the three MPEG standard
test sequencesAkiyo, Stefan, andForemanin that order. The
test video is downsampled to QCIF, 10 fps, for a total of 1800
underlying QCIF frames.7 The test video is coded using a
variant of MPEG-4 FGS [7], with a 10-second I-frame distance
and no B frames. Using rate-distortion optimization, from the
FGS stream we extract 50 substreams whose average coding
rates are uniformly spaced in the log domain between log 50
kbps and log 1000 Kbps.

7The original Akiyo and Stefan test sequences are 300 frames, which we
downsample to 100 frames each. The original Stefan test sequence is 400
frames, from which we extract the first 300 frames before downsampling to
100 frames.
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Fig. 19. ns-2 Simulation network setup.

client time # of FTPs fair share BW

Constant Bandwidth 0–180 s 5 400 Kbps

0–30 s 2 800 Kbps
30–60 s 5 400 Kbps

Variable Bandwidth 60–90 s 11 200 Kbps
90–130 s 5 400 Kbps
130–180 s 2 800 Kbps

TABLE II

BANDWIDTH AVAILABLE TO THE STREAMING SESSION

Using the popular network simulator ns-2 [22], we set up
a simple network environment as shown in Figure 19. Video
traffic is streamed from nodes1 to noder1 while competing
FTP cross traffic (FTPi) is transmitted nodesi to node ri

(2 ≤ i ≤ n). By adjusting the number of FTP flows and
their beginning/ending times, we can create both constant
and variable available bandwidth scenarios for the streaming
session, as specified in Table II. Experiments are carried out
using both TCP and TFRC [15] as alternative transport layer
protocols.

A. Startup Delay

Figure 20 shows the startup delay as a function of the
transmission/arrival ratera, for two streams, one at average
coding raterc = ra, and another atrc = 0.5ra. Specifi-
cally, for the virtual stream with average coding raterc, let
F d

min(R|rc) denote the minimum initial decoder buffer size
computed for a leaky bucket with leak rateR. (We know that
for a fixed rc, this function decreases inR). The top curve
in the figure shows the startup delayF d

min(ra|ra)/ra, when
the coding rate is chosen to match the transmission rate. The
middle curve shows the startup delayF d

min(0.5ra|0.5ra)/ra,
when the coding rate is chosen to be half of the transmission
rate, but the initial decoder buffer fullness is based on the
coding rate. And the bottom curve shows the startup delay
F d

min(ra|0.5ra)/ra, when the coding rate is chosen to be half
of the transmission rate, and the initial decoder buffer fullness
is based on the transmission rate, thus further reducing the
startup delay. The three curves in the figure are calculated
using leaky bucket simulations with the virtual streams’ coding
schedules, but we notice that the bottom curve matches nicely
with experimental results from our ns-2 simulations at rates
at 150 Kbps, 300 Kbps, 450 Kbps, 600 Kbps, 750 Kbps and
900 Kbps, all of which have delay much lower than 1 second.
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Fig. 21. Constant bandwidth over TCP.
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B. Constant vs. Variable Bandwidth

Figures 21 and 22 show results using TCP as the transport
protocol, under constant and variable bandwidth conditions,
respectively. In either case, in the startup phase, the coding
rate is about half of the arrival rate, which allows fast startup
and helps to build the client buffer quickly. The coding rate
catches up smoothly with the arrival rate and tracks it smoothly
despite fluctuations in the available bandwith. As the result of
coding rate adjustments, the client buffer is well maintained
around the logarithmic target schedule, ensuring that no frame
misses its playback deadline.

Figure 21(c) presents essentially the same information as
Figure 21(b), but plots thedifferencebetween the playback
deadline and 1) the arrival schedule, 2) the buffer tube upper
bound schedule, 3) the control target schedule, and 4) the
logarithmic target schedule, respectively. Note that the gap
between the playback deadline and the arrival schedule is
the client buffer duration. In the remainder of this paper, we
present all schedules using this format.

C. TFRC vs. TCP Transport

Figures 23 and 24 show results using TFRC as the transport
protocol. It is interesting to see that although TFRC yields
more stable arrival rates than TCP (consistent with the design
philosophy of TFRC and revealed by comparing Figures 21(a)
and 22(a) with Figures 23(a) and 24(a)), the traces of the
coding rates under TFRC and TCP are similar. Note that
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Fig. 22. Variable bandwidth over TCP.

when we use TFRC as the transport protocol for the media
stream, we also use TFRC for the cross traffic (i.e., FTP over
TFRC). The reason is that despite its name, TFRC appears
to take somewhat more than its fair share of bandwidth when
competing with TCP. Using TFRC cross traffic with the TFRC
media stream ensures that corresponding TCP and TFRC
media streams receive approximately the same bandwidth.
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Fig. 23. Constant bandwidth over TFRC.

D. Two-piece linear vs. logarithmic target schedule.

Figures 25, 26, 27 and 28 show results using TCP and
TFRC as the transport protocol with the two-piece linear target
schedule. Compared to the logarithmic target schedule, the
two-piece linear target schedule holds the initial lower coding
rate for a longer period (thus sacrificing more quality) in the
startup phase, so that the client buffer can build up more
quickly. After the startup phase, there is no further need to
sacrifice quality to maintain the client buffer level. In contrast,
with the logarithmic target schedule, there is some sacrifice in
quality over the entire streaming session, although the sacrifice
diminishes gradually as the slope of the schedule approaches
a constant.

It is clear that both target schedules work well under
either constant bandwidth or variable bandwidth situations.
The choice, which reflects a balance between quality and
buffer level in the startup phase as well as asymptotically,
can be deferred to particular applications.

It should be noted that if the client buffer has a limited
size (in bytes), then the target schedule can be designed, if
desired, to take this size into account. If the client buffer
becomes full, then the client must stop accepting packets from
the network. This reduces the arrival rate and consequently,
ultimately reduces the average coding rate as the controller
attempts to get the target duration into the buffer. The average
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Fig. 24. Variable bandwidth over TFRC.

coding rate is ultimately capped at the buffer size in bytes
divided by the buffer duration. Thus, if the buffer size in bytes
is fixed, then it may be desirable to design the target schedule
so that it corresponds to a maximum buffer duration yielding a
good compromise between average coding rate and robustness.

E. Controller Performance Tuning

1) Tuning σ: The performance figures show significant
deviation of the buffer tube upper bound from the control
target, which is especially obvious in the variable bandwidth
case. It is clear from our controller design rationale that we
can reduce this deviation by decreasing theσ value. A smaller
value of σ value implies a relative larger penalty on the
deviation term in the cost function and thus forces the upper
bound to track the target more closely. This, however, happens
at the cost of sacrificing coding rate smoothness, since the
corresponding term in the cost function will be weighted less.
Figure 29 shows simulation results withσ = 500 under the
same network conditions as in Figure 21. It is clear that while
the buffer tube upper bound deviates only slightly from the
control target, the coding rate has undesirable oscillations.

On the other hand, a largeσ value will certainly yield
smoother coding rates, but might also incur client buffer
underflow since the buffer tube upper bound is allowed to
deviate significantly away from the control target. Therefore,
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Fig. 25. Constant bandwidth over TCP with the two-piece linear target
schedule.

a good choice ofσ should take into account this trade-off. In
our implementation, we chooseσ = 4000 when the coding
rate switches up andσ = 2000 when it switches down. Note
that we allow a slightly more aggressive strategy in the latter
case to further reduce the chance of client buffer underflow.
It is straightforward to verify that this choice ofσ maintains
a stable closed-loop and good gain/phase margins; this is not
repeated here.

2) Smoothinge(k): The frame arrival timeta, which is
used to compute the controller input, is the client time at
which a frame is completely received. This time could increase
significantly if part of the frame arrives in retransmitted
packets. When the controller is fed withe(n), which is a
deviation computed from the arrival time, the controller may
misinterpret the increase and may generate oscillatory output
over time. Note that this variation in arrival time is different
from the variation in transmission rate and is not specifically
addressed in our mathematical model. Thus, we need an
additional mechanism to deal with it.

A straightforward approach is to apply our exponential
averaging method one(k), which will certainly smooth out
spiky values of the deviation and let the controller react upon
the long time trend. Let̃e(n) be a smoothed sequence input
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Fig. 26. Variable bandwidth over TCP with the two-piece linear target
schedule.

to the controller instead ofe(n), specifically

ẽ(n) =
e−α − e−αn

1− e−αn
ẽ(n− 1) +

1− e−α

1− e−αn
e(n). (63)

We chooseα = 1/f (the frame rate) to focus on history values
in the last second, which will also allow̃e(n) to follow the
trend promptly when a significant change in bandwidth occurs.
All results reported in this section use this mechanism.

F. Comparison with Benchmark Algorithm

As a benchmark, we compare our buffer management
algorithm to the windowing algorithm in [10] (which is
part of the rate-distortion optimized sender-driven streaming
algorithm therein). In the benchmark algorithm, the server
maintains a sending window, which contains the range of
frames that are potentially in the client buffer. The sending
window slides forward to mimic the playback (consumption)
of frames at the client. At each transmission opportunity, the
sender selects from the window a data unit that most decreases
the distortion at the client (per transmitted bit). The sliding
window looks ahead based on a logarithmic function (similar
to the logarithmic target schedule herein), which starts small
and grows slowly over time. Hence, the client can have low
startup delay and can gradually increase its buffer over time.
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Fig. 27. Constant bandwidth over TFRC with the two-piece linear target
schedule.

Although conceptually simple and sound, the benchmark
algorithm has two disadvantages. First, it does not send out
data units in the order in which they appear in the media file
(i.e., decoding order). This demands resources (e.g., caching
large segments of data) that may be incompatible with high
performance streaming. Second and more importantly, until
the window becomes large enough to accommodate constant
quality streaming (about 25 seconds for typical movies), the
benchmark algorithm demands, essentially, constant bit rate
streaming. This is because the duration of the client buffer
is determined by the logarithmic function. In contrast, in our
algorithm, only a portion of the client buffer duration (namely
the safety zone between the target and the playback deadline)
is determined by the logarithmic function. The remainder of
the client buffer duration is determined by the leaky bucket
state when processing the video content.

Figure 30 shows the buffer tube containing the coding
schedule for a video sequence consisting ofAkiyo, Stefan
and Foreman (10 s each) at an average coding rate of 500
Kbps. Note thatAkiyo requires relatively few bits per second
of media time, andStefanrequires relatively more bits per
second of media time, to achieve quality similar toForeman.
Thus if the three subsequences are all coded with roughly the
same number of bits per second of media time,Akiyowill have
higher quality, andStefanwill have lower quality, relative to
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Fig. 28. Variable bandwidth over TFRC with the two-piece linear target
schedule.

Foreman.
Figures 31 and 32 show the PSNR results after streaming

with a constant bandwidth of 400 Kbps over TCP and TFRC.
Our optimal control algorithm with either target schedule is
much smoother in terms of PSNR compared to the benchmark
algorithm. Note that even with optimal control, the PSNR
value shows a repetitive pattern over the entire session, instead
of a constant value. This happens because the scalable codec
we use in the experiments is a bit plane codec. There could
be one bit plane difference (about 6 dB in PSNR) between
frames of the same coding rate.

G. Comparison with Constant Bit Rate Algorithm

The CBR algorithm is a simple rate control mechanism that
takes advantage of the ability of to truncate an FGS encoded
frame at any point. Thus it is possible to control the rate by
sending the media data in real time, but truncating each frame
to match to available transmission rate. If the transmission
rate is constant, this yields a constant number of bits per
frame. The algorithm is simple and effective in the sense that
it successfully avoids any risk of rebuffering by matching the
instantaneous coding rate to the transmission rate. However,
without taking into account the variable bit rate nature of
constant quality coding, this algorithm results in high quality
for smooth content (which is easy to encode), and low quality
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Fig. 29. Constant bandwidth over TCP,σ = 500. The upper bound tracks
the control target more closely, while the coding rate is less smooth, compared
to Figure 21.

for high-action content (which is hard to encode). The quality
oscillation is significant over constant bandwidth channels as
shown in Figure 33 and 34. The experimental settings for these
figures are the same as for Figures 31 and 32, respectively.

H. Rate-Distortion Comparison

To compare the rate-distortion performance of all aforemen-
tioned algorithms, experiments over a wide range of available
bandwidth (150-900 Kbps) are carried out. Each experiment
sets a constant available bandwidth for the streaming session
and the TCP protocol is used for all experiments. The average
distortion in terms of PSNR over each session is computed
on the client side and plotted in Figure 35. Note that frames
over the first 40 s (media time) are excluded from the average
distortion computation. These frames correspond roughly to
the time period (about 30 s in client time) when the client
buffer is built up by streaming at lower coding rates than the
available bandwidth. The quality sacrifice during the initial
period will be easily amortized over streaming sessions of
reasonable length and it is appropriate not to be considered
in this rate-distortion comparison (where each session is just
3 minutes long).

From the reported results, we can see that the optimal
coding rate control algorithm has better rate-distortion per-
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Fig. 31. PSNR with constant bandwidth (400 Kbps) over TCP.

formance than the benchmark and the CBR algorithms. Over
the wide range of bandwidth, the optimal coding rate control
algorithm yields about 2-3 dB PSNR gain over the benchmark
algorithm. We can also see that, in general, the linear target
schedule has slightly better performance than the logarithmic
target schedule. This is understandable since the quality sac-
rifice happens only during the initial period for the linear
target schedule, while it spreads over the entire streaming
session for the logarithmic target schedule. The reason that
the CBR algorithm has worse performance than the benchmark
algorithm is also clear. The CBR algorithm can be regarded
as an extreme case of the benchmark algorithm, where the
sending window maintained on the server side contains only
one frame data at any time. Hence, the limited ability of the
benchmark algorithm to smooth quality is further reduced in
this case.

VII. M ULTIPLE BIT RATE STREAMING

Multiple bit rate (MBR) streaming is a network adaptive
technique that is widely used in commercial streaming media
systems (e.g. Windows Media 9 Series [1]). In MBR stream-
ing, in contrast to scalable streaming, the content is encoded
into several (typically at most 5–7) independent streams at
different coding rates. Often, each stream is optimized for
a common type of network connection (e.g., dial-up, DSL,
cable). During an MBR streaming session, the proper coding
rate is dynamically selected based on the available network
bandwidth, with the goal of achieving the maximum possible
quality under the condition of uninterrupted playback. It is
easy to see that MBR streaming is analogous to scalable
streaming. Indeed MBR streaming can be viewed as a special
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Fig. 32. PSNR with constant bandwidth (400 Kbps) over TFRC.
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Fig. 33. PSNR with constant bandwidth (400 Kbps) over TCP.

case of scalable streaming with a limited number of coding
rates available. Hence, our optimal control approach should be
applicable to this case.

There are, however, several differences that complicate
MBR streaming, which need to be carefully addressed. First,
as just mentioned, in MBR streaming there are only a limited
number of coding rates available. This coarse quantization of
the desired coding rate introduces a significant nonlinearity
into the closed loop system. In fact, the large gaps between
the available coding rates introduce oscillations. For example,
if two neighboring coding rates straddle a constant arrival rate,
the controller will oscillate between the two coding rates in
an attempt to keep the client buffer at a target level.

Second, in MBR streaming the coding rate cannot be
switched at an arbitrary time. In fact, before the server can
switch to a new stream, it must wait for the next clean point
(e.g., I frame) in the new stream, which could be five or ten
seconds away. Thus, the old coding rate may continue for
quite a while before it changes to the new coding rate. From
the controller’s perspective, this long random extra delay tends
to destabilize the closed-loop system.

Third and finally, in MBR streaming, server performance
issues are critical. The commercial-grade streaming media
systems that use MBR streaming do so because of the minimal
computational load that it imposes on the server compared to
scalable streaming. Thus, for MBR streaming it is important
to keep almost all computation and state maintenance on
the client side. In particular, the server will not be able
to update the leaky bucket information for each stream, as
we have proposed in previous sections. Instead, the client
must use some mechanism for estimating and maintaining this
information.
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A. Conservative Up-Switching

In this subsection we discuss a technique to help stabilize
the control system and reduce steady state oscillations to
a period of at least a minute. With this technique, rapid
down-switching is permitted. In fact, we reduce the value
of σ from 4000(2000) to 1000(500), changing the balance
between responsiveness and smoothness of the coding rate in
favor of rapid switching response. However, only conservative
up-switching is permitted. Conservative up-switching ensures
that spurious changes in coding rate do not occur, and that
oscillations in the coding rate have a low frequency. In
particular, conservative up-switching reduces the oscillations
between two adjacent but widely spaced MBR coding rates,
one above the arrival rate and one below the arrival rate.

The method behind conservative up-switching is to establish
a conservative limit on how high the coding rate can be raised
above the arrival rate. If the current coding rate is below the
arrival rate, and the client buffer duration begins to increase
above its target level, then the coding rate can be switched
up to a new coding rate above the arrival rate only if the
new coding rate is below the conservative limit. When the
client buffer duration begins at the target level, the conservative
limit is equal to the arrival rate. However, as the client buffer
duration increases, the conservative limit increases as well.
Thus, if the current coding rate is below the arrival rate, and
the next higher coding rate is above the arrival rate, then it
will be possible to switch up to the next higher coding rate
only after the client buffer duration has increased sufficiently
so that the conservative limit rises above the higher coding
rate. Once the coding rate is switched up to the higher coding



21

time

switch from 
rc

old to rc
new

consume data 
of rate rc

old
consume data 

of rate rc
new

finish data of 
rate rc

old

 τ1  τ2

buffer drops back 

to level   τ3

buffer duration

 τ1

buffer duration

 τ3 >   τT

Fig. 36. Conservative rate up-switching.

rate, the client buffer begins to drain since the coding rate is
then above the arrival rate. Eventually, when the buffer drains
back below its target level, the controller will rapidly switch
the coding rate back down to the coding rate below the arrival
rate.

Given the current client buffer duration, the conservative
limit is set to a value such that if the coding rate is switched
up to a new coding rate at this value, the client buffer would
take at least∆t seconds of client time to drain back to the
target level. Thus, the mechanism ensures that the period of
oscillation will be at least∆t seconds. In our experiments, we
set∆t to be 60 seconds.

Figure 36 shows how we compute the conservative limit.
Let ∆τ1 be the client buffer duration (in media time) at the
moment that the coding rate is switched up fromrold

c to rnew
c .

Thus ∆τ1 is the number of seconds of content that will be
consumed at the old coding raterold

c before content at the
new coding rate begins to be consumed. (For simplicity we
assume that all of the content in the client buffer at the time
of the switch is coded at raterold

c .) Let ∆τ2 be the number
of seconds of content that is consumed at the new coding rate
rnew
c before the client buffer duration drops to some level∆τ3

seconds (in media time), greater than the target level∆τT . The
duration of this phase is determined such that the total time
since the switch is exactly∆t = (∆τ1 + ∆τ2)/ν seconds
(in client time). Now, the number of bits that arrive in this
time is ra∆t = rnew

c (∆τ2 + ∆τ3) ≥ rnew
c (∆τ2 + ∆τT ) =

rnew
c (ν∆t−∆τ1 + ∆τT ), or

rnew
c ≤ ra∆t

ν∆t−∆τ1 + ν∆tT
, (64)

where ∆tT is the target buffer duration in client time. The
parameter∆t can be tuned to yield the desired behavior. A
large∆t means that up-switching will be more conservative,
while a smaller∆t means that up-switching will be more
prompt. In our implementation,∆t is set to 60 seconds while
the target∆tT is typically about 10 seconds.

B. Buffer Tube Upper Bound Estimation

In Section V-D we specified that the server sends three
values to the client at the beginning of each change in coding
rate: the new coding ratêrnew

c , the current gap to the upper
bound gnew(n), and the control target shift∆g(n − 1) =
gnew(n − 1) − gold(n − 1). The server computes the latter
two values by running a leaky bucket simulator for each

coding rate. The client continues to updateg(n) for the new
coding rate by running its own leaky bucket simulator for the
new coding rate. That is, beginning with the initial condition
F e(n) = B − b(n)− gnew(n), for each successive frame the
client computes

Be(n) = F e(n) + b(n) (65)

F e(n + 1) = max{0, Be(n)− r̂c/f(n)}, (66)

where
f(n) =

1
τ(n + 1)− τ(n)

(67)

is the instantaneous frame rate, as in (2), (3), and (4). From
this, the client can compute

g(n) = B −Be(n) (68)

for each frame.
However, if the server is unable to simulate the leaky

buckets and cannot sendgnew(n) to the client, then the client
must estimate this information for itself. In this case we
recommend that the client estimatesgnew(n) as an upper
bound such aŝgnew(n) = B − b(n) ≥ gnew(n). Then,
beginning with initial conditionF̂ e(n) = B− b(n)− ĝnew(n)
(which equals 0 in this case), for each successive frame the
client computes

B̂e(n) = F̂ e(n) + b(n) (69)

F̂ e(n + 1) = max{0, B̂e(n)− r̂c/f(n)}, (70)

as well as
ĝ(n) = B − B̂e(n). (71)

It is easy to see by induction that̂F e(n) ≤ F e(n), B̂e(n) ≤
Be(n), and ĝ(n) ≥ g(n). Moreover, these bounds each
become tighter byδ(n) = r̂c/f(n)−Be(n) wheneverδ(n) >
0, i.e., wheneverF e(n + 1) is clipped to 0 in (70). In fact,
given enough time they may eventually become tight.

Note that whenever the bounds tighten byδ(n) > 0, the
control target must be shifted by∆g(n)/r̃a, where∆g(n) =
−δ(n). Furthermore, whenevern is the first frame of a new
coding rate, the control target must be shifted by∆g(n)/r̃a,
where ∆g(n) = ĝnew(n) − ĝold(n). Here, ĝold(n) can be
determined by running (69), (70), and (71) for one extra step,
namely if n is the first frame of the new coding rate,

F̂ e(n) = max{0, B̂e(n− 1)− r̂old
c /f(n− 1)} (72)

B̂e(n) = F̂ e(n) + b(n) (73)

ĝold(n) = B −Be(n). (74)

It is easy to see that if̂gnew(n) = B − b(n), then∆g(n) =
F̂ e(n) as computed in (72).

We may also use for̂gnew(n) any better bound ongnew(n).
Better bounds are the subject of future study.

C. Virtual Streams

In MBR streaming, video and audio data are usually en-
coded separately, each generating multiple streams (hereafter
calledsubstreams). Although our optimal coding rate control
method is derived based on a single stream model, it can
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be easily extended to accommodate combinations of audio,
video and/or other simultaneous substreams by introducing
the concept of avirtual stream. A virtual stream is a combi-
nation of one or more media substreams having an aggregate
leaky bucket characterization. Our optimal coding rate control
method can then make switching decisions among a collection
of virtual streams.

Happily, the leaky bucket(B, F e, R) of a virtual stream
can be easily derived as the sum of the leaky buckets of
its component substreams. For example, if(Ba, F e

a , Ra) and
(Bv, F e

v , Rv) are the leaky buckets for the component sub-
streams (say audio and video substreams) of a virtual stream,
then

B = Ba + Bv (75)

F e = F e
a + F e

v (76)

R = Ra + Rv, (77)

characterize a leaky bucket of the virtual stream. This is
because, as is intuitively clear from the leaky bucket metaphor,
if the separate leaky buckets contain their substreams without
overflowing or underflowing, then the combined leaky bucket
will contain the combination of substreams without overflow-
ing or underflowing. (On the other hand, the combined bucket
is in general not the smallest leaky bucket that is able to
contain the combined substreams.) It is simple to show this
mathematically, though we will not do so here. The important
thing to note is that our optimal coding rate control method
can work just as easily on combinations of audio and video
substreams by making switching decisions among a collection
of virtual streams, whose leaky buckets are easily derived from
their component substreams.

Combining audio and video substreams can lead to a large
number of choices of aggregate bit rates (and thus quality
levels). In principle, each of the (say)Na audio substreams can
be matched with each of theNv video substreams, producing
all possibleNa × Nv combinations. However, most of these
combinations are not desirable. In fact, typically there are
only on the order ofNa + Nv desirable combinations. For
example, if audio quality is more important than video quality,
then during network congestion it may be desirable to reduce
video quality throughNv levels before reducing audio quality
through an additionalNa levels. On the other hand it may
instead be desirable to reduce the audio and video bit rates
together. A principled way to decide which of theNa × Nv

combinations are desirable is the following. Assign a distortion
Da(i) and a bit rateRa(i) to each audio substreami =
0, 1, . . . , Na (which includes the empty substreami = 0) and
a corresponding distortionDv(j) and bit rateRv(j) to each
video substreamj = 0, 1, . . . , Nv. Define for each combined
stream(i, j) an overall distortion and an overall bit rate,

D(i, j) = αDa(i) + Dv(j) (78)

R(i, j) = Ra(i) + Rv(j), (79)

allowing the audio distortion to be arbitrarily weighted by a
parameterα relative to the video distortion. Select a ‘desirable’
subset of the audio/video substream combinations(i, j) such
that for each(i, j) in the subset,D(i, j) ≤ D(i′, j′) for

all (i′, j′) such thatR(i′, j′) ≤ R(i, j). That is, desirable
combinations have the property that they have the lowest total
distortion among all combinations with the same or lower total
bit rate. One such desirable subset consists of the combinations
(i, j) whose rate-distortion pairs[R(i, j), D(i, j)] lie on the
lower convex hull of the set of rate-distortion pairs for all
possible combinations. Pairs on this lower convex hull can be
easily found by minimizing a Lagrangian for some positive
Lagrange multiplierλ > 0, that is,

(iλ, jλ) = arg min
(i,j)

{D(i, j) + λR(i, j)}
= arg min

(i,j)
{αDa(i) + Dv(j) + λ[Ra(i) + Rv(j)]}

= (arg min
i
{Da(i) + (λ/α)Ra(i)},

arg min
j
{Dv(j) + λRv(j))}. (80)

Thus, asλ is swept from0 to ∞, a sequence ofNa + 1
audio substreamsiλ (including the null substreami = 0) can
be chosen by minimizing the LagrangianDa(i)+(λ/α)Ra(i),
and (independently) a sequence ofNv +1 video substreamsjλ

can be chosen by minimizing the LagrangianDv(j)+λRv(j)).
These can be paired by matching their Lagrange multipliers
λ. Note that it is a simple matter to re-pair them if the relative
audio weightα changes, possibly under user control.

This approach can be easily extended to more substreams
than just audio and video. For example, suppose there are
M media elements in a streamed video game andm =
1, 2, . . . , M indexes the media elements, and suppose that
for each media elementm, there is a set of substreams
im = 0, 1, . . . , Nm (including the null substreamim = 0),
one of which can be combined with substreams from other
media elements in a compound virtual stream. Then following
the above arguments it is easy to see that for each media
element m, one can select for eachλ > 0 a substream
im,λ = arg mini{Dm(i)+λRm(i)}, where[Rm(i), Dm(i)] is
the rate, distortion pair for theith substream of media element
m. These can then be aligned byλ to choose the components
of the ‘desirable’ virtual streams, a process that is linear in
M instead of exponential inM . Even further simplifications
accrue whenNm = 1 for all m. In that case, asλ goes
from 0 to ∞, for eachm there is a simple threshold, namely
λm = [Dm(0) − Dm(1)]/Rm(1), such that whenλ ≤ λm

we have im,λ = 1 (i.e., the substream for media element
m is included in the virtual stream) and whenλ > λm we
have im,λ = 0 (i.e., the substream for media elementm is
not included in the virtual stream). Thus the set of desirable
virtual streams can be obtained by sorting the media elements
on λm and including them, in order, into the virtual streams.

D. Performance Evaluation

The performance of the controller is evaluated using an
MBR file containing a 20-minute clip ofThe Matrix coded
at five different combinations of audio and video bit rates,
as listed in Table III, using a 5-second leaky bucket for each
coding rate. The ns-2 simulation set up is similar to the set up
in Figure 19. The connection between the media server and
client is either TCP or TFRC. The bandwidth available to the
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Audio
(Kbps)

Video
(Kbps)

Audio
+Video
(Kbps)

32 32 64
32 64 96
32 189 221
32 314 346
32 464 496

TABLE III

BIT RATES IN MBR FILE.

without initial burst with initial burst
0–5 s 500 Kbps 2 Mbps
5–25 s 500 Kbps 1 Mbps
25–70 s 400 Kbps 400 Kbps
70–130 s 286 Kbps 286 Kbps
130–190 s 200 Kbps 200 Kbps
190–220 s 286 Kbps 286 Kbps
220–550 s 400 Kbps 400 Kbps

TABLE IV

BANDWIDTH CONDITIONS WITH AND WITHOUT INITIAL TRANSMISSION

RATE BURST

TCP or TFRC connection varies over time according to the
schedule listed in Table IV, simulating congestion conditions
that cause multiple rebuffering events in Windows Media 9.
There are two sets of experiments: one with and one without
an initial burst of available bandwidth.

When TCP is used to carry data from the server to the
client, our coding rate controller satisfies users’ expectations,
with less than one second of startup delay, no rebuffering,
and maximal quality and smoothness over the entire session.
Indeed, Figure 37(a) shows that the coding rate (and hence the
quality) is as high as possible given the average arrival rate,
except during the first 15 seconds or so, in which the coding
rate is lower than the arrival rate to build up the client buffer
without incurring a large startup delay. Smoothness is also
achieved, since the coding rate does not change spuriously,
dropping only when the client buffer falls below its target and
rising only when it can sustain the higher bit rate for at least 60
seconds in steady state. Correspondingly, Figure 37(b) shows
that after the initial 15 seconds, the buffer duration hovers
between 10 and 35 seconds, and does not underflow. Figure 38
shows similar results when there is an initial burst of available
bandwidth. The corresponding initial burst in transmission rate
however allows the initial coding rate to be fairly high while
the client buffer builds.

When the TFRC protocol is used to carry data from the
server to the client, similar results are obtained when there is
no packet loss in the network, as shown in Figure 39(a). (Here
there is no initial burst in available bandwidth.) When there is
5% packet loss in the network, TFRC reduces the transmission
rate accordingly, as shown in Figure 39(c). The additional
dynamics of transmission rate, however, makes it difficult to
understand the effect of packet loss on the controller. In this
case, the simulation is modified to induce loss only within the
client application, and 5% packet loss (Figure 39(b)) is essen-
tially the same as no data loss (Figure 39(a)). This indicates
that the controller is robust to a significant number of frames
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Fig. 37. TCP variable bandwidth experiment (without initial transmission
rate burst).

being dropped. The reason for such robustness is that the client
in any case groups together all frames within approximately
1-second intervals, creating large virtual frames at a virtual
frame rate off = 1 frame per second. A dropped frame
simply causes the virtual frames to be slightly smaller, and the
estimates fortb(n) to be slightly larger (more conservative).
Thus, our controller should also work well even in wireless
networks with significant packet loss due to interference and
noise.

Finally, we study the effect of round trip time (RTT) on
controller performance. Since our virtual frame rate isf = 1
frame per second, and the buffer size is on the order of 10
seconds or more, the controller is unaffected by large RTTs,
as illustrated in Figure 40.

VIII. R ELATED WORK

Hsu, Ortega and Reibman [17] address the problem of
joint selection of source and channel rates (which are notions
analogous to coding and transmission rates in this paper)
for VBR video. They propose a rate-distortion optimization
solution that maximizes receiving quality subject to end-
to-end delay guarantees. Luna, Kondi and Katsaggelos [23]
pursue this direction further by introducing network cost as
an optimization objective and balancing the trade-off between
user satisfaction and network cost. Both approaches assume
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Fig. 38. TCP variable bandwidth experiment (with initial transmission rate
burst).
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Fig. 39. Performance Impact of Data Loss (over TFRC protocol)

networks that offer QoS support while using various policing
mechanisms (such as a leaky bucket model) to constrain
network traffic. The algorithms in these papers can be modified
to address the problem, which we deal with in our paper,
where the channel rate is completely determined by network
conditions and not subject to choice. However, a drawback of
these algorithms compared to our optimal control mechanism
is that they require complete knowledge of channel ratesa
priori , which makes them less practical for streaming media
applications, where dynamic rate adjustment is required on the
fly. Moreover, these algorithms have higher complexity, even
with fast approximation variations [24]. The algorithms are
good, however, for determining performance bounds in offline
analysis.
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Fig. 40. Performance Impact of RTT (over TCP protocol)

Nelakuditi, Harinath, Kusmierek and Zhang [11] design
a bidirectional scan algorithm to optimize perceived video
quality, measured by a set of smoothness metrics, assuming
prior knowledge of the network bandwidth. Their work uses
layered video and simplifies the analysis by assuming that
each layer has a constant bit rate. The recent work of Kim and
Ammar [12] further develops this direction, proposing a more
sophisticated algorithm targeting optimal quality adaptation for
MPEG-4 FGS VBR video. Both works also provide online
heuristics, when the available bandwidth is not known in
advance. These online heuristics appear to have reasonably
good performance for limited scalability (one base layer and
two enhancement layers in both works), although it is not
clear how well they would work with a rich set of available bit
rates (e.g., 50 streams in our case). In a similar way, it may be
difficult to extend the dynamic bandwidth allocation algorithm
proposed by Saparilla and Ross [13] beyond a limited number
of bit rates.

To our knowledge, the most closely related contempo-
raneous work is that by de Cuetos and Ross [14], which
also decouples the transmission rate and the coding rate.
They assume that the transmission rate is determined by the
network transport protocol (TCP or TFRC), which is the same
assumption that we make in our work (this paper as well
as [10]). They develop a heuristic real time algorithm for
adaptive coding rate control and compare its performance to an
optimal offline coding rate control policy if the transmission
rate is given prior to streaming. Our work differs from theirs in
two ways. One is that our rate control algorithm is optimal in a
control theoretic sense, in addition to being a low complexity
real time algorithm. The other is that we take into account the
variable instantaneous bit rate of the media coding and thereby
further improve and stabilize the receiving quality.

The work of Rejaie, Handley and Estrin [25] proposes a
scheme for transmitting layered video in the context of unicast
congestion control, which basically includes two mechanisms.
One mechanism is a coarse-grained mechanism for adding and
dropping layers (changing the overall coding rate and quality).
The other is a fine-grained interlayer bandwidth allocation
mechanism to manage the receiver buffer (not changing the
overall coding rate or quality). A potential issue with this
approach is that it changes the coding rate by adding or
dropping one (presumably coarse) layer at a time. If the
layers are fine-grained, as in the case of FGS coded media,
then adding or dropping one (fine-grained) layer at a time
typically cannot provide a prompt enough change in coding
rate. Moreover, since the adding and dropping mechanism is
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rather empirical, the mechanism may simply not be suitable
for FGS media.

The work of Q. Zhang, Zhu and Y-Q. Zhang [26] proposes
a resource allocation scheme to adapt the coding rate to
estimated network bandwidth. The novelty of their approach
is that they consider minimizing the distortion (or equiva-
lently maximizing the quality) of all applications, such as
file-transfers and web browsing in addition to audio/video
streaming. However, their optimization process does not in-
clude the smoothness of individual streams and might lead to
potential quality fluctuations. In our paper, we explicitly take
into account the smoothness of the average coding rate over
consecutive frames in our optimal controller, which yields a
higher and more stable quality as network conditions change.

IX. SUMMARY

In this paper, we propose and verify an optimal online rate
control algorithm for scalable and MBR streaming media. Our
extensive analytical and experimental results show that three
goals are achieved: fast startup (about 1 sec delay without
bursting), continuous playback in the face of severe conges-
tion, and maximal quality and smoothness over the entire
streaming session. We also show that our algorithm works
effectively with both TCP and TFRC transport protocols.
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