
1

Pyramid Codes: Flexible Schemes to Trade Space for Access Efficiency
in Reliable Data Storage Systems

Cheng Huang, Minghua Chen, and Jin Li
Microsoft Research, Redmond, WA 98052

Abstract— We describe flexible schemes to explore the trade-
offs between storage space and access efficiency in reliable
data storage systems. Aiming at this goal, two fundamentally
different classes of codes are introduced under the same naming
umbrella – Pyramid Codes. The basic Pyramid Codes are simply
derived from any existing codes (preferably MDS codes [18]), and
thus all existing work on optimizing encoding/decoding directly
apply. The generalized Pyramid Codes are radically advanced
new codes, which can further improve reliability and/or access
efficiency upon the basic Pyramid Codes. Moreover, we define
a necessary condition for any failure pattern to be recoverable
and show the generalized Pyramid Codes are optimal under the
condition. To our best knowledge, this is thefirst work to define
such a condition and the generalized Pyramid Codes are theonly
known non-MDS codes with such optimal property.

I. INTRODUCTION

A promising direction in building large scale storage sys-
tems is to harness the collective storage capacity of massive
commodity computers. While many systems demand high
reliability (such as five9s), individual components can rarely
live up to that standard. Indeed, a recent study [25] on disk
drives shows that the real-world reliability could be far less
than expected.

On the other hand, large scale production systems (e.g.
GFS [9]) have successfully demonstrated the feasibility of
building reliable data storage systems using much less reliable
commodity components. These systems often use replication
schemes to ensure reliability, where each data block is repli-
cated a few times. Trivial as it seems, there are sound reasons
for such a choice. The simplicity of design, implementation
and verification is perhaps the most important one. Another
reason is because replication schemes often demonstrate good
I/O performance. For instance, in a3-replication scheme (each
data block is stored with2 additional replicas), writing a data
block takes3 write operations (1 write to itself and2 to its
replicas) and reading simply takes1 read operation (from the
original data block or either of the replicas).

On the downside, replication schemes consume several
times more storage spaces than the data collection itself. In
data centers, storage overhead directly translates into costs in
hardware (disk drives and associated machines), as well as
costs to operate systems, which include building space, power,
cooling, and maintenance, etc. As a matter of fact, it is recently
reported that over55% of the cost of a typical data center,
which provides Microsoft’s Windows Live services, is due
to building, power distribution and equipments [13]. In wide
area storage applications, the storage overhead also means
much less effective usage of allocated spaces. For instance,
WheelFS [26] proposes to build a distributed storage system

using PlanetLab machines, where users often have storage
quotas. Shrinking the effective storage usage to1/3 or even
less (as the reliability of individual PlanetLab machines is
lower than that in data centers, higher replication ratio isoften
required) will not appear as an attractive solution.

Naturally, many Erasure Resilient Coding(ERC) based
schemes (e.g. Oceanstore [16]) are proposed to reduce the
storage overhead. In a typical ERC scheme, a certain mathe-
matical transform mapsk data blocks inton total blocks (k
original data andn−k redundant). Blocks often have the same
size and can be physically mapped to bytes, disk sectors, hard
drives, and computers, etc. When failures happen, failed blocks
(or simply erasures) can be recovered using other available
data and redundant blocks (imaginably, via the inverse of the
mathematical transform). Such an ERC scheme is often called
a (n, k)-ERC scheme. Assuming a(16, 12)-ERC scheme and
a 3-replication scheme provide the same level of reliability
(under certain failure conditions), it is obvious that the ERC
scheme requires only16 blocks in total, compared to36 blocks
by the replication scheme, to store12 data blocks.

Apparently, the storage savings of ERC schemes are su-
perior. However, beyond RAID systems [4], such schemes
are yet to see any large scale production level adoption.
We believe there are two fundamental obstacles. First, it’s
very difficult to get ERC schemes right. Consistency issue
has long been a huge concern. Despite of numerous efforts
to solve the problem, all solutions remain complicated. It’s
very challenging to design and implement, not even mention
to verify, such schemes. Sometimes, the complexity simply
scares engineering efforts away. Second, ERC schemes often
suffer greatly on the I/O performance. In the(16, 12)-ERC
scheme, writing a data block takes5 write operations (1
write to itself, 4 reads of the redundant blocks,4 operations
to compute the change, and then4 writes to the redundant
blocks [1]), and reading takes12 read operations when hitting
a failed data block (in order to perform the inverse of the
mathematical transform).

Some of the obstacles, however, can be largely avoided by
exploring practical storage needs. Many production services
have been successfully built on top of append-only storage
systems, where write operations only append to the end of
existing data and data is rarely modified once written. This
is viable as many data collections are by large static (no-
table examples are ever exploding media content collections,
due to the boom of portable music devices and Internet
video). We believe that combining ERC schemes together
with replication schemes is a right approach, and several
goals can be achieved simultaneously: 1) simplified design,
implementation and verification; 2) low storage overhead; and

2

3) high I/O performance. In particular, the reliability of new
data is ensured by replication. Only completed data blocks are
used to compute redundant blocks. Replicas are removed only
after the redundant blocks are successfully stored. In thisway,
the consistency issue of ERC schemes is greatly alleviated.
Moreover, writing a data block has exactly the same overhead
as in a pure replication scheme, and the write performance
is not affected. Note that the ERC part can be considered as
post-processing, so it can be put off until the system utilization
enters a valley period.

To this end, the remaining issue is how to improve the
read performance. Indeed, the read performance has great
impact on overall system performance, since it dictates peak
system load and/or peak bandwidth usage. Further, as most
distributed storage systems incur many more reads than writes,
the read performance is a primary design concern. Instead of
jumping from traditional ERC schemes to replication schemes,
which do improve the read performance, but also increase the
storage overhead significantly, we describe schemes such that
the read performance can be improved with only moderate
higher storage overhead. If traditional ERC schemes and
replication schemes can be regarded as two extremes of the
trade-offs between storage space and access efficiency, our
schemes allow flexible exploration of the rest. Specifically,
we introduce two fundamentally different classes of codes
under the same naming umbrella – Pyramid Codes. The basic
Pyramid Codes are simply derived from any existing codes
(preferably MDS codes [18]) and thus all existing work on
optimizing encoding/decoding directly apply. The generalized
Pyramid Codes are radically advanced new codes, which
can further improve reliability and/or access efficiency upon
the basic Pyramid Codes. Moreover, we define a necessary
condition for any failure pattern to be recoverable and showthe
generalized Pyramid Codes are optimal under the condition.
To our best knowledge, this is thefirst work to define such
a condition and the generalized Pyramid Codes are theonly
known non-MDS codes with such optimal property.

The rest of the paper is organized as follows. Section II
describes the basic Pyramid Codes and Section III focuses
on the generalized Pyramid Codes. Section IV lists some
additional related work. We make concluding remarks in
Section V, and more importantly, raise a few open issues.

II. BASIC PYRAMID CODES

Let a distributed storage system be composed ofn blocks,
wherek blocks aredata blocks, and the restm = n−k blocks
areredundant blocks. Usedi (i = 1, · · · , k) to denote the data
blocks, andcj (j = 1, · · · ,m) to denote the redundant blocks.

A. Brief primer on MDS erasure resilient coding

Before presenting Pyramid Codes, let us briefly review
maximum distance separable (MDS) [18] erasure resilient
coding, which attracts particular attention in distributed storage
system design. When an ERC scheme applies a(n, k) MDS
code in a distributed storage system,m = n − k redundant
blocks are computed fromk original data blocks. The MDS
property guarantees that all the original data are accessible as

long as anyk among then blocks are functional. That is, the
system is resilient to arbitraryn − k failures.

Many commonly used ERC schemes in storage systems are
specific examples of the MDS codes. For example, thesimple
parity scheme, which is widely used in RAID-5 systems,
computes the only redundant block as the binary sum (XOR)
of all the data blocks. It is essentially a(k + 1, k) MDS
code. The replication scheme, which createsr replicas for each
data block, is indeed a(1 + r, 1) MDS code. Reed-Solomon
codes [23] are a class of the most widely used MDS codes.

B. Basic Pyramid Codes: An example

Now we use an example to describe the basic Pyramid
Codes, which can significantly improve the read performance.
Our example constructs a Pyramid Code from a(11, 8) MDS
code, which could be a Reed-Solomon code, or other MDS
codes, such as STAR [15]. (Note that MDS codes arenot
required, but Pyramid Codes constructed from MDS codesdo
have certain good properties, which will become clear later.)
The Pyramid Code separates the8 data blocks into2 equal
size groupsS1 = {d1,d2,d3,d4} andS2 = {d5,d6,d7,d8}.
It keeps two of the redundant blocks from the MDS code
unchanged (sayc2 andc3). These two blocks are now called
global redundant blocks, because they cover all the8 data
blocks. Next, a new redundant block is computed for group
S1, which is denoted asgroup (or local)redundant blockc1,1.
The computation is done as if computingc1 in the original
MDS code, except for setting all the data blocks inS2 to 0.
Similarly, a group redundant blockc1,2 is computed forS2.
It is easy to see that group redundant blocks are only affected
by data blocks in the corresponding groups andnot by other
groups at all.

Algebraically, each data or redundant block can be rep-
resented as manysymbols(or elements) in finite fields (or
rings) [17]. The process of computing redundant blocks from
data blocks is calledencoding, and the process of computing
failed data blocks from other data and redundant blocks called
decoding(or recovery). Without loss of generality and yet to
keep the presentation simple, we can assume each block is
merely one symbol. Most ERC schemes apply linear block
codes, where the redundant blocks arelinear combinations of
the data blocks. For instance, in the(11, 8) MDS code, the
redundant blockc1 satisfies

c1 =

8
∑

i=1

αidi,

whereαi’s are symbols in the same field (or ring). Based on
this representation, the new redundant blocks in the Pyramid
Code satisfy

c1,1 =

4
∑

i=1

αidi, c1,2 =

8
∑

i=5

αidi.

Hence,c1,1 + c1,2 = c1 (all
∑

’s and +’s are binary sum).
To this end, the group redundant blocks can be interpreted
as theprojectionof the original redundant block in the MDS
code onto each group (by setting the data blocks in all other

3

groups to0). Alternatively, given the group redundant blocks,
they can be combined (again, binary sum) to compute the
original redundant block in the MDS code. The Pyramid
Code constructed in this example is shown in Figure 1. For
convenience, we define the concept ofconfiguration, which
represents all data block subsets used to compute the redundant
blocks. For instance, the configuration of this code isc1,1 : S1,
c1,2 : S2, andc2, c3 : S1 ∪ S2.

Now, we examine interesting properties of the Pyramid
Code. First of all, the Pyramid Code has the same write
overhead as the original MDS code. Whenever any data block
is updated, the Pyramid Code needs to update3 redundant
blocks (bothc2, c3, plus eitherc1,1 or c1,2), while the MDS
code also updates3 redundant blocks (c1, c2 andc3).

Secondly, we claim that the(12, 8) Pyramid Code can also
recover arbitrary3 erasures, the same as the original(11, 8)
MDS code. To show this, assume there are arbitrary3 erasures
out of the 12 total blocks, which can fall into one of the
following two cases: 1) bothc1,1 and c1,2 are available;
or 2) at least one of them is unavailable. In the first case,
c1 can be computed fromc1,1 and c1,2. Then, it becomes
recovering3 erasures from the original(11, 8) MDS code,
which is certainly doable. In the second case, it is impossible
to computec1. However, other thanc1,1 or c1,2, there are
at most2 failed blocks. Hence, from the perspective of the
original MDS code, there are at most3 failures (c1 and those
2 failed blocks) and thus is decodable.

Third, the Pyramid Code is superior in terms of the read
overhead. When only one data block fails, the Pyramid Code
can decode using local redundant blocks, which leads to read
overhead of4, compared to8 in the MDS code. Finally, note
that the gain of the Pyramid Code in terms of the read overhead
comes at the cost of using one additional redundant block.
Hence, this example literally demonstrates thecore concept
of how the Pyramid Codes can trade storage space for access
efficiency.

Next, we show detailed comparisons between the two codes.
Two performance metrics are used here. When the number of
failed blocks (could be data or redundant) is given (denoted
as r), there are

(

n
r

)

possible failure cases. The first metric,
recoverability, represents the ratio between the number of
recoverable cases and the total cases. It is directly related
to the reliability of the overall storage system and one can
link these two using failure probability models (we donot
expand along this direction, as it isnot the focus of this
paper). The second metric,average read overhead, represents
the average overhead to access each data block. Consider
an example of1 block failure in the (11, 8) MDS code.
If the failure is a redundant block (3/11 chance), then the
data blocks can be accessed directly, so the average read
overhead is1. Otherwise, the failure is a data block (8/11
chance), then the read overhead is8 for the failed data block
and 1 for the rest7 data blocks. Hence, the average read
overhead is(8+7)/8. Altogether, the average read overhead is
1×3/11+(8+7)/8×8/11 = 1.64. Using these two metrics,
the detailed comparisons are shown in Figure 2. We observe
that the additional redundant block in Pyramid Code reduces
the read overhead under all failure patterns, compared to the

MDS code. Moreover, the Pyramid Code has good chance to
battle additional failures (e.g. the4th failure in this case).

c���: {d�,d�,d�,d�} c���: {d�,d�,d�,d�}
d1 d2 d3 d4 d5 d6 d7 d8

c2 c3

k=8

c	
	 c���c1global
redundancy

n-k=4
local

redundancy
Fig. 1. Construction of a(12, 8) basic Pyramid Code from a(11, 8) MDS
code.

of failed blocks 0 1 2 3 4

MDS code recoverability (%) 100 100 100 100 0
(11, 8) avg. read overhead 1.0 1.64 2.27 2.91 -

Pyramid Code recoverability (%) 100 100 100 100 68.89
(12, 8) avg. read overhead 1.0 1.25 1.74 2.37 2.83

Fig. 2. Comparison between the MDS code and the basic Pyramid Code.

C. Generalization of basic Pyramid Codes

In general, a Pyramid Code can be constructed as follows.
It starts with a(n, k) code (preferably a MDS code), and
separates the data blocks intoL disjoint groups (denoted as
Sl, l = 1, · · · , L), where groupSl containskl blocks (i.e.,
|Sl| = kl). Next, it keepsm1 out of them redundant blocks
unchanged, and computesm0 = m−m1 new redundant blocks
for each groupSl. The jth group redundant block for group
Sl (denoted ascj,l) is simply a projection of thejth redundant
block in the original code (i.e.,cj) onto the groupSl. In
another word,cj,l is computed the same ascj in the original
code, but simply setting all groups other thanSl to 0. Again,
the combination of allcj,l’s for the samel yields the redundant
block cj in the original code. Moreover, if a Pyramid Code
is constructed from a MDS code, it satisfies the following
property.

Theorem 1:A basic Pyramid Code constructed from a
(n, k) MDS code can recover arbitrarym = n − k erasures,
and each group itself is a(kl + m0, kl) MDS code.

Proof: The first part can be shown using a similar
argument as in the previous example. Let’s consider an ar-
bitrary failure pattern withm erasures. Assumingr (out of
m) erasures are among the group redundant blocks, then there
arem − r erasures among all the data blocks and the global
redundant blocks. There are only two cases: 1)r ≥ m0; or
2) r < m0. When r ≥ m0, simply assume all the group
redundant blocks are failed (treating them as erasures as well).
From the perspective of the original MDS code, none of the
m0 redundant blocks can be computed, which meansm0

4

erasures. Together with them − r erasures in the rest data
and redundant blocks, there arem0 + m− r ≤ m erasures in
total. Hence, such failure patterns are recoverable. Otherwise,
when r < m0, the worst case is that all the group redundant
blocks cj,l’s have differentj’s, which means they will keep
r out of them0 redundant blocks as erasures. Even so, from
the perspective of the original MDS code, there are at most
r+(m−r) = m erasures in total. Hence, such failures patterns
are also recoverable.

The second part is quite intuitive and can be proven by
contradiction. If there exists one groupSl, which is a(kl +
m0, kl) code but not MDS, this group must fail to recover
a certain erasure pattern withm0 failures. Now, consider
a special example, where all data blocks in groups other
than Sl simply have0 values. Then, groupSl together with
the m1 global redundant blocks is equivalent to the original
MDS code. Assuming them1 redundant blocks are additional
erasures, still, the original MDS code is able to recover all
data blocks, because there arem0 +m1 = m erasures in total.
Since the global redundant blocks arenot used at all, this
literally means groupSl is also recoverable, which apparently
contradicts with our assumption.

D. Decoding of basic Pyramid Codes

To this end, the recovery procedure should become straight-
forward and we briefly summarize as follows.

• Step 1: start from the group level. For each group, if
the available redundant blocks are no less than the failed
data blocks, recover all the failed data blocks and mark all
the blocks (both data and redundant) available. Whether
or not the failed redundant blocks are actually computed
depends on whether they are used in the following step.

• Step 2: move to the global level. For eachj (1 ≤
j ≤ m0), if all the group redundant blockcj,l’s (over
all l’s) are marked as available, markcj (a redundant
block in the original code) available as well. On the
global level, if there are no less available redundant
blocks than failed data blocks, recover all the failed
blocks (otherwise, remaining failed blocks are declared
unrecoverable). Moreover, when a combinedcj is used,
it should be computed (as well as its correspondingcj,l’s
if they are not yet available).

E. A multi-hierarchical extension of basic Pyramid Codes

Figure 3(a) shows another example of the basic Pyramid
Codes, which is constructed from a(16, 12) code. It can
be considered as having two hierarchies, the global level
and the group level. Then, it is conceivable that the basic
Pyramid Codes can be readily extended to multiple hierarchies.
For instance, Figure 3(b) shows an example of3-hierarchy.
The data blocks are separate into2 groups, then each group
further separated into2 subgroups. Correspondingly, some
redundant blocks are kept global and some are projected
to compute group redundant blocks. Further, some group
redundant blocks are projected to compute subgroup ones.
The particular example in Figure 3(b) ends up with2 global

group�
group�
group� data

global
redundancy

data

data

group
redundancy

(a) two hierarchy

data

data

data

data

group� subgroup���
group� subgroup���

subgroup���
subgroup���

subgroup
redundancy

group
redundancy

global
redundancy

(b) three hierarchy

Fig. 3. Multi-hierarchical extension of basic Pyramid Codes.

redundant blocks,1 group redundant block for each group and
1 subgroup redundant block for each subgroup.

As a simple exercise, Theorem 1 can also be extended to
basic Pyramid Codes with multiple hierarchies. Similarly,the
decoding of multi-hierarchy basic Pyramid Codes will start
with the lowest level and gradually move to the global level.
This is very similar to climbing up a Pyramid, just as the name
of the codes suggests.Note that groups (or subgroups) in the
basic Pyramid Codes arenot required to be of the same size,
although it is often the case in practice for convenience.

F. MDS codes, Pyramid Codes and Replication schemes

This subsection presents comparisons among MDS codes,
Pyramid Codes and replication schemes. To keep things sim-
ple, the number of data blocks is fixed to be12 (i.e., k = 12).
A MDS code has4 redundant blocks and thus itsn =
12 + 4 = 16. Two Pyramid Codes (both are(20, 12) codes)
are constructed from the MDS code, whose configurations are
shown in Figure 3. Finally, a3-replication scheme creates2
replicas for each data block (hence, it is equivalent to12
individual (3, 1) MDS codes, or one jumble(36, 12) code).
The comparisons are shown in Figure 4 and we make the
following observations. From MDS codes to Pyramid Codes
and then replication schemes, the trend clearly demonstrates
that adding more storage spaces can reduce the read overhead,
as well as increase the recoverability. Moreover, when the
storage overhead is the same (e.g. the two Pyramid Codes with
different configurations), schemes with higher recoverability
also occur higher read overhead. Hence, on one hand, Pyramid
Codes can be used to explore more flexible ways to trade
storage space for access efficiency. On the other hand, even
under the same storage overhead, the configuration of Pyramid

5

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8

re
co

ve
ra

bi
lit

y
(%

)

of failed blocks

MDS code (16, 12)
two-hierachy Pyramid
three-hierachy Pyramid
3-replication

(a) recoverability

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1 2 3 4 5 6 7 8

av
g.

 r
ea

d
ac

ce
ss

 o
ve

rh
ea

d

of failed blocks

MDS code (16, 12)
two-hierachy Pyramid
three-hierachy Pyramid
3-replication

(b) read overhead

Fig. 4. Comparison of multi-hierarchy basic Pyramid Codes withMDS
codes and replication schemes (the two Pyramid Codes are both(20, 12), the
3-replication is essentially a jumble(36, 12) code).

Codes should be carefully considered, such that the read
overhead can be minimized, while the reliability requirement
is also satisfied.

III. G ENERALIZED PYRAMID CODES

In this section, we describegeneralized Pyramid Codes,
which are not trivial extensions of the basic Pyramid Codes,
but rather radically advanced new ERC schemes. They also
go beyond the structure of the basic Pyramid Codes, where
groups lower in the hierarchy are always nested in upper ones.
In the generalized Pyramid Codes, groups may overlap with
each other. Nevertheless, we use the common namePyramid
Codesto categorize both classes of codes, as they both aim at
the same goal of trading storage space for access efficiency,
and also follow the same concept ofclimbing up a Pyramid
during failure recovery.

A. Motivation

We use an example to explain the need to investigate beyond
the basic Pyramid Codes. Figure 5 shows a configuration of
a (18, 12) basic Pyramid Code, which is constructed from
a (16, 12) MDS code. The code has2 groups. Within each
group,6 data blocks are protected by2 redundant blocks (thus
a (8, 6) MDS code). Additionally, there are2 global redundant
blocks which protect the entire12 data blocks. From the

d1 d2 d3 d4 d5 d6

d7 d8 d9 d�� d11 d�� c��� c���
c��� c���

c3 c4
group

redundancyglobal
redundancy
(a) unrecoverable at all

d1 d2 d3 d4 d5 d6

d7 d8 d9 d	
 d11 d	� c	�	 c��
c�� c���

c3 c4
group

redundancyglobal
redundancy

(b) unrecoverable as a basic Pyramid Code

Fig. 5. Examples to motivate the generalized Pyramid Codes (6 erasures
each, marked by “x”).

previous section, we know that the code can recover arbitrary 4
erasures. Since it has6 redundant blocks, interesting questions
to ask are: 1) what5-erasure and6-erasure patterns can it
recover? Apparently, due to information theory limits, thecode
cannot recover more than6 erasures; and 2) more generally,
can the recoverability be further improved?

In particular, we examine the two erasure patterns. The first
pattern has6 erasures and is shown in Figure 5(a). There
are 6 data blocks and2 redundant blocks available in the
second group. Hence, those2 redundant blocks arenot useful
for recovery and could be removed. Now, we are left with6
erasures, but only4 redundant blocks. Therefore, this erasure
pattern is unrecoverable at all. The second erasure patternis
shown in Figure 5(b). It turns out that the basic Pyramid Code
can not recover this pattern either. Following the decoding
procedure, the decoder cannot make progress within each
group, where there are more failed data blocks than available
redundant blocks. Hence, it moves to the global level, where
it computes one more redundant blockc2 from c2,1 andc2,2.
Still, on the global level, there are only3 available redundant
blocks and yet5 data erasures. Hence, the decoder cannot
proceed either. But, is this pattern ever possible to recover at
all? In the following, we give a positive answer by presenting
the generalized Pyramid Codes.

We first present a necessary condition of recoverability. If
an erasure pattern is ever recoverable by any ERC scheme,
the necessary condition has to be satisfied. Note that the
opposite isnot true. As a matter of fact, MDS codes are the
only known codes, where an erasure pattern is recoverable
whenever the necessary condition is satisfied (i.e., the con-
dition also becomes sufficient). To our best knowledge, this
is the first work to present such a condition. Even better, we
also present the construction of non-MDS generalized Pyramid
Codes, which are able to recover any erasure patterns as long

6

as the necessary condition is satisfied. In another word, they
are theonly non-MDS codes where the necessary condition
also becomes sufficient. In this sense, the generalized Pyramid
Codes are optimal (of course, MDS codes are optimal by
nature).

B. Necessary condition of recoverability

d1

d2

d3

d4

d5

d6

c���
c���
c3

c4

c���
c���

(a) unrecoverable pattern
(full-size matching doesnot
exist)

d5

d6

d7

d8

d11

c��	
c3

c4

c	��
c
�

(b) recoverable pattern (full-
size matching exists)

Fig. 6. Tanner graphs (bold edges show maximum matchings).

The recoverability ofany ERC scheme (not just Pyramid
Codes) can be easily verified using a Tanner graph, which is a
common tool frequently used in the study of erasure resilience
coding. A Tanner graph is a bipartite graph, where nodes on
the left part of the graph represent data blocks (data nodes
hereafter), and nodes on the right represent redundant blocks
(redundant nodes). An edge is drawn between a data node
and a redundant node, if the corresponding redundant block is
computed from the corresponding data block. Given an erasure
pattern, asimplifiedTanner graph (denoted asT) can be plotted
to show only thefaileddata blocks and theavailableredundant
blocks. For instance, the Tanner graphs corresponding to the
erasure patterns in Figure 5 are shown in Figure 6.

Furthermore, we definematching(denoted byM) as a set
of edges in a Tanner graph, where no two edges connect
at the same node. The size of the matching|M | equals to
the number of edges in the set. Definemaximum matching
(denoted byMm) as a matching with the maximum number
of edges. Also, if|Mm| equals to the number of data nodes,
such a matching is called afull-size matching(denoted by
Mf). For example, the Tanner graph in Figure 6(b) contains a
full-size matching, while the one in Figure 6(a) doesnot. With
these definitions, the necessary condition of recoverability is
stated in the following theorem. (Note that when there is no
ambiguity, blocks and nodes are used interchangeably, so as
the recovery of an erasure pattern and the recover of a Tanner
graph.)

Theorem 2:For any linear ERC scheme (not just Pyramid
Codes), an erasure pattern is recoverableonly if the corre-
sponding Tanner graph contains a full-size matching.

Proof: We prove this theorem by contradiction. Ex-
amining an arbitraryrecoverableerasure pattern, whose cor-
responding Tanner graphT consists ofrd data nodes and
rc redundant nodes. (Again, this means the erasure pattern
hasrd failed data blocks andrc available redundant blocks.)
Obviously,rd ≤ rc. Now, let’s assumeT doesnot contain a
full-size matching. Then, the size of its maximum matching
Mm is less thanrd, i.e., |Mm| < rd. Based on the K̈onig-
Egerv́ary Theorem [24] in graph theory, in a bipartite graph,
the maximum size of a matching is equal to the minimum
size of a node cover. Hence, aminimum node cover(denoted
by Nc), which contains a minimum set of nodes covering all
edges inT , has|Mm| nodes, i.e.,|Nc| = |Mm|. Let nd be the
number of data nodes inNc, then |Mm| − nd is the number
of redundant nodes inNc. It is clear thatnd ≤ |Mm| < rd.

Now let us assume all the data blocks inNc are somehow
known (not erasures any more), then we can deduce a new
erasure pattern with less failed blocks, which correspondsto
a new Tanner graphT ′. Any redundant node that is not inNc

can be removed fromT ′, because those redundant nodes can
only connect to the data nodes inNc (otherwise, there will be
edges inT not covered byNc) and thus isolated inT ′. Hence,
there are at most|Mm|−nd redundant nodes left inT ′. On the
other hand, there are stillrd − nd (positive value) data nodes
left. As |Mm| −nd < rd −nd, there are less redundant nodes
than the data nodes, and thusT ′ is not recoverable. Therefore,
T should not be recoverable either, which contradicts with the
assumption.

To this end, we have proven the necessary condition of re-
coverability. For interested readers, the same condition is also
studied using an alternative set representation in a companion
paper [3] (calledMaximally Recoverableproperty there). Next,
we present the generalized Pyramid Codes, which are optimal
as the necessary condition also becomes sufficient.

C. Construction of generalized Pyramid Codes

1) Matrix representation of ERC schemes:The encoding
process of an ERC scheme is a mathematical computation of
the redundant blocks from the data blocks, which can be rep-
resented using matrix multiplication asCm = Gm×D, where
Cm represents the redundant blocks, as[c1, c2, · · · , cm]T , and
D the data blocks, as[d1,d2, · · · ,dk]T . Again, for simplicity,
each entry ofC andD is merelyonesymbol in a finite field
(or ring). Gm is a k ×m generator matrix, whose entries are
symbols in the same field (or ring). Note thatGm completely
determines the ERC scheme. For convenient purpose, the data
blocks can be regarded as special redundant blocks and the
encoding process can thus be represented asC = G × D,
where C = [D Cm]T and G = [I Gm]T . Now, the new
generator matrixG is a k×n matrix, which contains ak× k
identity matrix on the top andGm on the bottom. When
block failures happen, some data and redundant blocks become
erasures. In the algebraic representation, this is equivalent to
saying that some entries inC are missing. If we cross out all
missing entries inC (make itCs) and corresponding rows in
G (make itGs), we will get the following

Cs = Gs × D. (1)

7

Here, Gs is a generator submatrix, obtained fromG by
eliminating rows corresponding to erasure blocks (both data
and redundant). To this end, bothCs andGs are completely
known, whileD contains some unknowns (those failed data
blocks). The recovery is essentially solving the set of linear
equations in Eq(1) for those unknowns. It is clear that the
necessary and sufficient condition of recoverability is that
Eq(1) should be solvable (please see [20] for a tutorial).

d1 d2

d3 d4

c1
c2

c3 c4

horizontal
redundancy

vertical
redundancy

Fig. 7. Example of generalized Pyramid Code construction.

2) A construction example:Now, we use a simple example
to illustrate the construction of the generalized Pyramid Codes.
Let’s consider the configuration shown in Figure 7, which is
c1: {d1,d2}, c2: {d3,d4}, c3: {d1,d3}, and c4: {d2,d4}.
In the matrix presentation, it isC = G × D, whereC =
[d1,d2,d3,d4, c1, c2, c3, c4]

T , D = [d1,d2,d3,d4]
T and

G =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

g5,1 g5,2 0 0
0 0 g6,3 g6,4

g7,1 0 g7,3 0
0 g8,2 0 g8,4

, (2)

wheregi is the entire rowi of G, andgi,j the entry at row
i and columnj (1 ≤ i ≤ n, 1 ≤ j ≤ k). Using c1 as an
example, it is computed asc1 = g5,1d1 + g5,2d2. It should
be clear thatg5,3 = g5,4 ≡ 0, asc1 is not computed fromd3

and d4. The construction of a generalized Pyramid Code is
essentially to fill in all non-zero entries inG, such that the
code is optimal. The algorithm works as follows.

We start with an identity matrixG = I4×4 and addgm’s
(5 ≤ m ≤ 8) one by one. First, we elaborate on how to
add g5. Note that the physical meaning of addingg5 to G

is defining the computation of the first redundant blockc1.
To achieve optimality, it is desirable that if any data blockis
failed, it should be recoverable fromc1 together with the rest
3 data blocks. In terms of the matrix representation, this is
equivalent to saying that a generator submatrixGs, formed
by g5 and any3 rows out ofg1 to g4, should be invertible.
Let’s focus on one specific case, whereGs consists ofg1,
g2, g3 and g5. The invertibility (or non-singularity) ofGs

requires thatg5 is independent ofg1, g2 andg3. DenoteS as
the submatrix composed ofg1, g2 and g3. Then,g5 should
not be contained in the subspace spanned byS, denoted as
span(S). This is further equivalent to requiring thatg5 should
not be orthogonal to thenull spaceof S. Since the rank ofS

is 3, its null space is simply a vector, denoted asu. Hence,
the orthogonality boils down to require that the dot product
of u and g5 is non-zero, i.e.,u · g5 6= 0. To accommodate
any 3 rows out ofg1 to g4, we simply enumerate through all
sub-matrices composed by any3 rows (

(

4
3

)

cases in total),
where each submatrix corresponds to one null space vector. A
null space matrixU is built to hold all the null space vectors,
and the ultimate goal is to find ag5, such that∀ u ∈ U,
u · g5 6= 0.

In this particular case, the null space matrix is as simple as

U =

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

. (3)

Then, finding a desirableg5 is straightforward even by trial-
and-error. For instance, our random choice yields desirable
outcomes:g5,1 = 1 and g5,2 = 142 (all values are in a finite
field GF(28), which is generated usingx8+x4+x3+x2+1 as
the prime polynomial [17]). Straightforward as it seems, there
are two things deserve special attention. First, note thatg5 only
has2 non-zero entries:g5,1 andg5,2. Apparently,u1 · g5 ≡ 0
andu2 · g5 ≡ 0. Taking u1 as an example, which is the null
space vector of the subspace spanned byg1, g2 andg3. It is
clear thatu1 · g5 ≡ 0 dictates the impossibility of recovery
d4 from d1, d2, d3 and c1. This is quite obvious from the
configuration in Figure 7. Hence, for cases as such (ui ·g ≡ 0),
we simply skip thoseui’s. Second, although it is very simple
in this case, finding a desirablegi with given U is nontrivial
in general. For that, we will present an effective algorithm
separately, after the description of the complete construction
procedure.

Now that oneg5 is found, we append it toG, whose size
then becomes5× 4. The next step is to addg6. The criterion
is similar: any generator submatrixGs, formed byg6 and 3
out of g1 to g5, should be invertible. The procedure is also
similar: enumerating through all sub-matrices composed of
any 3 rows from G and computing the null space vectors.
Note that the null space matrixU from the previous round
can be reused, and thus we only need to consider additional
sub-matrices formed byg5 and any2 out of g1 to g4. Note
that all the sub-matrices donot have rank3 now. For instance,
the one formed byg1, g2 and g5 only has rank2. Again,
examining the configuration in Figure 7, we know that there
is no way to recoverd3, d4 from d1, d2, c1 andc2, no matter
how c2 is computed. Hence, if a submatrix has rank less than
3, it is simply skipped. Otherwise, its null space vector is
computed and appended toU. OnceU is updated, a desirable
g6 is found (using the same algorithm described separately as
follows) such that∀ u ∈ U, u · g6 6= 0. The above procedure
is repeated until allgm’s (5 ≤ m ≤ 8) are added toG (the
completeG is shown later in this section).

3) An algorithm for findinggm: Given U, what is the
general algorithm to find a row vectorgm, such that∀ u ∈ U,
u ·gm 6= 0? The algorithm starts with a random vectorgm (of
course, certain entries are kept constant zeros, e.g.g5,3, g5,4,
etc.). It checks the dot product ofu1 andgm. If u1 · gm 6= 0,
then keepgm and move on tou2. The process continues until

8

it encounters the first null space vectoruj ∈ U, which makes
uj ·gm = 0. As mentioned before, ifuj ·gm ≡ 0 (i.e., non-zero
entries ofgm always correspond to zero entries ofuj), uj is
simply skipped. Otherwise, the algorithmaugmentsgm (make
it g′

m) such that the following two conditions are satisfied:
1) uj · g

′

m 6= 0; and 2) all previousu’s arenot affected, i.e.,
ui · g

′

m 6= 0 (i < j) still hold.
The first condition can be satisfied by settingg′

m = gm +
ǫuj (ǫ 6= 0), as any non-zeroǫ satisfies

uj · g
′

m = uj · (gm + ǫuj) = ǫuj · uj 6= 0.

Now, we simply need to tweakǫ such that the second condition
is also satisfied. Formally, this involves finding aǫ such that

∀ ui (1 ≤ i < j), ui · g
′

m 6= 0, (4)

which turns out to be quite straightforward. We compute all
ǫ’s that violate Eq(4) (call thembad ǫ’s) and construct a set to
hold them (denote asEbad). As long as we pick aǫ out of the
set Ebad, it is guaranteed to satisfy the second condition. To
constructEbad, simply compute all the badǫi’s (1 ≤ i < j),
where eachǫi satisfiesui · g

′

m = 0 such that:

ǫi =
ui · gm

ui · uj

.

To this end, as long as the number of badǫi’s in Ebad (i.e.,
|Ebad|) is less than the number of symbols in the finite field
(or ring), a desirableǫ is guaranteed to be found. In the worst
case, all badǫi’s happen to be unique during the final round
(i.e., finding gn), then |Ebad| =

(

n
k−1

)

(the number of null
space vectors inU). Still, as long as the field size is greater
than

(

n
k−1

)

, the construction of a generalized Pyramid Code is
guaranteed to succeed. Note that this field size bound isvery
loose. Indeed, our empirical experience shows that, in practice,
many badǫi’s collide and thus the required field size turns out
to be much smaller. We defer both theoretical and empirical
efforts in quantifying the field size to future work.

4) The summary of the construction procedure:Using the
simple example, we have described all the details in the
construction of the generalized Pyramid Codes. Here, we brief
summarize the entire procedure (refer to Figure 8 for the
complete details).

• Step 1: Start with ak×k identity matrixG = Ik×k and
construct an empty null space matrixU.

• Step 2: UpdateU. Enumerate through all sub-matrices
S formed by anyk − 1 rows from G. If the rank ofS
is k− 1, compute its null space vector and append toU.
Otherwise, skipS.

• Step 3:Find agm such that∀ u ∈ U, u ·gm 6= 0, which
adopts the previously described algorithm. UpdateG by
addinggm to it.

• Step 4: Repeat Step 2 and 3 until the entire generator
matrix G is completed.

D. Optimality of generalized Pyramid Codes

In this section, the optimality of the generalized Pyramid
Codes is shown by the following theorem.

1: G := Ik×k,U := Ik×k

2: for m = k + 1 : n do
3: // gzero

m : boolean array marking constant zero entries
4: // t: index of thetth entry in gm

5: for t = 1 : k do
6: gm[t] := random value in the field
7: if gzero

m [t] = true then
8: gm[t] := 0
9: ug := null // ug: all dot products ofui · gm

10: for j = 1 : |U|,uj ∈ U do
11: if uj · gm 6= 0 then
12: ug[j] := uj · gm, repeat
13: if uj · gm ≡ 0 then
14: ug[j] := 0, repeat
15: // Ebad: all bad ǫi’s, uu: all dot products ofui · uj

16: Ebad := null,uu := null
17: for i = 1 : j − 1 do
18: uu[i] := ui · uj

19: if uu[i] = 0 then
20: repeat
21: Ebad := Ebad + {ug[i]/uu[i]}
22: ǫ = random value out ofEbad

23: // argumentgm and updateug

24: gm := gm + ǫuj

25: for i = 1 : j do
26: ug[i] := ug[i] + ǫuu[i]
27: for t = 1 : k,gzero

m [t] = true do
28: gm[t] := 0
29: ug[j] := uj · gm

30: // updateU and addgm to G

31: for S′ = {k-2 rows inG} do
32: S = S′ + {gm}
33: if rank(S) = k − 1 then
34: u := null space vector ofS
35: U := U + {u}
36: G := G + {gm}
37: return

Fig. 8. Construction of generalized Pyramid Codes.

Theorem 3:In the generalized Pyramid Codes, anypossible
recoverable erasure pattern (i.e., its corresponding Tanner
graph contains a full-size matching) can indeed be recovered.

Proof: We prove the theorem by induction on the
construction algorithm (details in Figure 8). Recall thatg1

to gk simply form a identity matrixIk×k, so the base case
is when gk+1 is added toG. Consider an erasure pattern
where one data block (saydk) is failed. If the block is
recoverable, then the corresponding Tanner graph has a full-
size matching (simply size1, an edge betweendk andc1). In
this case, the decoding equations areCs = Gs × D, where
Cs = [d1,d2, · · · ,dk−1, c1]

T and D = [d1,d2, · · · ,dk]T .
Also, the generator submatrix is

Gs =

[

I(k−1)×(k−1) 0
g′

k+1 gk+1,k

]

, (5)

9

whereg′

k+1 is of size1 × (k − 1). Based on simple matrix
row elementary operations, it is easy to show thatgk+1,k

exists such thatGs is invertible and thus the erasure pattern is
recoverable. Thus far, we have shown the existence ofgk+1.
Then, the algorithm ensures that once it terminates and a
gk+1 is found, all generator sub-matrices asGs are indeed
invertible.

Now, let’s assume the theorem holds after the construction
algorithm adds up to(n − 1) gm’s (1 ≤ m < n) to G. Next,
we want to show that the theorem still holds when a new
row vectorgn is added. Consider an arbitrary failure pattern,
whose Tanner graphT contains a full-size matching. Assume
the pattern containsr failed data blocks (saydk−r+1, · · · ,
dk) and r available erasure blocks (sayc1, · · · , cr−1 plus
cm). Apparently, we only need to consider patterns including
cm. Otherwise, the erasure pattern is naturally recoverable
by the induction assumption. Without loss of generality, let
dk be connected tocm in the matching. Then, the decoding
equations can be written asCs = Gs × D, where Cs =
[d1,d2, · · · ,dk−r, c1, c2, · · · , cr−1, cm]T and the generator
submatrix is

Gs =

[

G1
(k−1)×(k−1) G2

(k−1)×1

g′

n gn,k

]

. (6)

Here,g′

n of size1× (k−1). We want to show thatgn,k exists
such thatGs is invertible.

Next, let’s modify the erasure pattern slightly. Assume
dk is now available andcm becomes erasure. Hence, the
new erasure pattern containsr − 1 failed data blocks and
r−1 available redundant blocks. Apparently, its corresponding
Tanner graphT ′ contains a full-size matching of sizer − 1
(simply removing the edge betweendk and cm from the
full-size matching inT). Based on the induction assumption,
this pattern is recoverable. Again, the decoding equationscan
be written (with slight rearrangement to putdk as the last
entry) asC′

s = G′

s × D, whereC′

s = [d1,d2, · · · ,dk−r,
c1, c2, · · · , cr−1,dk]T and differs fromCs only at the last
entry. Moreover, the generator submatrix is

G′

s =

[

G1
(k−1)×(k−1) G2′

(k−1)×1

{0}1×(k−1) 1

]

, (7)

whereG1
(k−1)×(k−1) is the same(k− 1)× (k− 1) matrix as

in Eq(6). Since the new erasure pattern is recoverable,G′

s is
invertible, as well asG1

(k−1)×(k−1).
Examining Eq(6), it is easy to conclude thatgn,k exists

such thatGs is also invertible. Thus far, the existence ofgn

is proven. Similarly, upon the termination of the construction
algorithm, once agn is found, it is guaranteed that all
generator sub-matrices asGs are always invertible. The proof
is complete.

E. Decoding of generalized Pyramid Codes

When block failures happen in ERC schemes, two types
of recovery could be triggered: 1) recovery of all the failed
blocks, including data and redundant blocks; and 2) recovery
of a particular data block being actively accessed. Correspond-
ingly, the access overheadcan also be categorized into: 1)
recovery overhead; and 2) read overhead.

c2
c4

c1
c3

d2 d3

d6 d7

d1

d5

d4

d8

c6 c8c5 c7

horizontal
redundancy

vertical
redundancy

(a) erasure pattern

d3

d4

d6

d7

d8

c3
c4

c1
c2

c6

c8

c7

(b) Tanner graph

Fig. 9. Decoding of generalized Pyramid Codes.

Given an erasure pattern, we define anaccess pathas a
sequence of blocks to be accessed in order to recover the
desirable blocks. Different access paths often bear different
overheads. For instance, Figure 9(a) shows a configuration of
a generalized Pyramid Code, as well as an erasure pattern
with 5 failed data blocks. If it is desirable to recover data
block d6, there are at least two viable access paths: 1) recover
d6 directly from d2 and c6; or 2) first recoverd3 from d1,
d2, c1 and c2, then recoverd7 from d3 and c7, and finally
recoverd6 from d5, d7, c3 and c4. Apparently, these two
access paths have significantly different overheads. Similarly,
if it is desirable to recover all the failed data blocks, there
might also be a few access paths with different overheads.
In this section, we describe algorithms to find access paths
with either minimum recovery overhead or minimum read
overhead. This is contrast to the basic Pyramid Codes, where
finding access path with minimum overhead is straightforward,
because decoding should always start from the lowest level in
the hierarchy and gradually move up.

1) Minimum recovery overhead:
Theorem 4:In the generalized Pyramid Codes, to recover

the failed blocks in an erasure pattern withd failed data
blocks andc failed redundant blocks, the minimum access
path will include exactlyd available redundant blocks. It will
also include every available data block, from which the failed
redundant blocks are originally computed.

Proof: Apparently, to recoverd failed data blocks, at least
d redundant blocks are needed. Hence, the minimum access
path includes at leastd redundant blocks. Next, we prove that

10

including more thand redundant blocks willonly increase the
recovery overhead.

e
1d

e
2d

e
dd

…
…

a
d 1c +

a
rc

…
…

a
1c

a
2c

a
dc

…
…

a
1d

a
sd

…
…

…
…

a
td

a
s 1d +

eD

a
1C

a
0C

a
1D

a
0D

Fig. 10. Minimum recover overhead for failed data blocks.

Both failed data and redundant blocks need to be recovered.
We first show that, to recover thed failed data blocks (denoted
as De = {de

1, · · · , de
d}), the minimum access path should

include exactly d available redundant blocks. Proving by
contradiction, let’s assume the minimum access path in fact
includesr available redundant blocks (denoted asCa = {ca

1 ,
· · · , ca

r}) and r > d. Further, assume the minimum access
path includess additional available data blocks (denoted as
Da

0 = {da
1 , · · · , da

s}), which is shown to the right of the
Tanner graph in Figure 10. SinceDe is recoverable, there must
exist a full-size matching betweenDe andCa. Without loss
of generality, assume the matching connects the firstd nodes
in Ca, denoted asCa

0 = {ca
1 , · · · , ca

d}. Then, find another
access path, which includes only redundant blocks inCa

0 . Of
course, this access path need to include additional available
data blocks (denoted asDa

1 = {da
s+1, · · · , da

t }). Based on
the assumption, the recovery overhead of this access path is
not minimum (the path includesCa

0 , Da
0 and Da

1). Hence,
d + t > r + s (i.e., |Ca

1 | < |Da
1 |). Note that each node in

Da
1 is connected to at least one node inCa

0 . SinceDa
1 is not

included in the minimum access path, their values must have
been cancelled out byCa

1 during decoding. For this reason,
each node inCa

1 should connect to at least one node inDa
1 .

Now, let’s consider only nodes inCa
1 , Da

1 and edges
between them. We claim that there must exist a full-size
matching betweenCa

1 andDa
1 . Assuming this isnot true, then,

the maximum matching size will be less than|Ca
1 |, so as the

size of the corresponding minimum node coverNc (recall that
maximum matching and minimum node cover are equivalent
in the bipartite graph). DenoteCa

1
′ as those nodes inCa

1 while
not in Nc, and denoteDa

1
′ as those nodes inDa

1 while also
in Nc. Based on the property of node cover, each node in
Ca

1
′ is connected to at least one node inDa

1
′. On the other

hand, |Ca
1
′| > |Da

1
′| (based on the assumption). Now that

nodes inCa
1
′ do not connect to other nodes inDa

1 , at least
one of them can be removed from the minimum access path

without affecting the recoverability. This means the cost of
the minimum access path can be further reduced, which is
certainly a contradiction. Therefore, there must exist a full-
size matching betweenCa

1 andDa
1 .

Without loss of generality, assume this matching connects
Ca

1 to the first r − d nodes inDa
1 (denote them asDa

1
′′).

Now, let’s consider a new erasure pattern, which consists of
De, Da

1
′′ and one more node fromDa

1 (say da
t). Using the

redundant block inCa (Ca
0 and Ca

1) and the data blocks in
Da

0 , it is clear thatDe can be recovered. Next, we examine
the remaining Tanner graph. It contains a full-size matching,
which consists of a matching of sizer − d betweenCa

1 and
Da

1
′′, together with an additional edge betweenda

t and at least
one node inCa

0 . Therefore, the rest failed data blocks can also
be decoded. To this end, we have demonstrated a case, where
d + (r − d) + 1 = r + 1 failed data blocks are recovered
from only r redundant blocks. This creates a contradiction.
Therefore, the minimum access path should include exactlyd
available redundant blocks.

1d

dd

…
… 1c

2c

qc

…
…1d +p

0D

pd

…
…

1D
0C

Fig. 11. Minimum recover overhead for failed redundant blocks.

In the second part of the proof, we show that to recover the
failed redundant blocks, the minimum access path includes
every data block, from which these redundant blocks are
originally computed. In another word, no redundant block
can be computed from the combination of data blocks and
redundant blocks with less overhead. Using contradiction
argument, let’s assume this claim isnot true on one particular
redundant blockc1. Instead of computing fromd data blocks
(say d1, · · · , dd), assumec1 can instead be computed with
a minimum overhead fromp data blocks (denoted asD0 =
{d1, · · · ,dp}) together with(q−1) redundant blocks (denoted
as C0 = {c2, · · · , cq}), wherep + (q − 1) < d (shown in
Figure 11). Under this assumption, there must exist a full-size
matching between the rest(d − p) data blocks (denoted as
D1) andC0. (Otherwise, we can examining the corresponding
minimum node cover and show that at least one node inC0

could be computed fromD0 and the rest blocks inC0. This
meansc1 can be computed even if this node is removed from
C0, which further implies even less overhead to compute
c1.) Hence, the maximum matching size betweenD1 and
C0 is (q − 1), and denote the(q − 1) matching nodes from

11

D1 as D1
′ = {dp+1, · · · ,dp+q−1}. Now, let’s consider a

particular erasure pattern ofq failed data blocks, which include
all the (q − 1) nodes inD1

′ and dd. This erasure pattern
should be recoverable using all the(q − 1) redundant blocks
in C0 together withc1. This is because there exists a full-
size matching in the corresponding Tanner graph (a matching
of size (q − 1) betweenD1

′ and C0, together with an edge
betweendd andc1). On the other hand,c1 can be computed
from D0 andC0, and thus isnot an effective redundant block
(or c1 is linear dependent onD0 andC0). Hence,c1 should
be removed. To this end, it isimpossibleto recoverq failed
data blocks from(q − 1) redundant blocks. This creates a
contradiction. In summary, the proof is complete with the
combination of the above two parts.

Based on Theorem 4, it is straightforward to design a de-
coding algorithm with the minimum recovery overhead. Given
any erasure pattern, we choose subsets of redundant blocks,
such that the size of each subset simply equals to the number
of failed data blocks. If the recovery can succeed (again, the
corresponding Tanner graph contains a full-size matching),
the recovery (data+ redundant) overhead is computed. After
enumerating through all the redundant subsets, the minimum
recovery overhead can be readily derived (details shown in
Figure 12). In practice, the number of available redundant
blocks in the Tanner graph will not be many more than
the number of failed data blocks, so the complexity of the
algorithm shouldnot be high. For instance, the Tanner graph
in Figure 9(b) contains7 redundant blocks and5 failed data
blocks, thus there are merely

(

7
5

)

= 21 subsets to compute.

1: D
e := failed data nodes

2: C
a := all available redundant nodes

3: overhead := ∞
4: for C

a

s = subsets ofCa with size |De| do
5: if ∃ full-size matching betweenCa

s andD
e then

6: ol := |Ca

s | + available data blocks connected toC
a

s

7: ol := c0 + overhead to recover failed redundant blocks
8: overhead = min(overhead, ol)
9: return

Fig. 12. Calculate minimum recovery overhead.

2) Minimum read overhead:
The recovery of a single data block in general requires

smaller overhead than the recovery of all failed blocks, and
their respective access paths could be rather different as well.
An algorithm to find an access path with the minimum read
overhead is described as follows.

Similar to the algorithm in Figure 12, we choose subsets
of the available redundant blocks, whose size equals to the
total number of failed data blocks. If the corresponding Tanner
graph doesnot contain a full-size matching, this subset is
simply skipped. (For simplicity, we only care cases where
all the failed data blocks can be recovered. This assumption
can be easily removed, should the recovery of a subset of
blocks become interesting.) Otherwise, a breadth first search
is carried out, starting from the target failed data block. If the
search encounters a data node in the Tanner graph, it follows
only the edge in the matching to the corresponding redundant

node. If the search encounters a redundant node, it follows all
edges in the Tanner graph to all the data nodes, which have
not been visited before. LetDv denote the set of data nodes
already visited,Cv the set of redundant nodes already visited,
andDc the set of all data nodes connected toCv. The search
stops whenCv becomes large enough to recoverDv (i.e.,
|Dv| ≤ |Cv| and Dc ⊆ Dv). Please refer to Figure 13 for
details. After enumerating through all subsets, the minimum
read overhead can be easily derived. Moreover, the complexity
is comparable to the algorithm in Figure 12.

Using the example shown in Figure 9(b), when a redundant
subset is chosen with{c1, c2, c3, c7, c8}, a full-size matching
can be found. To access the failed data blockd7, the breadth
first search starts fromd7, goes toc7, thend3, c2, d4 and stops
at c1. It is straightforward to compute that the read overhead
corresponding to this redundant subset is5.

1: Q := null // queue used for the breadth first search
2: Dv := null, Cv := null, Dc := null
3: M := find a maximum matching
4: if |M | is less than failed data blocksthen
5: return
6: Q.enqueue(n0) // n0: the target failed data block
7: while |Q| > 0 do
8: n := Q.dequeue
9: if n is a data nodethen

10: if n ∈ Dv then
11: repeat
12: Dv := Dv + {n}
13: Q.enqueue(M [n]) // follow the edge in the matching
14: else
15: Cv := Cv + {n}
16: // follow all edges to data nodes
17: for nd := data nodes connected ton do
18: if nd 6∈ Dv then
19: Q.enqueue(nd)
20: if nd 6∈ Dc then
21: Dc := Dc + {nd}
22: if |Dv| ≤ |Cv| and Dc ⊆ Dv then
23: last // found an access path forn0

24: ol := |Cv| + available data blocks connected toCv

25: overhead := min(overhead, ol)
26: return

Fig. 13. Calculate minimum read overhead (one redundant subset).

Very careful readers might challenge that given a redundant
subset, there could exist more than one full-size matching
in the Tanner graph (i.e., data and redundant nodes could
be matched differently, while the sizes of matchings are the
same). The breadth first search in Figure 13 only explores
one of them, which might happen to benot minimum. Nev-
ertheless, the following theorem states that the algorithmin
Figure 13 can indeed find the minimum read overhead.

Theorem 5:Given an erasure pattern and a redundant sub-
set, the algorithm in Figure 13 will always yield the sameCv

even following different full-size matchings.
Proof: It is easy to show that|Dv| = |Cv|, when the

algorithm terminates. Now, we prove the theorem by contra-
diction. Assume the algorithm yields with two different results
(denoted asDv0

, Cv0
and Dv1

, Cv1
, respectively), when

following two different matchings. It is clear thatDv0
and

12

Dv1
share at least the target data block. Then,Cv0

andCv1

share at least one redundant block as well. Otherwise, failed
data blocks in neitherDv0

nor Dv1
will not be recoverable,

because they have to be decoded from redundant blocks not
in Cv0

or Cv1
, but there are less redundant blocks than failed

data blocks. On the other hand, any data blocks, which are
connected to the shared redundant block betweenCv0

and
Cv1

, have to be shared byDv0
and Dv1

. Hence, following
the same logic and using induction argument, we can show
that Dv0

andDv1
can not overlap. Then, one has to contain

the other. Without loss of generality, assumeDv0
contains

Dv1
(then Cv0

also containsCv1
). If that’s the case, in the

matching betweenDv0
and Cv0

, at least one node in both
Dv0

and Dv1
should not connected toCv1

. Based on the
existence of the full-size matching, at least one node inCv1

should connect to a node inDv0
while not in Dv1

. This
implies the algorithm wouldnot have terminated withDv1

and
Cv1

. Hence, it is neither possible forDv0
to containDv1

. In
summary, this is a contradiction and the proof is complete.

F. Comparisons with basic Pyramid Codes

This subsection compares the generalized Pyramid Codes
with the basic Pyramid Codes. We first use the same configura-
tion (shown in Figure 5). Hence, both codes are(18, 12) codes
and guarantee the recovery of arbitrary4 failures. Figure 14
compares their recoverability beyond4 failures, as well as
the recovery and read overhead. It is quite obvious that the
generalized Pyramid Codes has higher recoverability when the
number of failures exceeds4. Moreover, this improvement of
recoverability comes at the cost of increased read overhead
(when there are6 failures).

Next, we modify the configuration slightly and create a new
generalized Pyramid Code, where the global redundant blocks
are removed and replaced byc3 : {d1,d2,d3,d7,d8,d9} and
c4 : {d4,d5,d6,d10,d11,d12}. (Note that this configuration
is not valid for a basic Pyramid Code, as there are group over-
laps.) The performance of this code in also shown in Figure 14.
We observe that its recoverability is slightly reduced, as it no
longer guarantees the recovery of arbitrary4 erasures. On the
other hand, both its recovery and read overhead are reduced
as well. Again, combined with failure probability models, it is
possible to choose right configurations such that the access
overhead is minimized while the reliability requirement is
always satisfied.

Beyond this simple comparison, there are several other ma-
jor differences between the basic and the generalized Pyramid
Codes. The basic Pyramid Codes have less flexibility in code
configurations, as they require all groups to be nested, i.e., the
data blocks of one subgroup always form a subset of another
higher hierarchy group, and two groups do not intersect with
each other. The generalized Pyramid Codes, however, donot
impose such a constraint, and two groups may overlap. On the
other hand, the generalized Pyramid Codes may need a larger
finite field and thus require higher computation complexity
in encoding and decoding. As they are simply derived from
existing codes, the basic Pyramid Codes can be constructed
from well-known codes, e.g. Reed-Solomon codes, which

often use rather small finite fields. Moreover, all the techniques
used to speed up encoding and decoding (e.g. XOR-based
array codes [7], [15], etc.) can be directly applied to the basic
Pyramid Codes.

G. Additional notes

It is worth briefly comparing the generalized Pyramid Codes
to some other ERC codes under the same configuration. Two
examples are shown here.

In the first example, the configuration in Figure 7 is
revisited, which turns out to be a simple form ofproduct
codes[17]. In this product code,4 individual (2, 1) codes are
applied independently to the rows and the columns.Iterative
decoding is often used to recover failures. For a particular
erasure pattern, where all4 data blocks are failed, the iterative
decoding cannot succeed and the product code is declared un-
recoverable. However, if the code were a generalized Pyramid
Code, then, the erasure pattern is in fact recoverable (since
the corresponding Tanner graph contains a full-size matching).
Indeed, if we complete the construction of the earlier example,
the following generator matrix is obtained:

G =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 142 0 0
0 0 244 71
41 0 190 0
0 108 0 174

. (8)

It is straightforward to verify that the generator submatrix
formed by the last4 rows of G is invertible, i.e., the4 data
blocks can be recovered from the4 redundant blocks. Of
course, the generalized Pyramid Codes require finite field op-
erations, while the product code might only use XOR in each
row/column. Nevertheless, the generalized Pyramid Codesdo
show higher recoverability under the same configuration.

d2 d3

d5 d6

c1
c3

c2
c4

d1

d4

c�: {d�,d�,d�}; c�: {d�,d�,d�,d�};
c�: {d�,d�,d�}; c�: {d�,d�,d�,d�}.

Fig. 15. Pyramid Codes vs. EVENODD Codes.

In the second example, the generalized Pyramid Codes are
compared with EVENODD codes [2]. A particular configura-
tion is shown in Figure 15, as well as an erasure pattern. It is
easy to see that the erasure pattern isnot recoverable by an
EVENODD code, while in fact recoverable by a generalized
Pyramid Code. Of course, the EVENODD codes were meant
to protect failures of entire storage nodes (complete columns
in here). Hence, the erasure pattern in Figure 15 was not
considered in the original design of EVENODD codes. How-
ever, as the capacity of individual storage nodes increases, it

13

of failed blocks 0 1 2 3 4 5 6

basic Pyramid Code recoverability (%) 100 100 100 100 100 94.12 59.32
(configuration shown in Figure 5) avg. recovery overhead 0 6.67 9.80 12 12 12 12

avg. read overhead 1.0 1.28 1.56 1.99 2.59 3.29 3.83

generalized Pyramid Code recoverability (%) 100 100 100 100 100 94.19 76.44
(configuration shown in Figure 5) avg. recovery overhead 0 6.67 9.80 12 12 12 12

avg. read overhead 1.0 1.28 1.56 1.99 2.59 3.29 4.12

generalized Pyramid Code recoverability (%) 100 100 100 100 97.94 88.57 65.63
(global redundant blocks removed) avg. recovery overhead 0 6.0 7.99 9.95 12 12 12

avg. read overhead 1.0 1.28 1.56 1.87 2.32 2.93 3.85

Fig. 14. Comparisons with the basic Pyramid Codes. (The2nd generalized Pyramid Code has a different configuration from Figure 5, where the global
redundant blocks are removed and replaced byc3 : {d1,d2,d3,d7,d8,d9} andc4 : {d4,d5,d6,d10,d11,d12}.)

gradually becomes desirable to consider partial failures within
a node, as suggested in [10]. In these scenarios, the generalized
Pyramid Codes also show higher recoverability than existing
two dimensional ERC schemes, such as [12], [14], etc.

IV. A DDITIONAL RELATED WORK

There are a few work, which bear a similar concept of
trading storage space for access efficiency. For example, [11]
can improve the read overhead by using twice as much storage
spaces as the data collection itself. [21] uses slightly more
storage spaces than MDS codes to improve access efficiency
in wide area storage networks. Compared to these schemes,
Pyramid Codes are much more flexible and can explore a
much wider range of the trade-offs. Moreover, the generalized
Pyramid Codes have optimal recovery performance, while
none of the other existing schemes does.

There are also significant efforts in trying to improve the
encoding/decoding performance of ERC schemes. In particu-
lar, lots of them advocate using pure XOR operations, such as
EVENODD [2], X-Code [27], B-Code [28], RDP [5], codes
based on CPM [7], [8], etc. As mentioned before, if these
codes are used to derive the basic Pyramid Codes, then all
optimizations direct apply. As for the generalized Pyramid
Codes, some generic optimization concepts, such as [22], are
also applicable.

V. CONCLUDING REMARKS AND OPEN ISSUES

In this paper, we describe two classes of Pyramid Codes,
where the basic Pyramid Codes are simply derived from
existing codes, while the generalized Pyramid Codes are
radically advanced new codes. We also define a necessary
condition of recoverability and show the generalized Pyramid
Codes are optimal under the condition. Beyond presenting the
main results, another intention of this paper is to inspire more
research efforts in issues that still remain open. Below, welist
a number of these challenges.

If we revisit the construction of the generalized Pyramid
Codes, there is another interesting observation. When the
simplest configuration is used (a flat configuration, where all
the redundant blocks are computed from all the data blocks),
then the generalized Pyramid Code essentially becomes an
MDS code. Hence, the construction algorithm can also be used
to find new MDS codes. On the other hand, the generalized
Pyramid Codes might need larger finite fields. Indeed, our

empirical experience shows that for the same block length,
traditional MDS codes (e.g. Reed-Solomon codes) require
much smaller finite fields. In our opinion, traditional MDS
codes are constructed using more structured approaches, while
the construction of the generalized Pyramid Codes carries
certain random fashion. To this end, there is a very interesting
and yet challenging question: is it ever possible to construct
non-MDS generalized Pyramid Codes using more structured
approaches, such that much smaller finite fields are required
and yet the optimality is preserved?

Recent developments in applying network coding to storage
applications [6] suggest the effectiveness of random linear
codes in this area. From the perspective of the generalized
Pyramid Codes, these work apparently move even further away
from structured construction approaches and into complete
randomness. Moving towards that extreme, it is also interesting
to ask: given a code configuration, instead of following the
generalized Pyramid Codes construction, what if we simply
fill in the entries with random values? Of course, the code
will not be optimal any more, but how much will it deviate
from the optimality in terms of recoverability? Moreover, how
is the access overhead affected? This appears a very interesting
issue to be quantified both theoretically and empirically.

When the configuration is given, for both basic and gen-
eralized Pyramid Codes, we have described how to study
the storage cost, the recoverability and the access overhead.
Applying simple probability failure models, we can compare
and choose among various configurations, such that certain
aspects or a combination of them is optimized. We will present
those results in a separate paper. However, models that capture
the failures of practical large scale systems are in general
far more sophisticated, especially when failures could happen
correlated, as recent observations suggest [19]. Hence, the
grand challenge is how to choice right configurations (or even
better, adapt configurations) in practical large scale systems.

ACKNOWLEDGMENT

The authors would like to thanks Dr. Cha Zhang, Dr.
Yunnan Wu and Dr. Philip A. Chou at Microsoft Research
for very helpful and inspiring discussions on various parts
during this work. In particular, Dr. Zhang helped on designing
the technique to find agm given U in Section III. Dr. Wu
helped on solving the problem to find the minimum recovery
overhead of the generalized Pyramid Codes in Section III. Dr.
Chou offered great insights on the open issues.

14

REFERENCES

[1] M. K. Aguilera, R. Janakiraman, and L. Xu, “Using erasure codes for
storage in a distributed system”,International Conference on Depend-
able Systems and Networks (DSN 2005), Yokohama, Japan, June. 2005.

[2] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: An Efficient
Scheme for Tolerating Double Disk Failures in RAID Architectures,”
IEEE Trans. on Computers, 44(2), 192-202, Feb. 1995.

[3] M. Chen, C. Huang, and J. Li, “’On the Maximally Recoverable Property
for Multi-Protection Group Codes”, (to appear)IEEE International
Symposium on Information Theory (ISIT 2007), Nice, France, Jun. 2007.

[4] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson,
“Raid – High-Performance, Reliable Secondary Storage”,ACM Com-
puting Surveys, 26(2), 145-185, 1994.

[5] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J.Leong, and
S. Sankar, “Row-Diagonal Parity for Double Disk Failure Correction”,
the 4th USENIX Conference on File and Storage Technolgoies (FAST
2005), San Francisco, CA, Dec. 2005.

[6] A. G. Dimakis, P. B. Godfrey, M. Wainwright, and K. Ramchandran,
“Network Coding for Distributed Storage Systems”,the26th IEEE Con-
ference on Computer Communications (INFOCOM 2007), Anchorage,
AL, May. 2007.

[7] G.-L. Feng, R. H. Deng, F. Bao, and J.-C. Shen, “New Efficient MDS
Array Codes for RAID Part I: Reed-Solomon-Like Codes for Tolerating
Three Disk Failures”,IEEE Trans. on Computers, 54(9), Sep. 2005.

[8] G.-L. Feng, R. H. Deng, F. Bao, and J.-C. Shen, “New Efficient MDS
Array Codes for RAID Part II: Rabin-Like Codes for Tolerating Multiple
(≥ 4) Disk Failures”,IEEE Trans. on Computers, 54(12), Dec. 2005.

[9] S. Ghemawat, H. Gobioff, and S.-T. Leung,“The Google FileSystem”,
the 19th ACM Symposium on Operating Systems Principles (SOSP
2003), Lake George, NY, October, 2003.

[10] J. L. Hafner, V. Deenadhayalan, KK Rao, and J. A. Tomlin, “Matrix
Methods for Loss Data Reconstruction in Erasure Codes”,the 4th

USENIX Conference on File and Storage Technolgoies (FAST 2005),
San Francisco, CA, Dec. 2005.

[11] J. L. Hafner, “WEAVER Codes: Highly Fault Tolerant Erasure Codes
for Storage Systems”,the4th USENIX Conference on File and Storage
Technolgoies (FAST 2005), San Francisco, CA, Dec. 2005.

[12] J. L. Hafner, “HoVer Erasure Codes for Disk Arrays”,International Con-
ference on Dependable Systems and Networks (DSN 2006), Philadelphia,
PA, Jun. 2006.

[13] J. Hamilton, “An Architecture for Modular Data Centers”, Conference
on Innovative Data Systems Research (CIDR 2007), Jan. 2007

[14] L. Hellerstein, G. A. Gibson, R. M. Karp, R. H. Katz, and D. A.
Patterson, “Coding Techniques for Handling Failures in Large Disk
Arrays”, Algorithmica, vol. 12, no. 2-3, Aug. 1994

[15] C. Huang, and L. Xu, “STAR: an Efficient Coding Scheme for Correct-
ing Triple Storage Node Failures”,the4th USENIX Conference on File
and Storage Technolgoies (FAST 2005), San Francisco, CA, Dec. 2005.

[16] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and
B. Zhao, “OceanStore: an Architecture for Global-Scale Persistent
Storage”, the 9th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS 2000),
Cambridge, MA, Nov., 2000.

[17] S. Lin, and D. J. Costello, “Error Control Coding, Fundamentals and
Applications”, Prentice Hall Press, 2004.

[18] F. J. MacWilliams, and N. J. A. Sloane, “The Theory of Error Correcting
Codes, Amsterdam: North-Holland”, 1977.

[19] E. Pinheiro, W.-D. Weber, and L. A. Barroso, “Failure Trends in a
Large Disk Drive Population”,the 5th USENIX Conference on File
and Storage Technolgoies (FAST 2007), San Francisco, CA, Feb. 2007.

[20] J. S. Plank, “A tutorial on Reed-Solomon Coding for Fault-Tolerance
in RAID-like Systems”,Software – Practice & Experience, 27(9), 995-
1012, Sep. 1997.

[21] J. S. Plank, and M. G. Thomason, “A practical analysis of low-density
parity-check erasure codes for wide-area storage applications”, the
International Conference on Dependable Systems and Networks (DSN
2004), Florence, Italy, Jun. 2004.

[22] J. S. Plank, and L. Xu, “Optimizing Cauchy Reed-Solomon Codes for
Fault-Tolerant Network Storage Applications,”the 5th IEEE Interna-
tional Symposium on Network Computing and Applications (NCA 2006),
Cambridge, MA, Jul., 2006.

[23] I. S. Reed, and G. Solomon, “Polynomial Codes over CertainFinite
Fields”, J. Soc. Indust. Appl. Math., 8(10), 300-304, 1960.

[24] A. Schrijver, “Combinatorial Optimization, Polyhedra and Efficiency”,
Algorithms and Combinatorics, Springer, vol. A, 2003.

[25] B. Schroeder, and G. A. Gibson, “Disk Failures in the Real World:
What does an MTTF of 1,000,000 Hours Mean to You?”,the 5th

USENIX Conference on File and Storage Technolgoies (FAST 2007),
San Francisco, CA, Feb. 2007.

[26] J. Stribling, E. Sit, M. F. Kaashoek, J. Li, and R. Morris, “Don’t Give Up
on Distributed File Systems”,International Workshop on Peer-to-Peer
Systems (IPTPS 2007), Bellevue, WA, Feb. 2007.

[27] L. Xu, and J. Bruck, “X-code: MDS array codes with optimalencoding”,
IEEE Trans. on Information Theory, vol. 45, no. 1, 1999.

[28] L. Xu, V. Bohossian, J. Bruck, and D.Wagner, “Low Density MDS Codes
and Factors of Complete Graphs”,IEEE Trans. on Information Theory,
45(1), 1817-1826, Nov. 1999.

