
SYNERGY : A New Algorithm for Property Checking

Bhargav S. Gulavani∗ bhargav@cse.iitb.ernet.in

Thomas A. Henzinger† tah@epfl.ch

Yamini Kannan‡ yaminik@microsoft.com

Aditya V. Nori‡ adityan@microsoft.com

Sriram K. Rajamani‡ sriram@microsoft.com

∗IIT Bombay †EPFL ‡Microsoft Research India

June 2006

Technical Report

MSR-TR-2006-76



The property checking problem is to check if a program satisfies a
specified safety property. Interesting programs have infinite state
spaces, with inputs ranging over infinite domains, and for these pro-
grams the property checking problem is undecidable. Two broad
approaches to property checking have been proposed: (1) testing
and (2) verification. Testing tries to find inputs and executions that
demonstrate violations to the property. Verification tries to find
proofs that all executions of the program satisfy the property. Test-
ing works when errors are easy to find, and verification works when
proofs are easy to find. Testing is typically inefficient for correct
programs, and verification methods are typically inefficient at find-
ing errors. We propose a new algorithm, synergy, that combines
testing and verification. synergy generalizes several disparate al-
gorithms in the literature including: (1) counterexample driven re-
finement approaches for verification (such as slam [2], blast [15],
magic [5]), (2) directed testing approaches (such as dart [13]) and
(3) partition refinement approaches (such as Paige-Tarjan [22] and
Lee-Yannakakis [19]) algorithms). This paper presents a description
of the synergy algorithm, its theoretical properties, detailed com-
parison with related algorithms, and a prototype implementation in
a tool —yogi.

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052
http://www.research.microsoft.com

1



1 Introduction

Automated tools for software verification have made great progress over the
past few years. We can broadly classify these tools into two categories. (These
boundaries are not sharp, but we still find the classification useful.) The first
class of verification tools searches for bugs. These are tools that execute the
program in one form or another. At one extreme, in program testing, the
program is executed concretely on many possible inputs. Such test inputs may
be either generated manually, by employing testers, or generated automatically
using tools (see [9] for a survey on automatic test case generation). At the other
extreme, the program is executed abstractly, by tracking only a few facts during
program execution [4, 10]. These tools are very efficient and therefore widely
used. They have different strengths and weaknesses: testing finds real errors but
it is difficult to achieve good coverage; abstract execution, if done statically, can
cover all program paths but signals many false positives (potential errors that
are not real). As a result, many intermediate solutions have been pursued, such
as guided testing [13]. In this approach, the program is executed symbolically, by
collecting all constraints along a path. This information is then be used to drive
a subsequent test into a desired branch off the original path. For concurrent
programs, a practical technique to increase testing coverage is to systematically
explore different interleavings by taking control of the scheduler [11].

The second class of verification tools searches for proof of the absence of
bugs. These are tools that try to find a safe “envelope” of the program, which
contains all possible program executions and is error-free. Also this class con-
tains a diverse set of methods. At one extreme, in classical model checking [6,8],
the exact envelope of a program is constructed as the reachable state space. At
the other extreme, in deductive verification [20], a suitable program envelope is
an inductive invariant. While computing the exact envelope proceeds automat-
ically, the computation rarely terminates. On the other hand, user intervention
is usually required to define a suitable overapproximate envelope, say in the
form of loop invariants, or in the form of abstraction functions. These ineffi-
ciencies, due to state explosion and the need for user guidance, have prevented
the wide adoption of proof-based tools. Again, recent intermediate approaches
try to address these issues. For instance, in counter-example guided abstraction
refinement [2, 5, 7, 15, 18], the search for a safe program envelope is automated
by iteratively refining a quotient (partition) of the reachable state space. Of
course, the execution-based tools mentioned earlier may also produce proof,
for example, if complete coverage can be ensured by a test-case generator, or
if no potential errors (neither real nor false) are reported by an abstract in-
terpretation; but it is rather exceptional when this happens. Conversely, the
proof-based tools may report bugs, but they generally do so only as a byproduct
of an expensive, failed search for proof.

We present a new verification algorithm, called Synergy, which searches
simultaneously for bugs and proof, and while doing so, tries to put the informa-
tion obtained in one search to best possible use in the other search. The search
for bugs is guided by the proof under construction, and the search for proof is

1



guided by the program executions that have already been performed. Suppose
we are partially on the way towards constructing a proof, that is, we have con-
structed a partition of the reachable state space which not completely safe (it
contains abstract paths to errors, real or false). Where is the most promising
place to look for real errors? It is precisely along the abstract error paths. So
we drive concrete program executions as far as possible along these paths, using
the technology of [13]. Conversely, suppose we have performed many program
executions without finding a bug. Where is the most promising place to re-
fine our partial proof? It is precisely at the last points on abstract error paths
which have been visited by concrete program executions. At such a point, all
performed program executions part from the abstract error path, which is thus
likely to become infeasible exactly at that point.

Synergy, thus, is a combination of underapproximate and overapproximate
reasoning: program execution produces a successively more accurate underap-
proximation of the reachability tree of the program, and partition refinement
produces produces a successively more accurate overapproximation. The over-
approximation is used to guide the underapproximation to real errors as quickly
as possible; the underapproximation is used to guide the overapproximation to
a proof as quickly as possible. In other words, Synergy guides testing towards
errors; it can be viewed as “property-directed testing.” When the property (er-
ror region) changes, different tests will be favored. If some parts of a program
can easily be proved safe, then Synergy quickly focuses the tests on the other
program parts. In partition refinement, on the other hand, the most difficult
problem has been to decide where to refine an infeasible abstract error trace.
Synergy uses test information to make that decision. This is particularly effec-
tive during long deterministic stretches of program execution, such as for loops.
While proof-based tools may perform as many refinement steps as there are loop
iterations, an inexpensive, concrete execution of the loop can immediately sug-
gest the one necessary refinement (see Example 3 below). Synergy, therefore,
performs better than the independent use of both execution- and proof-based
tools.

Synergy bears some resemblance to the Lee-Yannakakis algorithm [19],
which recently has also been suggested for software verification [23]. This al-
gorithm constructs a bisimulation quotient of the reachable state space by si-
multaneous partition refinement and concrete execution, to see which abstract
states (equivalence classes) are reachable. However, there are important theo-
retical and practical differences between Synergy and Lee-Yannakakis. On the
theoretical side, we show that Synergy constructs a simulation quotient of the
program, not a bisimulation quotient. This is important, because simulation is
a coarser relation than bisimulation, and therefore proofs constructed by Syn-

ergy are smaller than proofs constructed by Lee-Yannakakis. In fact, we give
an example, where Synergy terminates with a proof, but Lee-Yannakakis does
not terminate, because the program has no finite bisimulation quotient. On the
practical side, Lee-Yannakakis performs concrete program executions only to
avoid the refinement of unreachable abstract states; it neither guides concrete
executions towards the error, nor does it use concrete executions to guide the

2



refinement of reachable abstract states. Synergy, in contrast, typically collects
many tests —even many that visit the same abstract states— between any two
refinements of the partition. This is because tests (program execution) are less
expensive than refinement (which involves theorem prover calls), and they give
valuable information for choosing the next refinement step.

This paper presents a description of the synergy algorithm, its theoreti-
cal properties (soundness and termination), a detailed comparison with related
algorithms, and a prototype implementation in a tool —yogi. yogi currently
works for single procedure C programs with integer variables, and checks only
safety properties specified by invoking a special error() function. Even with
this limited expressiveness, we are able to demonstrate the effectiveness of syn-

ergy over existing algorithms for iterative refinement and partition refinement.

2 Overview

We informally present the algorithm Synergy on an example that is difficult for
slam-like tools. Consider the program from Figure 3. Given an integer input a,
the program executes the body of the while loop 1000 times, incrementing the
loop counter i each time without modifying a. After the loop, the variable a is
checked for being positive, and if the check fails, the error location 6 is entered.
(Without loss of generality, we specify safety properties by invoking a special
error() function.) Clearly, the program reaches the error iff the input a is
zero or negative. A partition refinement tool based on predicate abstraction
will, in this example, discover the 1000 predicates (i==0), (i==1), (i==2),
. . . , (i==999) one by one before finding the path to the error. This is because
every abstract error trace that executes the loop body less than 1000 times is
infeasible (i.e., does not correspond to a concrete error trace), and to prove each
infeasibility, a new predicate on the loop counter needs to be added. Guided
testing, by contrast, performs well on this example. If a first test input a with
(a>0) is chosen, the test will not pass the assumption at location 5. Then, a
DART-like tool will suggest a subsequent test with (a<=0) in order to pass that
assumption. That test, of course, will hit the error.

We will see that, on this example, Synergy quickly finds the error by per-
forming a dart-like underapproximate analysis. On other examples (such as
the examples from Figure 2 and Figure 8 below), where slam succeeds quickly
in finding a proof, Synergy does so as well, by performing a slam-like over-
approximate analysis. In fact, Synergy often performs better than running
dart and slam independently in parallel, because in Synergy, the two anal-
yses communicate information to each other. In particular, dart works very
well with deterministic loops (since there is only one path that a test can cover
quite easily, but a large number of abstract states that take several iterations for
iterative refinement to enumerate), and slam works very well with sequences of
branches (such as Figure 8, since there are a small number of abstract states,
but a large number of paths for dart to enumerate). However, typical programs
have both loops and sequences of branches and synergy works better on such

3



programs than running slam or dart in isolation.
Synergy keeps two data structures. For the underapproximate (concrete)

analysis, Synergy collects the test runs it performs as a forest F . Each path
in the forest F corresponds to a concrete execution of the program. The forest
is F is grown by performing new tests. As soon as an error location is added
to F , a real error has been found. For the overapproximate (abstract) analysis,
Synergy maintains a finite, relational abstractionA of the program. Each state
of A is an equivalence class of concrete program states, and there is a transition
from abstract state a to abstract state b iff some concrete state in a has a
transition to some concrete state in b. Initially, A contains one abstract state
per program location. The partition A is repeatedly refined by splitting abstract
states. As soon as the error location becomes unreachable in the abstraction A,
a proof has been found. (Note that at this point, the partition A does not need
to be stable, i.e., it is not necessarily a bisimulation of the program.)

Synergy grows the forest F by looking at the partition A, and it refines P
by looking at F . Whenever there is an (abstract) error path in A, Synergy

chooses an error path tt in A such that (i) tt has a prefix t which corresponds
to a (concrete) path in F , and (ii) no abstract state in tt after the prefix t is
visited in F . Such a “nice” path tt always exists. Synergy now tries to add to
F a new test which follows the nice path tt for at least one transition past the
prefix t. We use directed testing [13] to check if such a “suitable” test exists. If
a suitable test exists, then it has a good chance of hitting the error if the error is
indeed reachable along the nice path. And even if the suitable test does not hit
the error, it will indicate a longer feasible prefix of the nice path. On the other
hand, if a suitable test does not exist, then instead of growing the forest F ,
Synergy refines the partition A by removing the first abstract transition after
prefix t along the nice path tt. This transition of tt from, say, a to b can always
be removed by refining the abstract state a into a\Pre(b), where Pre is the
weakest-precondition operator. Then Synergy continues by choosing a new
nice path, until either F finds a real program error or A provides a proof of
program correctness.

On the example from Figure 3, the first nice path found by Synergy is
the abstract error trace 0, 1, 2, 3, 4, 5, 6. Since the forest F is initially
empty, Synergy adds some test that proceeds from location 0 to 1 along the
nice path (and possibly much further). Say the first such test input is (a==45).
This test produces a concrete path that executes the loop body 1000 times and
then proceeds to location 5 (but not to 6). At this point, F contains this single
path, and A still contains one abstract state per program location. This is now
the point at which Synergy crucially deviates from previous approaches: the
new nice path that Synergy returns executes the loop body 1000 times before
proceeding to locations 5 and 6. This is because any shorter abstract error path
(which contains fewer loop iterations) has no maximally corresponding prefix
in F : consider an abstract path tt′ to 5 and 6 with less than 1000 loop iterations;
since 5 is visited by F , but no path in F corresponds to the prefix of tt′ until 5,
the path tt′ is not “nice.” Once the nice path with 1000 loop iterations is chosen,
the next suitable test is one that passes from 5 to 6. Say the second test input is

4



(a==-5). This second test reaches the error, thus showing the program unsafe.

3 Algorithm

A program P is a triple 〈Σ, σI ,→〉, where Σ is a (possibly infinite) set of states,
σI ⊆ Σ is a set of initial states, and → ⊆ Σ × Σ is a transition relation. We
use

∗
→ to denote the transitive closure of →. A property ψ ⊆ Σ is a set of bad

states that we do not want the program to reach.
An instance of the property checking problem is a pair (P = 〈Σ, σI ,→〉, ψ).

The answer to the property checking problem is “fail” if there is some s ∈ σI

and t ∈ ψ such that s
∗
→t, and “pass” otherwise.

We desire to produce witnesses for both the “fail” and “pass” answers. The
witness to “fail” is a finite sequence of states s0, s1, s2, . . . , sn such that s0 ∈
σI , and si→si+1 for 0 ≤ i ≤ n− 1, and sn ∈ ψ. The witness to “pass” is
a finite-indexed partition Σ≃ of Σ that proves the absence of paths leading
from initial states to bad states. Such proofs are constructed using abstract
programs. We consider equivalence relations ≃ of Σ which induce partitions
with a finite index. For any such relation ≃ of Σ, we define an abstract program
P≃ = 〈Σ≃, σ

I
≃,→≃〉 where (1) Σ≃ are the equivalence classes of Σ under the

equivalence ≃, (2) σI
≃ = {S ∈ Σ≃ | S ∩ σI 6= Φ} is the set of classes of Σ that

have some state from σI , and (3) S→≃T , for S, T ∈ Σ≃ iff there exists s ∈ S

and t ∈ T such that s→t. We use the term regions to denote the equivalence
classes in Σ≃. We use the notation ψ≃ to denote the equivalence classes that
intersect with ψ. Formally, ψ≃ = {S ∈ Σ≃ | S ∩ ψ 6= Φ}. Any path starting at
the initial region σI

≃ in the abstract program P≃ is called an abstract trace in
this program.

A finite-indexed partition Σ≃ is said to be a proof for the “pass” answer if
there is no abstract trace in the abstract program P≃ leading to a region in ψ≃.

Our algorithm synergy takes two inputs (1) a program P = 〈Σ, σI ,→〉,
and (2) a property ψ ⊆ Σ. It can produce 3 types of results:

1. It may produce “fail” with a test s0, s1, s2, . . . , sn such that s0 ∈ σI , and
si→si+1 for 0 ≤ i ≤ n− 1, and sn ∈ ψ.

2. It may produce “pass” with a finite partition Σ≃ that is a proof for the
“pass” answer.

3. It may not terminate.

The synergy algorithm is shown in Figure 3. It maintains two core data
structures (1) a forest F of concrete states, where for every s ∈ F , parent(s) ∈
F ∪ {ǫ}, and (2) a finite-indexed partition Σ≃ of Σ. Initially, F is empty (line
1) and Σ≃ is the initial partition with 3 regions, namely, the initial states σI ,
the error states ψ, and all other states that are neither in σI nor in ψ (line 2).
In each iteration, the algorithm either expands the forest F to include more
reachable states (with the hope that this expansion will help produce a “fail”
answer), or refines the partition Σ≃ (with the hope that this refinement will help

5



synergy(P = 〈Σ, σI ,→〉, ψ)
Assume: σI ∩ ψ = ∅
Returns: (1) (“fail”, t), where t is a test that reaches ψ

(2) (“pass”, ≃), where ≃ is a proof for unreachability of ψ

1: F := ∅
2: Σ≃ := {σI , ψ,Σ \ (σI ∪ ψ)}
3:

4: loop

5: for all ( S ∈ Σ≃) do

6: if (S ∩ F 6= Φ) and (S ⊆ ψ) then

7: pick s ∈ S ∩ F ;
8: t := TestFromWitness(s);
9: return (“fail”, t)

10: end if

11: end for

12:

13: 〈Σ≃, σ
I
≃,→≃〉 := CreateAbstractProgram(P,Σ≃);

14: at = GetAbstractTrace(〈Σ≃, σ
I
≃,→≃〉, ψ);

15: if (at = ǫ) then

16: return (“pass”, Σ≃)
17: else

18: 〈tt, k〉 := GetNiceAbstractTrace(at, F );
19: let S0, S1, . . . , Sn = tt in

20: t := GenSuitableTest(tt, F )
21: if (t = ǫ) then

22: Σ≃ :=
23: (Σ≃ \ {Sk−1}) ∪ {Sk−1 ∩ Pre(Sk), Sk−1 \Pre(Sk)}
24: else

25: let s0, s1, . . . , sm = t in

26: for (i = 0 to m) do

27: if (si 6∈ F ) then

28: F := F ∪ {si};
29: parent(si) := if (i = 0) then ǫ else si−1

30: end if

31: end for

32: end if

33: end if

34: /*
35: The following code is commented out,
36: and is explained in Section 6.
37: ≃:= RefineWithGeneralization(≃, tt)
38: */
39: end loop

Figure 1: The synergy algorithm

6



produce a “pass” answer). Intuitively, the expansion of the forest F is done by
directed test case generation (similar to dart [13]) to cover more regions, and
the refinement of the partition Σ≃ is done at the boundary between a region
that we know is reachable, and a region for which we cannot find a concrete test
along an abstract trace. Thus, abstract traces that lead to an error region in
the abstract program P≃ are used to direct test case generation, and the non-
existence of certain kinds of test cases are used to guide partition refinement.

In each iteration of the loop, the algorithm first checks to see if we have
already found a test case to the error region. This is checked by looking for a
region S such that S ∩ F 6= Φ and S ⊆ ψ (line 6). In that case, the algorithm
picks a state s ∈ S ∩ F and calls the auxiliary function TestFromWitness to
compute a test sequence that leads to the error. Intuitively, TestFromWitness

works by successively looking up the parent starting with its argument until it
finds a root of the forest F . Formally, for a state s ∈ F , the function call
TestFromWitness(s) returns a test sequence s0, s1, . . . , sn such that sn = s,
and parent(si) = si−1, for all 0 < i ≤ n, and parent(s0) = ǫ.

If we have not been able to find a test case leading to the error, the al-
gorithm checks if the current partition Σ≃ is a proof for unreachability of
ψ. It does this by first building the abstract program P≃ using the aux-
iliary function CreateAbstractProgram (line 13). Given a partition Σ≃,
the function CreateAbstractProgram(P,Σ≃) returns the abstract program
P≃ = 〈Σ≃, σ

I
≃,→≃〉. For every pair of regions S, T ∈ Σ≃, we have that S→≃T

iff there exist s ∈ S and t ∈ T such that s→t. Thus, the abstract program P≃

simulates the concrete program P by construction.
The next step in the algorithm is the call to the function GetAbstractTrace

(line 14) to search for an abstract trace that leads to an error region. If there
is no such trace, then GetAbstractTrace returns an empty trace ǫ. In that
case, the algorithm returns “pass” with the current partition Σ≃. Otherwise,
GetAbstractTrace returns an abstract trace S0, S1, . . . , Sn such that:

1. S0 ⊆ σI .

2. Sn ⊆ ψ.

3. For all 0 ≤ i ≤ j − 1, we have that Si→≃Si+1.

The next step is to convert this trace into a nice abstract trace. An abstract
trace S0, S1, . . . , Sn is said to be nice if in addition to the above three conditions,
the following hold:

1. There exists k =Frontier(S0, S1, . . . , Sn) where 0 ≤ k ≤ n, such that for
all j such that k ≤ j ≤ n we have Si ∩ F = Φ, and for all i such that
0 ≤ i < k we have Si ∩ F 6= Φ.

2. There exists s ∈ Sk−1 ∩ F such that for all 0 ≤ i < k, we have that Si =
GetRegion(parentk−1−i(s)) (this function maps every concrete state in
F to its corresponding abstract region).

7



We note that whenever there is an abstract trace that leads to the error, there
must exist a nice abstract trace. The auxiliary function GetNiceAbstractTrace

(line 18) converts an abstract trace at to a nice abstract trace tt. Intuitively, it
works by finding the latest region in the trace that intersects with the forest F ,
finding a state that intersects with F in that region, and following the parent
pointers from this state. GetNiceAbstractTrace returns a pair 〈tt, k〉 where
tt is a nice abstract trace and k = Frontier(tt).

The algorithm now tries to extend the forest F along the nice abstract trace
tt. In particular, it tries to find a suitable test case that extends F by at
least by one step at depth Frontier(tt) along the abstract trace tt, but not
necessarily all the way along tt. Suitable tests can potentially deviate from
the abstract trace after Frontier(tt). This flexibility is crucial, and allows the
test to follow the concrete semantics of the program, and avoid un-necessary
refinements. We define suitable tests in two steps. First we define F -extensions,
which are intuitively sequences that can be added to F , while still maintaining
the invariant that F is a forest (without adding cycles to F or making some node
in F have two parents). A sequence of states s0, s1, . . . , sm is an F -extension
if (1) s0 ∈ σI , (2) for all 0 ≤ i ≤ m − 1 we have that si→si+1, and (3) there
exists 0 ≤ k < m such that, for all i where 0 ≤ i < k we have that si ∈ F

and for all j where k ≤ j ≤ m we have that sj 6∈ F . Given an abstract trace
tt = S0, S1, . . . , Sn with k = Frontier(tt), and the forest F , a sequence of
states is suitable if it is (1) an F -extension, and (2) follows the abstract trace
tt at least for k steps. Formally, the function GenSuitableTest(tt, F ) takes as
inputs a nice abstract trace tt = S0, S1, . . . , Sn and the forest F , and returns
a suitable sequence t = s0, s1, . . . , sm such that m ≥ Frontier(tt) and for all
0 ≤ i ≤ Frontier(tt) we have that si ∈ Si, or it returns ǫ if no such suitable
sequence exists. We note that dart [13] can be used to generate such a suitable
sequence efficiently. Suppose k = Frontier(tt). Then, by picking s ∈ Sk−1 ∩F ,
doing a symbolic execution along the path in the forest F up to step k − 1,
and by conjoining the constraints corresponding to Sk, we can accumulate the
constraints needed to drive a test case to Sk, similar to dart [13]. If we succeed
in finding such a test case, we simply add this test case to the forest (lines 25-31)
and continue. If finding such a test is not possible, then we know that there is
no concrete execution corresponding to the abstract trace S0, S1, . . . , Sk−1, Sk,
but we know that there is a concrete execution for the prefix S0, S1, . . . , Sk−1

since Sk−1∩F 6= Φ. Thus, we split the region Sk−1 using Pre(Sk) (lines 22-23),
and thus eliminate this false abstract trace in the abstract program.

The call to function RefineWithGeneralization (line 37) has been com-
mented out. However, this call is needed to make synergy work on certain
programs. We discuss this in Section 6.

The distinguishing feature of the synergy algorithm is the simultaneous
search for a test case to witness the error, and a partition to witness the proof.
The two searches work in synergy (and hence the name). The search for the
proof guides the test case generation, since the test case is always generated with
respect to an abstract trace that leads to an error region. The search for the
test guides the proof, since the non-existence of a test case at the frontier of the

8



forest of concrete states (obtained by executing tests) is used to decide where
to perform the refinement for the proof. In the next section, we show by way of
examples and arguments, how synergy compares with existing algorithms in
the literature.

4 Discussion

In this section, we illustrate the synergy algorithm on examples, and compare
it with prior work. For the examples, we use a simple programming language
with integer variables, and usual control constructs –sequencing, conditionals,
and loops. A state of such a program consists of a valuation to all the variables.
The program counter, pc, is a special (implicit) variable in such programs. The
values of the pc are specified as labels on the statements. We also treat the pc
in a special way, as done in most tools (for example [2]). We consider an initial
partition where each possible value of the pc defines a separate partition (this
is a deviation from the description in Figure 3, which starts with three initial
partitions, specified in line 2 of the algorithm).

0: lock.state = U;

1: do{

2: lock.state = L;

3: x = y;

4: if (*) {

5: lock.state = U;

6: y++;

}

7: }while(x!=y)

8: if(lock.state != L)

9: assert(false);

0        1       2        3         4       5        6         7 8        9

s

¬s ¬s

r

¬r

q

¬q

p

¬p

s

p:  (lock.state != L)

q:  (lock.state != L) && (x == y)

r:   (lock.state != L) && (x == y+1)

s:   (x == y+1)

Figure 2: Example program on which slam works well

Comparison with slam. Consider the example in Figure 2 from [2]. This has
been a quite popular example, commonly used to illustrate how slam works.

9



slam is able to prove the property by discovering two predicates (lock.state
== U) and (x == y).

We illustrate how synergy works on this example. The initial partition we
start with is {pc = i}0≤i≤9, and the initial abstract program is isomorphic to the
program’s control flow graph. In the first iteration, GetNiceAbstractTrace

returns some nice abstract trace to the error – one that iterates executes the
loop body exactly once, namely 〈(pc = 0, pc = 1, pc = 2, pc = 3, pc = 4, pc =
7, pc = 8, pc = 9), 0〉. For brevity, we elide pc from such traces and simply write
the trace as 〈(0, 1, 2, 3, 4, 7, 8, 9), 0〉. The second component of the abstract trace
(in this case 0) is its frontier, which indicates the least index in the trace which
does not have an element in the forest F maintained by the algorithm. In this
case, the frontier 0 indicates that no region in the abstract trace has been visited
by elements in the forest F , which is initially empty. Thus, GenSuitableTest

returns some test (with some value of the input variable y), which traverses
traverses the loop a certain number of times, and visits all the regions in the
abstract trace up to pc = 8. All the elements of this test are added to the forest
F .

In the second iteration, GetNiceAbstractTrace returns the abstract trace
〈(0, 1, 2, 3, 4, 7, 8, 9), 7〉, where the frontier 7 indicates that the region with index
7 in the trace (namely, pc = 9) is the first region that does not have a state
in the forest F . However, GenSuitableTest is unable to construct a test that
goes along this abstract trace, and makes a transition from pc = 8 to pc = 9.
Thus GenSuitableTest returns ǫ, and the refinement step in lines 22-23 of the
synergy algorithm (see Figure 3) splits the region pc=8 with the predicate
(lock.state != L). Let us call this predicate p. Denote the resultant regions
as 〈8, p〉 and 〈8,¬p〉. GetNiceAbstractTrace now returns the abstract trace
〈(0, 1, 2, 3, 4, 7, 〈8, p〉, 9), 6〉, where the frontier 6 indicates that the region 〈8, p〉
has not yet been visited by the forest. It is not possible to construct a test
that follows this abstract trace and goes from region 7 to region 〈8, p〉. Thus
GenSuitableTest returns ǫ again, and the refinement step (Lines 22-23 of the
synergy algorithm) splits the region pc=7 with the predicate (lock.state !=

L ) && (x == y). Let us call this predicate q and the resultant split regions
as 〈7, q〉 and 〈7,¬q〉. GetNiceAbstractTrace now returns the abstract trace
〈(0, 1, 2, 3, 4, 5, 6, 〈7, q〉, 〈8, p〉, 9), 7〉. It is possible to construct test cases that go
up to region 6, but it is not possible to construct a test case that transitions
from region 6 to region 〈7, q〉. This results in the refinement step splitting
region 6 using the predicate (lock.state != L) && (x == y+1). Let us call
this predicate r. In subsequent iterations, the regions 4 and 5 are split with the
predicate s = (x == y+1). This results in a proof of correctness, shown in the
bottom of Figure 2.

In the above example, the infeasible abstract traces had exactly one infeasi-
bility, and refining that infeasibility in each iteration leads to a proof. However,
if the abstract trace has more than one feasibility, then existing refinement tech-
niques in tools such as slam [3] and blast [15] have difficulty picking the right
infeasibility to refine. Deterministic loops (with a fixed execution count) are
particularly difficult, and they make tools such as slam and blast spend as

10



0: i = 0;

1: c = 0;

2: while (i < 1000){

3: c = c + i;

4: i = i + 1 ;

}

5: assume(a <= 0);

6: assert(false);

0        1       2        3         4       5        6

Figure 3: Example program on which slam does not work well

many iterations of the iterative refinement algorithm as the execution count of
the loop. Though heuristics have been implemented in slam to deal with deter-
ministic loops, the main one being replacing most deterministic loop predicates
with non-deterministic choice, the core difficulties remain.

For example, consider the program shown in Figure 3. In this program,
the assertion failure at pc=6 is reachable. However, an abstract trace such as
〈0, 1, 2, 5, 6〉 is infeasible since it exits the loop with 0 iterations. Refining this
infeasibility leads to 1000 iterations of the refinement loop, with the introduc-
tion of predicates (i==0), (i==1), ..., (i==1000). Below, we show how
synergy avoids these unnecessary refinements.

Let the initial partition be {pc = i}0≤i≤6. The abstract graph is isomor-
phic to the CFG of the program. Consider the abstract trace 〈(0, 1, 2, 5, 6), 0〉
returned by GetNiceAbstractTrace. Since none of the abstract regions have
concrete states that belong to the forest F , a suitable test case returned by
GenSuitableTest could be any test that visits the region pc = 0. Let the test
case be a = 45. This test case traverses the while loop 1000 times, and visits all
regions in the abstract trace except pc = 6. All these states in the test sequence
are added to the forest F .

In the second iteration, the procedure GetNiceAbstractTrace returns
〈(0, 1, 2, (3, 4, 2)1000, 5, 6), 3004〉. This is because, even though
GetAbstractTrace could have returned a shorter abstract trace, say for ex-
ample, (0, 1, 2, 5, 6), by following the parent pointers from the state in forest F
that intersects with pc = 5, the nice abstract trace is forced to traverse the loop

11



1000 times. The frontier 3004 indicates that the region pc = 6 has not been
reached yet by the forest F . Now, GenSuitableTest is able to generate the
test case a = −5 that leads to the error.

0: i = 0; j =1;

1: a[j] = 0;

2: while (i < 1000){

3: a[j] = a[j] + i;

4: i = i +1 ;

}

5: assume(a[0] <= 0);

6: assert(false);

Figure 4: Example program on which path slicing does not work well

Comparison with path slicing. The program in Figure 3 can be handled
using the “path slicing” technique presented in [16]. The path slicing takes an
abstract trace (leading to an error region) π and returns a “slice” π′, which is
a projection of π, such that (1) infeasibility of π′ implies infeasibility of π, and
(2) feasibility of π′ implies existence of a concrete path to an error state. Given
the abstract trace, (0, 1, 2, 5, 6) the path slicing technique is able to slice away
the loop, resulting in the sliced path (0, 1, 5, 6), which immediately leads to the
identification of the error. The path slicing algorithm has to rely on other static
analysis techniques such as pointer analysis. If we change the example so as
to keep a two element array, and replace variables a and c with array elements
a[0] and a[1] respectively (see Figure 4), then path slicing is unable to slice
the path (0, 1, 2, 5, 6) to (0, 1, 5, 6), since a typical alias analysis is not able to
ascertain that the loop body does not affect the element a[0]. The synergy

algorithm finds this error in the same way as in the previous example.
Comparison with reachable bisimulation quotient algorithms. Parti-
tion refinement algorithms are all based on the notion of stability. An ordered
pair of regions 〈P,Q〉 is stable if either P ∩ Pre(Q) = Φ or P ⊆ Pre(Q). A
stabilization step consists of taking a pair of regions 〈P,Q〉 that is not stable,
and splitting P into two regions – P ∩ Pre(Q) and P \ Pre(Q). Partition re-
finement algorithms work by repeatedly picking a pairs of regions that are not
stable and stabilizing them until no such pair can be found. The naive algorithm
is quadratic, and a sophisticated algorithm has been proposed to improve the
complexity to O(n log n) [22].

Partition refinement algorithms terminate with a bisimulation quotient of the
original program. Thus, if the bisimulation quotient of a program is infinite, then
partition refinement algorithms do not terminate on that program. Sometimes,
the reachable portion of the bisimulation quotient is finite, even though the
bisimulation quotient itself is infinite. The Lee-Yannakakis algorithm [19] finds
the reachable bisimulation quotient of an infinite-state system. For comparison,

12



Lee-Yannakakis(P = 〈Σ, σI ,→〉, ψ)
Assume: σI ∩ ψ = ∅
Returns: (1) (“fail”, t), where t is a test that reaches ψ

(2) (“pass”, ≃), where ≃ is a proof for unreachability of ψ

1: T := s | s ∈ σI

2: Σ≃ := {σI , ψ,Σ \ (σI ∪ ψ)}
3:

4: loop

5: for all ( S ∈ Σ≃) do

6: if (S ∩ T 6= Φ) and (S ⊆ ψ) then

7: pick s ∈ S ∩ T ;
8: t := TestFromWitness(s);
9: return (“fail”, t)

10: end if

11: end for

12:

13: pick S ∈ Σ≃ such that S ∩ T = Φ and there exists s ∈ S and t ∈ T such
that t→s.

14:

15: if such S ∈ Σ≃, and s, t ∈ Σ exist then

16: T := T ∪ {s};
17: parent(s) := t;
18: else

19: pick P,Q ∈ Σ≃ such that P ∩T 6= ∅ and Pre(Q)∩P 6= Φ and Pre(Q) 6⊆
P .

20: if such P,Q ∈ Σ≃ exist then

21: Σ≃ := (Σ≃ \ P}) ∪ {P ∩ Pre(Q), P \ Pre(Q)}
22: else

23: return (“pass”,Σ≃)
24: end if

25: end if

26: end loop

Figure 5: The Lee-Yannakakis algorithm

we have presented the Lee-Yannakakis algorithm in Figure 4 using notations
similar to the synergy algorithm. It starts with an initial partition and has
two basic steps: (1) search, where it tries to produce a concrete witness to reach
each partition (the concrete witnesses are maintained in a tree T ), and (2) split,
where it tries to stabilize every reachable partition with respect to every other
partition (including unreachable ones). The Lee-Yannakakis algorithm iterates
the search and split steps, while giving priority to the search step as long as
it makes progress. More recently, this idea has re-appeared in the context of
underapproximation driven refinement for model checking software [23]. Here,

13



a concrete search is done with abstract matching (so as to ensure reaching at
most one concrete state per region), and after the search is done, stability is
checked on every pair of partitions 〈P,Q〉 such that P has a concrete witness.

0: while(y > 0){

1: y = y - 1;

}

2: assume(false);

3: assert(false);

0 1 32

Figure 6: Comparison with reachable bisimulation quotient algorithms

The main difference between synergy and the Lee-Yannakakis algorithm
is that synergy does not attempt to find a reachable bisimulation quotient.
When synergy stops with a proof, the partitions do not necessarily form a
bisimulation quotient. Instead, they simulate the concrete system. Thus, the
synergy algorithm terminates in every case where the Lee-Yannakakis algo-
rithm terminates. In addition, the synergy algorithm terminates even in cases
where the Lee-Yannakakis algorithms do not terminate due to the reachable
bisimulation quotients being infinite (see Section 5 for a formal treatment).

To illustrate the difference between synergy and algorithms for reachable
bisimulation quotients, consider the program in Figure 6.

We first explain how synergy works on this example. Let the initial parti-
tion be {pc = i}0≤i≤3. The abstract program is shown in the bottom of Figure 6.
The synergy algorithm terminates with this partition immediately, since there
is no abstract trace that leads to the error.

In contrast, the algorithms for computing reachable bisimulation quotients
are unable to terminate on this example. This is because, the partition shown
in the abstract graph is not stable. Refinements to stabilize the partition lead
these algorithms to introduce a series of predicates (y>0), (y>1), (y>2),...

without terminating. This program does not have a finite reachable bisimulation
quotient. However, it has a small abstraction which can prove the absence of
the error, and synergy finds that abstraction.

Another minor difference between synergy and reachable bisimulation quo-
tient algorithms is that synergy allows multiple concrete states to be explored
per partition during test generation, whereas the reachable bisimulation quo-
tient algorithms allow only one concrete state as a witness per partition. This
difference, though minor, allows synergy to handle deterministic loops (recall

14



example from Figure 3) more efficiently, without introducing one predicate for
each iteration of the deterministic loop. In contrast, algorithms for comput-
ing reachable bisimulation quotients need to introduce the predicates (i==0),

(i==1),..., (i==1000) before discovering that the assertion failure is reach-
able.

0: if(x != y)

1: if(2*x = x + 10)

2: assert(false);

0 1 2

Figure 7: Example program from dart paper

Comparison with dart. dart [13] is an automated directed random testing
tool that works by combining concrete and symbolic execution. dart starts with
a randomly generated test input, and in addition to running the test concretely,
also executes it with symbolic values for the input along the same control path
as the test. The symbolic execution is then used to derive inputs for driving
another test down another (closely related) path. By repeatedly choosing new
paths, dart directs test case generation, successively through all the different
control paths in the program. In contrast to dart, synergy does not attempt
to cover all the paths. Instead, it tries to cover all the abstract states.

Consider the example shown in Figure 7 from [13]. In this example, synergy

works very similar to dart. In the first iteration GetNiceAbstractTrace

returns the abstract trace 〈(0, 1, 2), 0〉 where the frontier points to the region
pc=0. Thus, any test that visits the region pc=0 is a suitable test case and
GenSuitableTest generates a test case, say x = 10, y = 10, and adds the
states in the execution of this test to the forest F . This test case covers only
the region pc=0. In the second iteration GetNiceAbstractTrace returns the
abstract trace 〈(0, 1, 2), 1〉 where the frontier points to pc=1, since the test in the
previous iteration has already visited the region pc=0. Thus, GenSuitableTest

tries to come up with test case that goes from pc=0 to pc=1, and uses the
constraint (x != y) to come up with the test x = 50, y = 255, which visits the
abstract state pc=1. In the third iteration GetNiceAbstractTrace returns
the abstract trace 〈(0, 1, 2), 2〉 where the frontier points to the region pc=2.
Thus, GenSuitableTest tries to come up with a test case that goes from pc=0
to pc=1, and pc=2, and uses the constraints (x !== y) && (2*x == x + 10)

to come up with the test case x = 10, y = 25, which follows the abstract trace
(0, 1, 2) and finds the error.

15



0: lock.state = ’L’;

1: if(*) {

2: x0 = x0 + 1;

}

3: else {

4: x0 = x0 - 1;

}

5: if(*) {

6: x1 = x1 + 1;

}

7: else {

8: x1 = x1 - 1;i

}

...

m: if(*) {

m+1: xn = xn + 1;

}

m+2: else {

m+3: xn = xn - 1;

}

m+4: assert(lock.state == ’L’);

Figure 8: Comparison with dart

Unlike dart, we note that synergy works by trying to exercise abstract
traces that lead to the error region. To clarify this difference consider the exam-
ple shown in Figure 8. synergy is able to prove this program correct in O(n)
iterations where it refines each abstract state with the predicate lock.state

== ’L’. However, dart takes O(2n) iterations to cover all the different paths in
the program. This is also an illustration of the difference between the goals of
dart and synergy. dart’s goal is to cover all the control paths in a program.
synergy’s goal is to prove a given property, and find tests that violate the given
property.

Typical programs have combinations of the “diamond” structure of if-then-
else statements (as in Figure 8) and loops (as in Figure 2 or Figure 3). In thse
cases, synergy performs better than running slam and dart in parallel inde-
pendently, since the slam-like proof searches through the “diamond” structure
quickly without enumerating an exponential number of paths, and dart-like
directed testing covers the loop directly with concrete execution without doing
any iterative refinements.

16



5 Theorems

In this section we present some theorems that characterize the synergy algo-
rithm. The first theorem states that synergy is sound, in that every error and
every proof found by synergy is valid.

Theorem 1 Suppose we run synergy on any program P = 〈Σ, σI ,→〉 and
property ψ.

• If synergy returns (“pass”, Σ≃), then the abstract program P≃ = 〈Σ≃, σ
I
≃,→≃〉

simulates the program P , and thus is a proof that P does not reach ψ.

• If synergy returns (“fail”, t), then the test case t witnesses the violation
of property ψ by P .

Proof: By construction (see Section 3), the abstract program P≃ simulates
P . Therefore when synergy returns (“pass”, Σ≃), P≃ is a witness to the fact
that P does not reach ψ. If synergy returns (“fail”, t), then the test case t is
a concrete witness to the fact that the property ψ is violated by P .

Since the property verification problem is undecidable in general, and The-
orem 1 guarantees soundness on termination, it necessarily has to be the case
that synergy cannot terminate on all input programs. However, we can prove
that it terminates on strictly more cases than algorithms that find reachable
bisimulation quotients. In order to show this, we will require the following
lemma.

Lemma 1 Every iteration in synergy’s main loop (lines 4 – 39) computes
a partition Σ≃ that is coarser than the final stable partition computed by the
Lee-Yannakakis algorithm.

Proof: We prove this by induction on the number of iterations i of syn-

ergy’s main loop.
Basis: Since synergy starts with an overapproximation P≃ of the program P ,
the lemma is true for i = 0.
Inductive hypothesis: Let the lemma be true for i = n. We need to show that
the lemma holds for i = n+ 1.
If i = n and synergy returns (“fail”,t), then by the inductive hypothesis,
synergy terminates with a partition ≃ that is coarser than Lee-Yannakakis
partition. Therefore, assume that i = n + 1 and a local stabilization takes
place (as shown in line 22). Since the abstract region that is being partitioned
(induced by this stabilization) is reachable, this split would also be performed
by the Lee-Yannakakis algorithm in its “stabilize” phase. Therefore, synergy

maintains the invariant that the computed partition after iteration i = n+ 1 is
coarser than the Lee-Yannakakis partition, and the lemma follows.

Theorem 2 If the Lee-Yannakakis algorithm [19] terminates on input 〈P, ψ〉,
then synergy terminates on 〈P, ψ〉 as well. Further, there exist inputs 〈Q,ϕ〉
where synergy terminates on 〈Q,ϕ〉 and Lee-Yannakakis algorithm [19] does
not terminate on 〈Q,ϕ〉.

17



Proof: synergy does not terminate only if there are an unbounded num-
ber of local refinements (stabilizations) performed on line 22. Therefore, if the
Lee-Yannakakis algorithm terminates (the bisimulation quotient is finite), from
Lemma 5, it follows that synergy also terminates. The second part of the
theorem follows from the example illustrated in Figure 6.

6 Non-termination and generalization

The synergy algorithm fails to terminate in cases where the refinement step
in Line 22 is unable to find the “right” partition.

1: x = 0;

2: y = 0;

3: while (y >= 0){

4: y = y + x;

}

5: assert(false);

Figure 9: Example where synergy loops with longer and longer abstract traces

Consider the example in Figure 9. Here, the synergy algorithm loops by
repeatedly partitioning the region pc = 3 with predicates (y<0), (y+x<0),

(y+2x<0), ... without generating any tests. The abstract trace to the error
region merely gets longer and longer in each iteration. The algorithm fails to
discover the invariant (y >= 0 && x >= 0).

To cope with these situations, we could add a call to procedure
RefineWithGeneralization in line 36 to discover such generalizations. Exam-
ples of such procedures include widening (see, for example [14]) or interpolation
(see, for example [17]).

However, the need for generalization is orthogonal to the need to discover
the “right” place to do refinement. Even predicate discovery algorithms that are
able to do generalization (such as [14] or [17]) have difficulty with examples such
as the deterministic loop in Figure 3, and the core contribution of synergy is to
use testing to help with finding the right place in the abstract counterexample
to do refinement, both for the purposes of finding errors and finding proofs.

18



Program synergy slam lee-Yannakakis

iters time iters time iters time
Test1.c 12 39 4 1.56 * *
Test2.c 2 0.58 * * * *
Test3.c 1 6.4 2 1.125 * *
Test4.c 1 0.812 1 1.64 4 0.84
Test5.c 2 0.23 12 5.13 3 0.56
Test6.c 5 0.98 2 1.10 5 1.06
Test7.c 2 11.40 * * * *
Test8.c 15 1.9 * * 15 2.47
Test9.c 4 0.64 * * * *

Table 1: Experimental results

7 Implementation

We have implemented the synergy algorithm in a tool we call yogi1. Our
implementation is in ocaml [24] and the input to the tool is any single procedure
C program with only integer variables. Pointers are not supported currently.
Function calls are not supported, with the exception of two special functions:

• int nondet(), which returns an arbitrary integer and takes no inputs is
supported to model nondeterministic input.

• void error(), is used to model error.

Given a C program P with calls to nondet() and error() the yogi tool answers
the question: For all possible integer values returned during from invocations
to nondet(), does the program P ever invoke error()?

yogi uses cil [21] to parse the input C program. The zap theorem prover [1]
is used to answer validity and satisfiability queries. Since our programs have
only integers we use only linear arithmetic theory. Also, the model genera-
tion capability of zap is used to implement the function GenSuitableTest(see
Figure 3).

Our implementation is very close to the algorithm described in Figure 3,
with a few optimizations. In particular, we sort the concrete states in forest F
associated with each region, by the order in which they were added. This leads
to shorter traces from GetNiceAbstractTrace, and makes the tool faster. We
allow the suitable test generated by GenSuitableTest to run to completion,
but use a timeout to abort if the test gets stuck in an infinite loop. We use the
technique described in [14] to discover generalization predicates, if the algorithm
fails to terminate without generalization.

Table 1 shows our empirical results. We compare each test program on 3
algorithms —synergy, slam and lee-Yannakakis. For each algorithm we

1Named so, in reverence to the tool’s ability to mix the abstract and concrete, with peace

and harmony.

19



give the number of iterations taken, and the actual run time. The slam tool
is the latest version run with default options, and lee-Yannakakis is our
own implementation of the Lee-Yannakis algorithm (built using the same code
infrastructure as synergy). Run times are in seconds, and a “*” entry indicates
that the tool did not terminate in 10 minutes.

All our tests are small examples such as the ones presented in Section 4.
However, they represent code patterns that we see commonly occurring in real-
world programs such as device drivers.

Test1.c is similar to the program in Figure 2. Both slam and synergy

terminate on this example. slam terminates with fewer iterations due to the
following reason: once a predicate is discovered, slam uses it all program coun-
ters, but our current implementation for synergy introduces the predicate only
in the current pcduring splitting. lee-Yannakakis does not terminate on the
first three tests since these programs do not have a finite bisimulation quotients.
Test2.c is similar to the program in Figure 3. synergy finds a test case that
leads to the error in the second iteration, whereas slam does not terminate.
Test3.c is similar to the program in Figure 6. lee-Yannakakis does not ter-
minate in the first 3 tests since the reachable bisimulation quotient is not finite
for these examples. Test4.c is similar to the program in Figure 7. Test5.c is
a program with a deterministic loop (which executes 10 times, and maintains
the loop invariant x == i, where the variable x is a global, and the loop index
is i). synergy and lee-Yannakakis discover this invariant since it is checked
after the loop. However, since slam discovers predicates by forward symbolic
simulation, it introduces predicates (i==0),(x==0),(i==1),(x==1),... be-
fore it finds the error. Test6.c is similar to the example in Figure 8. All three
algorithms terminate on this example. slam terminates with fewer iterations
due to the same reason as in Test1.c —once a predicate is found, the slam

implementation adds it for all program counters whereas our implementations
of synergy and lee-Yannakakis add it only to the region where the split
was done. Test7.c combines loops and diamond-shaped branches. Test8.c

has a loop with a check for error inside the loop. Interestingly, the program
is correct, and has a finite bisimulation quotient. Both synergy and lee-

Yannakakis terminate on this example with 15 iterations, but slam does not
terminate. For Test9.c, the synergy implementation uses predicates from the
function RefineWithGeneralization from line 37. Of all the examples pre-
sented, this is the only one that uses predicates from generalization. slam and
lee-Yannakakis do not terminate on this example, although this comparison
is not fair since their implementations do not invoke any predicate generalization
algorithms.

8 Conclusion

Over the past few years, systematic testing tools and verification tools have
been a very active area of research. Several recent papers have predicted that
testing and verification can be combined in deep ways (see for example [12]).

20



We presented a new algorithm synergy, which combines directed testing and
verification algorithms in a novel way. The algorithm has both theoretical and
practical benefits. It is theoretically interesting, since it appears to be a general-
ization of reachable partition refinement algorithms [19,23] to compute simula-
tion quotients, rather than bisimulation quotients. It is practically interesting,
since it appears to combine the ability of slam-like tools to handle large number
of paths using a small number of “abstract” states, with the ability of dart-like
tools to avoid refinements through concrete execution. Our current implementa-
tion yogi handles a very restricted subset of C (no pointers, no procedure calls).
We are currently extending our implementation to allow these features as well,
to allow a more thorough understanding and evaluation of the algorithm.
Acknowledgments. We thank Stefan Schwoon for his comments on an early
draft of this paper. We thank Shuvendu Lahiri and Nikolai Tillman for their help
with the zap theorem prover. We thank Rakesh K for his help with performing
the experimental comparisons with slam.

References

[1] T. Ball, S. Lahiri, and M. Musuvathi. Zap: Automated theorem proving for
software analysis. Technical Report MSR-TR-2005-137, Microsoft Research, 2005.

[2] T. Ball and S. K. Rajamani. Automatically validating temporal safety properties
of interfaces. In SPIN 01: SPIN Workshop, LNCS 2057. Springer-Verlag, 2001.

[3] T. Ball and S. K. Rajamani. The SLAM project: Debugging system software via
static analysis. In POPL 02: Principles of Programming Languages, pages 1–3.
ACM, January 2002.

[4] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer for finding dynamic
programming errors. Software-Practice and Experience, 30(7):775–802, June 2000.

[5] S. Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith. Modular verifica-
tion of software components in C. IEEE Transactions on Software Engineering,
30(6):388–402, 2004.

[6] E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for
branching time temporal logic. In Logic of Programs, LNCS 131, pages 52–71.
Springer-Verlag, 1981.

[7] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In CAV 00: Computer-Aided Verification, LNCS 1855,
pages 154–169. Springer-Verlag, 2000.

[8] E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[9] J. Edvardsson. A survey on automatic test data generation. In CSE 99: Computer

Science and Engineering, ECSEL, pages 21–28, 1999.

[10] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using system-
specific, programmer-written compiler extensions. In OSDI 00: Operating System

Design and Implementation. Usenix Association, 2000.

[11] P. Godefroid. Model checking for programming languages using Verisoft. In
POPL 97: Principles of Programming Languages, pages 174–186, 1997.

21



[12] P. Godefroid and N. Klarlund. Software model checking: Searching for compu-
tations in the abstract or the concrete. In IFM 05: Integrated Formal Methods,
LNCS 3771, pages 20–32. Springer-Verlag, 2005.

[13] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random
testing. In PLDI 05: Programming Language Design and Implementation, pages
213–223, 2005.

[14] B. S. Gulavani and S. K. Rajamani. Counterexample driven refinement for ab-
stract interpretation. In TACAS 06: Tools and Algorithms for Construction and

Analysis of Systems, LNCS 3920. Springer-Verlag, 2006.

[15] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In
POPL ’02, pages 58–70. ACM, January 2002.

[16] R. Jhala and R. Majumdar. Path slicing. In PLDI 05: Programming Language

Design and Implementation, 2005.

[17] R. Jhala and K. L. McMillan. A practical and complete approach to predicate
refinement. In TACAS 06: Tools and Algorithms for Construction and Analysis

of Systems, LNCS 3920. Springer-Verlag, 2006.

[18] R.P. Kurshan. Computer-aided Verification of Coordinating Processes. Princeton
University Press, 1994.

[19] D. Lee and M. Yannakakis. Online minimization of transition systems (extended
abstract). In STOC 92: ACM Symposium on Theory of Computing, pages 264–
274. ACM Press, 1992.

[20] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems. Springer-
Verlag, 1995.

[21] G. C. Necula, S. McPeak, S.P. Rahul, and W. Weimer. Cil: Intermediate language
and tools for analysis and transformation of c programs. In CC 02: Compiler

Construction, LNCS 2304, pages 213–228. Springer-Verlag, 2002.

[22] R. Paige and R. E. Tarjan. Three partition refinement algorithms. SIAM Journal

on Computing, 16(6):973–989, 1987.

[23] C. S. Pasareanu, R. Pelánek, and W. Visser. Concrete model checking with
abstract matching and refinement. In CAV 05: Computer-Aided Verification,
pages 52–66, 2005.

[24] Objective caml – http://caml.inria.fr/ocaml/index.en.html.

22


