
Learning to Rank: From Pairwise Approach to Listwise Approach

Zhe Cao* @...

Tao Qin* @.

Tsinghua University, Beijing, 100084, P. R. China

Tie-Yan Liu @.

Microsoft Research Asia, No.49 Zhichun Road, Haidian District, Beijing 100080, P. R. China

Ming-Feng Tsai* @....

National Taiwan University, Taipei 106, Taiwan

Hang Li @.

Microsoft Research Asia, No.49 Zhichun Road, Haidian District, Beijing 100080, P. R. China

Abstract

The paper is concerned with learning to rank,
which is to construct a model or a function for
ranking objects. Learning to rank is useful for
document retrieval, collaborative filtering, and
many other applications. Several methods for
learning to rank have been proposed, which take
object pairs as ‘instances’ in learning. We refer to
them as the pairwise approach in this paper. Al-
though the pairwise approach offers advantages,
it ignores the fact that ranking is a prediction task
on list of objects. The paper postulates that learn-
ing to rank should adopt the listwise approach in
which lists of objects are used as ‘instances’ in
learning. The paper proposes a new probabilis-
tic method for the approach. Specifically it in-
troduces two probability models, respectively re-
ferred to as permutation probability and top one
probability, to define a listwise loss function for
learning. Neural Network and Gradient Descent
are then employed as model and algorithm in the
learning method. Experimental results on infor-
mation retrieval show that the proposed listwise
approach performs better than the pairwise ap-
proach.

Microsoft technique report. A short version of this work is pub-
lished in ICML2007.

1. Introduction
The central issues of many applications are ranking. These
include document retrieval, collaborative filtering, expert
finding, anti web spam, sentiment analysis, and product rat-
ing. In this paper, we address learning to rank and without
loss of generality we take document retrieval as example.

Learning to rank, when applied to document retrieval, is a
task as follows. Assume that there is a collection of docu-
ments. In retrieval (i.e., ranking), given a query, the rank-
ing function assigns a score to each document, and ranks
the documents in descending order of the scores. The rank-
ing order represents relative relevance of documents with
respect to the query. In learning, a number of queries are
provided; each query is associated with a perfect ranking
list of documents; a ranking function is then created using
the training data, such that the model can precisely predict
the ranking lists in the training data.

Due to its importance, learning to rank has been draw-
ing broad attention in the machine learning community re-
cently. Several methods based on what we call the pairwise
approach have been developed and successfully applied to
document retrieval. This approach takes document pairs as
instances in learning, and formalizes the problem of learn-
ing to rank as that of classification. Specifically, in learning
it collects document pairs from the ranking lists, and for
each document pair it assigns a label representing the rela-
tive relevance of the two documents. It then trains a classi-
fication model with the labeled data and makes use of the
classification model in ranking. The uses of Support Vec-
tor Machines (SVM), Boosting, and Neural Network as the
classification model lead to the methods of Ranking SVM
(Herbrich et al., 1999), RankBoost (Freund et al., 1998),

Learning to Rank: From Pairwise Approach to Listwise Approach

and RankNet (Burges et al., 2005).

There are advantages with taking the pairwise approach.
First, existing methodologies on classification can be di-
rectly applied. Second, the training instances of doc-
ument pairs can be easily obtained in certain scenarios
(Joachims, 2002). However, there are also problems with
the approach. First, the objective of learning is formalized
as minimizing errors in classification of document pairs,
rather than minimizing errors in ranking of documents.
Second, the training process is computationally costly, as
the number of document pairs is very large. Third, the as-
sumption of that the document pairs are generated i.i.d. is
also too strong. Fourth, the number of generated document
pairs varies largely from query to query, which will result
in training a model biased toward queries with more docu-
ment pairs (Cao et al., 2006)

In this paper, we propose employing what we call the list-
wise approach, in which document lists instead of docu-
ment pairs are used as instances in learning. The major
question then is how to define a listwise loss function, rep-
resenting the difference between the ranking list output by
a ranking model and the ranking list given as ground truth.

We propose a probabilistic method to calculate the listwise
loss function. Specifically we transform both the scores of
the documents assigned by a ranking function and the ex-
plicit or implicit judgments of the documents given by hu-
mans into probability distributions. We can then utilize any
metric between probability distributions as the loss func-
tion. We consider the uses of two models for the transfor-
mation; one is referred to as permutation probability and
the other top one probability.

We then propose a learning to rank method using the list-
wise loss function, with Neural Network as model and Gra-
dient Descent as algorithm. We refer to it as ListNet.

We applied ListNet to document retrieval and compared the
results of it with those of existing pairwise methods includ-
ing Ranking SVM, RankBoost, and RankNet. The results
on three data sets show that our method outperforms the
existing methods, suggesting that it is better to employ the
listwise approach than the pairwise approach in learning to
rank.

The major contributions of this paper include (1) proposal
of the listwise approach, (2) formulation of the listwise loss
function on the basis of probability models, (3) develop-
ment of the ListNet method, (4) empirical verification of
the effectiveness of the approach.

The rest of the paper is organized as follows. Section 2 in-
troduces related work. Section 3 gives a general description
on the listwise approach to learning to rank. Probability
models for defining a listwise loss function are introduced

in Section 4 and the learning method ListNet is explained
in Section 5. Section 6 reports our experimental results.
Finally, Section 7 makes conclusions.

2. Related Work
2.1. Learning to Rank

Learning to rank is a new and popular topic in machine
learning. There is one major approach to learning to rank,
referred to as the pairwise approach in this paper. For
other approaches, see (Shashua & Levin, 2002; Crammer
& Singer, 2001; Lebanon & Lafferty, 2002), for example.

In the pairwise approach, the learning task is formalized as
classification of object pairs into two categories (correctly
ranked and incorrectly ranked). Herbrich et al. (1999) pro-
posed employing the approach and using the SVM tech-
niques to build the classification model. The method is re-
ferred to as Ranking SVM. Freund et al. (1998) proposed
performing the task in the same way but by means of Boost-
ing. Burges et al. (2005) also adopted the approach and de-
veloped a method called RankNet. They employed Cross
Entropy as loss function and Gradient Descent as algorithm
to train a Neural Network model.

Learning to rank, particularly the pairwise approach, has
been successively applied to information retrieval. For in-
stance, Joachims (2002) applied Ranking SVM to docu-
ment retrieval. He developed a method of deriving doc-
ument pairs for training, from users’ clicks-through data.
Burges et al. (2005) applied RankNet to large scale web
search. Cao et al. (2006) adapted Ranking SVM to doc-
ument retrieval by modifying the loss function. See also
(Matveeva et al., 2006; Yu, 2005).

2.2. Probability Models on Ranking

In statistics, probability distributions for representing rank-
ing lists of objects and methods for estimation of the dis-
tributions have been proposed. For example, following
the work by Luce (1959), Plackett (1975) defined proba-
bility distributions on ranking lists of objects. He further
introduced parameters to characterize the probability dis-
tributions and developed a method for estimating the pa-
rameters. Plackett applied the model and method to pre-
diction on voting results. In this paper, we make use of
similar probability distributions. However, the underlying
structure (i.e., parameters) and the fundamental usage (i.e.,
transformation of scores to probability distributions) of our
model differ from those of Plackett’s.

3. Listwise Approach
In this section, we give a general description on learning
to rank, with document retrieval as example. Particularly

Learning to Rank: From Pairwise Approach to Listwise Approach

we describe in details the listwise approach. In follow-
ing descriptions, we use superscript to indicate the index
of queries and subscript to indicate the index of documents
for a specific query.

In training, a set of queries Q = {q(1), q(2), · · · , q(m)} is
given. Each query q(i) is associated with a list of docu-
ments d(i) =

(
d(i)

1 , d
(i)
2 , · · · , d(i)

n(i)

)
, where d(i)

j denotes the j-th
document and n(i) denotes the sizes of d(i). Furthermore,
each list of documents d(i) is associated with a list of judg-
ments (scores) y(i) =

(
y(i)

1 , y
(i)
2 , · · · , y(i)

n(i)

)
where y(i)

j denotes

the judgment on document d(i)
j with respect to query q(i).

The judgment y(i)
j represents the relevance degree of d(i)

j to
q(i), and can be a score explicitly or implicitly given by hu-
mans. For example, y(i)

j can be number of clicks on d(i)
j

when d(i)
j is retrieved and returned for query q(i) at a search

engine (Joachims, 2002). The assumption is that the higher
click-on rate is observed for d(i)

j and q(i) the stronger rele-
vance exists between them.

A feature vector x(i)
j = Ψ(q(i), d(i)

j) is created from

each query-document pair (q(i), d(i)
j), i = 1, 2, · · · ,m; j =

1, 2, · · · , n(i). Each list of features x(i) =
(
x(i)

1 , · · · , x(i)
n(i)

)

and the corresponding list of scores y(i) =
(
y(i)

1 , · · · , y(i)
n(i)

)

then form an ‘instance’. The training set can be denoted as
T =

{
(x(i), y(i))

}m

i=1
.

We then create a ranking function f ; for each feature vec-
tor x(i)

j (corresponding to document d(i)
j) it outputs a score

f (x(i)
j). For the list of feature vectors x(i) we obtain a list of

scores z(i) =
(

f (x(i)
1), · · · , f (x(i)

n(i))
)
. The objective of learn-

ing is formalized as minimization of the total losses with
respect to the training data.

m∑

i=1

L(y(i), z(i)) (1)

where L is a listwise loss function.

In ranking, when a new query q(i′) and its associated docu-
ments d(i′) are given, we construct feature vectors x(i′) from
them and use the trained ranking function to assign scores
to the documents d(i′). Finally we rank the documents d(i′)

in descending order of the scores. We call the learning
problem described above as the listwise approach to learn-
ing to rank.

By contrast, in the pairwise approach, a new training data
set T ′ is created from T , in which each feature vector pair
x(i)

j and x(i)
k forms a new instance where j , k, and +1 is

assigned to the pair if y(i)
j is larger than y(i)

k otherwise −1.
It turns out that the training data T ′ is a data set of bi-
nary classification. A classification model like SVM can
be created. As explained in Section 1, although the pair-

wise approach has advantages, it also suffers from draw-
backs. The listwise approach can naturally deal with the
problems, which will be made clearer in Section 6.

4. Probability Models
We propose using probability models to calculate the list-
wise loss function in Eq. (1). Specifically we map a list of
scores to a probability distribution using one of the prob-
ability models described in this section and then take any
metric between two probability distributions as a loss func-
tion . The two models are referred to as permutation prob-
ability and top one probability.

4.1. Permutation Probability

Suppose that the set of objects to be ranked are identified
with the numbers 1, 2, ..., n . A permutation π on the objects
is defined as a bijection from {1, 2, ..., n} to itself. We write
the permutation as π = 〈π(1), π(2), ..., π(n)〉. Here, π(j) de-
notes the object at position j in the permutation. The set of
all possible permutations of n objects is denoted as Ωn.

Suppose that there is a ranking function which assigns
scores to the n objects. We use s to denote the list of scores
s = (s1, s2, ..., sn), where s j is the score of the j-th object.
Hereafter we sometimes make interchangeable the ranking
function and the list of scores given by the ranking func-
tion.

We assume that there is uncertainty in the prediction of
ranking lists (permutations) using the ranking function. In
other words, any permutation is assumed to be possible, but
different permutations may have different likelihood calcu-
lated based on the ranking function. We define the per-
mutation probability, so that it has desirable properties for
representing the likelihood of a permutation (ranking list),
given the ranking function.

Definition 1 Suppose that π is a permutation on the n ob-
jects, and φ(.) is an increasing and strictly positive func-
tion. Then, the probability of permutation π given the list
of scores s is defined as

Ps(π) =

n∏

j=1

φ(sπ(j))∑n
k= j φ(sπ(k))

where sπ(j) is the score of object at position j of permutation
π.

Let us consider an example with three objects {1, 2, 3} hav-
ing scores s = (s1, s2, s3). The probabilities of permuta-
tions π = 〈1, 2, 3〉 and π′ = 〈3, 2, 1〉 are calculated as fol-
lows:

Ps(π) =
φ(s1)

φ(s1) + φ(s2) + φ(s3)
· φ(s2)
φ(s2) + φ(s3)

· φ(s3)
φ(s3)

.

Learning to Rank: From Pairwise Approach to Listwise Approach

Ps(π′) =
φ(s3)

φ(s1) + φ(s2) + φ(s3)
· φ(s2)
φ(s2) + φ(s1)

· φ(s1)
φ(s1)

.

Lemma 2 The permutation probabilities Ps(π), π ∈ Ωn

form a probability distribution over the set of permuta-
tions, i.e., for each π ∈ Ωn, we have Ps(π) > 0, and∑
π∈Ωn

Ps(π) = 1.

Theorem 3 Given any two permutations π and π′ ∈ Ωn, if
(1) π(p) = π′(q), π(q) = π′(p), p < q; (2) π(r) = π′(r), r ,
p, q; (3) sπ(p) > sπ(q), then Ps(π) > Ps(π′).

Theorem 4 For the n objects, if s1 > s2 > ... > sn, then
Ps(〈1, 2, ..., n〉) is the highest permutation probability and
Ps(〈n, n − 1, ..., 1〉) is the lowest permutation probability
among the permutation probabilities of the n objects.

It is easy to verify that Theorem 4 holds. The proofs for
Lemma 2 and Theorem 3 can be found in Appendix.

Theorem 3 indicates that for any ranking list based on the
given ranking function, if we exchange the position of an
object with higher score and the position of an object with
lower score, we obtain a ranking list with lower permuta-
tion probability. Theorem 4 indicates given a ranking func-
tion, the list of objects sorted based on the ranking function
has the highest permutation probability, while the list of ob-
jects sorted in the inverse order has the lowest permutation
probability. That is to say, although all the permutations are
assumed to be possible, the permutation sorted by using the
ranking function is most likely to occur.

Given two lists of scores, we can first calculate two permu-
tation probability distributions from them, and then calcu-
late the distance between the two distributions as the list-
wise loss function. Since the number of permutations is n!,
however, the calculation might be intractable. 1 To cope
with the problem, we consider the use of top one probabil-
ity.

4.2. Top One Probability

The top one probability of an object represents the proba-
bility of its being ranked on the top, given the scores of all
the objects.

Definition 5 The top one probability of object j is defined
as

Ps(j) =
∑

π(1)= j,π∈Ωn

Ps(π).

where Ps(π) is permutation probability of π given s.

1It might not be intractable to use ”permutation probability” in
practice due to its complexity. Permutation probability by itself,
however, is a valuable notion for the studies on learning to rank
and our approach.

That is to say, the top one probability of object j equals
the sum of the permutation probabilities of permutations in
which object j is ranked on the top.

One may argue that in order to calculate n top one probabil-
ities, we still need to calculate n! permutation probabilities.
Theorem 6 shows that we can calculate top one probability
in a different way, which is efficient.

Theorem 6 For top one probability Ps(j), we have

Ps(j) =
φ(s j)∑n

k=1 φ(sk)
,

where s j is the score of object j, j = 1, 2, ..., n.

Lemma 7 Top one probabilities Ps(j), j = 1, 2, ..., n forms
a probability distribution over the set of n objects.

Theorem 8 Given any two objects j and k, if s j > sk, j ,
k, j, k = 1, 2, ..., n, then Ps(j) > Ps(k).

See Appendix for a proof of Theorem 6. It is easy to verify
that Lemma 7 and Theorem 8 hold.

With the use of top one probability, given two lists of
scores we can use any metric to represent the distance
(listwise loss function) between the two score lists. For
example, when we use Cross Entropy as metric, the
listwise loss function becomes

L(y(i), z(i)) = −
n∑

j=1

Py(i) (j) log(Pz(i) (j))

5. Learning Method: ListNet
We employ a new learning method for optimizing the list-
wise loss function based on top one probability, with Neu-
ral Network as model and Gradient Descent as optimization
algorithm. We refer to the method as ListNet.

Again, let us take document retrieval as example. We de-
note the ranking function based on the Neural Network
model ω as fω. Given a feature vector x(i)

j , fω(x(i)
j) assigns

a score to it. For simplicity, we define φ in Definition 1
as an exponential function. We then rewrite the top one
probability in Theorem 6 as

Ps(j) =
φ(s j)∑n

k=1 φ(sk)
=

exp(s j)∑n
k=1 exp(sk)

Given query q(i), the ranking function fω can generate a
score list z(i)(fω) =

(
fω(x(i)

1), fω(x(i)
2), · · · , fω(x(i)

n(i))
)
. Then

the top one probability of document d(i)
j is calculated as

Pz(i)(fω)(x(i)
j) =

exp(fω(x(i)
j))

∑n(i)

k=1 exp(fω(x(i)
k))

Learning to Rank: From Pairwise Approach to Listwise Approach

Algorithm 1 Learning Algorithm of ListNet
Input:training data {(x(1), y(1)), (x(2), y(2)), ..., (x(m), y(m))}
Parameter: number of iterations T and learning rate η
Initialize parameter ω
for t = 1 to T do

for i = 1 to m do
Input x(i) of query q(i) to Neural Network and com-
pute score list z(i)(fω) with current ω
Compute gradient 4ω using Eq. (3)
Update ω = ω − η × 4ω

end for
end for
Output Neural Network model ω

With Cross Entropy as metric, the loss for query q(i) be-
comes

L(y(i), z(i)(fω)) = −
n(i)∑

j=1

Py(i) (x(i)
j) log(Pz(i)(fω)(x(i)

j)) (2)

With some derivation (please refer to Appendix), we can
get the gradient of L(y(i), z(i)(fω)) with respect to the pa-
rameter ω as follow

4ω =
∂L(y(i), z(i)(fω))

∂ω
= −

n(i)∑

j=1

Py(i) (x(i)
j)
∂ fω(x(i)

j)

∂ω

+
1

∑n(i)

j=1 exp(fω(x(i)
j))

n(i)∑

j=1

exp(fω(x(i)
j))

∂ fω(x(i)
j)

∂ω

(3)

Eq.(3) is then used in Gradient Descent. Algorithm 1 shows
the learning algorithm of ListNet.

Notice that ListNet is similar to RankNet. The only major
difference lies in that the former uses document lists as in-
stances while the latter uses document pairs as instances;
the former utilizes a listwise loss function while the latter
utilizes a pairwise loss function. Interestingly, when there
are only two documents for each query, i.e., n(i) = 2, then
the listwise loss function in ListNet becomes equivalent to
the pairwise loss function in RankNet.

The time complexity of RankNet is of order O(m · n2
max)

(Burges et al., 2005) where m denotes number of training
queries and nmax denotes maximum number of documents
per query. In contrast the time complexity of ListNet is
only of order O(m · nmax). Therefore, ListNet is more effi-
cient than RankNet.

6. Experiments
We compared the ranking accuracies of ListNet with those
of three baseline methods: RankNet (Burges et al., 2005),

Ranking SVM (Herbrich et al., 1999), and RankBoost (Fre-
und et al., 1998) using three data sets. Note that ListNet is
based on top one probability model.

For simplicity, in our experiments we use linear Neural
Network model and omit the constant b in the model:

fω(x(i)
j) = 〈ω, x(i)

j 〉
where 〈·, ·〉 denotes an inner product.2

6.1. Data Collections

We used three data sets in the experiments: TREC, a data
set obtained from web track of TREC 2003 (Craswell et al.,
2003); OHSUMED, a benchmark data set for document re-
trieval (Hersh et al., 1994); and CSearch, a data set from a
commercial search engine.

TREC consists of web pages crawled from the .gov do-
main in early 2002. There are in total 1,053,110 pages
and 11,164,829 hyperlinks in the data set. It also contains
50 queries from the topic distillation task in Web Track of
TREC 2003. The relevance judgments (relevant or irrele-
vant) on the web pages with respect to the queries are given.
There are about 20 features extracted from each query doc-
ument pair, including content features and hyperlink fea-
tures.

OHSUMED (Hersh et al., 1994) is a collection of docu-
ments and queries on medicine, consisting of 348,566 doc-
uments and 106 queries. There are in total 16,140 query-
document pairs upon which relevance judgments are made.
The relevance judgments are either definitely relevant, pos-
sibly relevant, or not relevant. The standard features in
document retrieval (Nallapati, 2004) are extracted for each
query-document pair. There are 30 features in total.

CSearch is a data set from a commercial web search en-
gine. It contains about 25,000 queries, and each query has
one thousand associated documents. There are about 600
features in total for each query-document pair, including
query dependent features and independent features. This
data set provides five levels of relevance judgments, rang-
ing from 4 (”perfect match”) to 0 (”bad match”).

To get a ground truth rank list for each query, we simply use
ranks of instances to create lists (i.e. discrete relevance
judgments). 3

In ranking performance evaluation, we adopted two com-

2Note that Eq. (3) and Algorithm 1 can be applied with any
continuous ranking function.

3This is only one approach for such discrete relevance judg-
ments. If pairwise data is available (such as clicks-through as
proposed by Joachims (2002)), then we need employ a different
approach, i.e., to create listwise data from pairwise data (for ex-
ample, using the algorithm proposed by Cohen et al. (1998)).
This will be our future work.

Learning to Rank: From Pairwise Approach to Listwise Approach

Table 1. Ranking accuracies in terms of MAP

A LN RB RSVM RN

TREC 0.216 0.174 0.193 0.197
OHSUMED 0.305 0.297 0.297 0.303

mon IR evaluation measures: Normalized Discounted Cu-
mulative Gain (NDCG) (Jarvelin & Kekanainen, 2000) and
Mean Average Precision (MAP)(Baeza-Yates & Ribeiro-
Neto, 1999). NDCG is designed to measure ranking ac-
curacy when there are more than two levels of relevance
judgments. For MAP it is assumed that there are two lev-
els: relevant and irrelevant. In calculation of MAP for
OHSUMED, we treated ‘definitive relevant’ as relevant and
the other two levels as irrelevant. For CSearch, we only
used NDCG.

6.2. Ranking Accuracy

For TREC and OHSUMED we divided each data set into
five subsets, and conducted 5-fold cross-validation. In each
trial, three folds were used for training, one fold for valida-
tion, and one fold for testing. For RankNet and ListNet the
validation set in each trial was used to determine the num-
ber of iterations. For Ranking SVM it was used to tune the
coefficient C and for RankBoost it was used for selection
of the number of weak learners. The accuracies we report
in this section are those averaged over five trials.

Figure 1 and Table 1 give the results for TREC. We can
see that ListNet outperforms the three baseline methods of
RankNet, Ranking SVM, and RankBoost in terms of all
measures. Especially for NDCG@1 and NDCG@2, List-
Net achieves more than 4 point gain, which is about 10%
relative improvement.

Figure 2 and Table 1 show the results for OHSUMED.
Again, ListNet outperforms RankNet and RankBoost in
terms of all measures. Moreover, ListNet works better
than Ranking SVM in terms of NDCG@1, NDCG@2,
NDCG@4 and MAP, with exceptions of NDCG@3 and
NDCG@5.

CSearch is a large data set, and thus we did not conduct
cross-validation. Instead, we randomly selected one third
of the data for training, one third for validation, and the re-
maining one third for testing. Figure 3 shows the results of
ListNet, RankNet and RankBoost. Again, ListNet outper-
forms RankNet and RankBoost in terms of all measures.
Since the size of training data is large, we were not able
to run Ranking SVM with the SVMlight tool (Joachims,
1999).

Figure 1. Ranking accuracies in terms of NDCG@n on TREC

Figure 2. Ranking accuracies in terms of NDCG@n on
OHSUMED

6.3. Discussions

We investigated why the listwise method ListNet can out-
perform the pairwise methods of RankNet, Ranking SVM,
and RankBoost.

As explained in Section 1, for the pairwise approach the
number of document pairs varies largely from query to
query. As a result, the trained model may be biased toward
those queries with more document pairs. We observed the
tendencies in all data sets. As example, Table 2 shows the
distribution of the number of document pairs per query in
OHSUMED. We can see that the distribution is skewed:
most queries only have a small number of document pairs
(e.g. less than 5, 000), while a few queries have a large
number of document pairs (e.g. more than 15,000). In the
listwise approach the loss function is defined on each query,
the problem does not exist. This appears to be one of the
reasons for the higher performance by ListNet.

The pairwise approach actually employs a ‘pairwise’ loss
function, which might be too loose as an approximation of
the performance measures of NDCG and MAP. By con-
trast, the listwise loss function used in the listwise ap-
proach can more properly represent the performance mea-
sures. This appears to be another reason that ListNet out-
performs RankNet, etc. To verify the correctness of the

Learning to Rank: From Pairwise Approach to Listwise Approach

Figure 3. Ranking accuracies in terms of NDCG@n on CSearch

Table 2. Document-pair number distribution

P N Q N

<5000 61
<10000 29
<15000 8
<20000 6
>=20000 2

claim, we further examined the optimization processes of
the two methods. We looked at the correlation between the
loss functions used by ListNet and RankNet and the mea-
sure of NDCG during the learning phase. Note that the
major difference between the two methods is the loss func-
tion. The results using the TREC data are shown in Figures
4 and 5. From the figures, we can see that the pairwise loss
of RankNet does not inversely correlate with NDCG. From
iteration 20 to iteration 50, NDCG@5 increases while pair-
wise loss of RankNet decreases. However, after iteration
60, NDCG@5 starts to drop, although pairwise loss is still
decreasing. In contrast, the listwise loss of ListNet com-
pletely inversely correlates with NDCG. More specifically,
from iteration 20 to iteration 50, listwise loss decreases,
NDCG@5 increases accordingly. After iteration 50, list-
wise loss reaches its limit, while NDCG@5 also converges.
Moreover, pairwise loss converges more slowly than list-
wise loss, which means RankNet needs run more iterations
in training than ListNet. Similar trends were observed on
the results evaluated in terms of MAP.

We conclude that the listwise approach is more effective
than the pairwise approach for learning to rank.

7. Conclusions
In this paper, we have proposed a new approach to learning
to rank, referred to as the listwise approach. We argue that
it is better to take this approach than the traditional pair-
wise approach in learning to rank. In the listwise approach,
instead of using object pairs as instances, we use list of ob-
jects as instances in learning.

20 40 60 80 100 120 140 160 180 200

0.47

0.48

0.49

0.5

Epoch number

M
ea

su
re

20 40 60 80 100 120 140 160 180 200
0.28

0.3

0.32

0.34

Lo
ss

NDCG@5
Pairwise loss

Figure 4. Pairwise loss v.s. NDCG@5 in RankNet

20 30 40 50 60 70 80
0.48

0.485

0.49

Epoch number

M
ea

su
re

20 30 40 50 60 70 80
0.01

0.02

0.03

Lo
ss

NDCG@5
Listwise loss

Figure 5. Listwise loss v.s. NDCG@5 in ListNet

The key issue for the listwise approach is to define a list-
wise loss function. In this paper, we have proposed em-
ploying a probabilistic method to solve it. Specifically, we
make use of probability models: permutation probability
and top one probability to transform ranking scores into
probability distributions. We can then view any metric be-
tween probability distributions (e.g., Cross Entropy) as the
listwise loss function.

We have then developed a learning method based on the ap-
proach, using Neural Network and Gradient Descent. Ex-
perimental results with three data sets show that the method
works better than the existing pairwise methods such as
RanNet, Ranking SVM, and RankBoost, suggesting that it
is better to take the listwise approach to learning to rank.

Future work includes exploring the performance of other
objective function besides cross entropy and the perfor-
mance of other ranking model instead of linear Neural
Network model. We will also investigate the relationship
between listwise loss function and performance measures
such as NDCG and MAP used in information retrieval.

Acknowledgments
Bin Gao has given many valuable suggestions for this work.
We would also like to thanks Kai Yi for his help in our

Learning to Rank: From Pairwise Approach to Listwise Approach

experiments.

References
Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern in-

formation retrieval. Addison Wesley.

Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M.,
Hamilton, N., & Hullender, G. (2005). Learning to rank
using gradient descent. Proceedings of ICML 2005 (pp.
89–96).

Cao, Y. B., Xu, J., Liu, T. Y., Li, H., Huang, Y. L., & Hon,
H. W. (2006). Adapting ranking SVM to document re-
trieval. Proceedings of SIGIR 2006 (pp. 186–193).

Cohen, W. W., Schapire, R. E., & Singer, Y. (1998). Learn-
ing to order things. Advances in Neural Information Pro-
cessing Systems. The MIT Press.

Crammer, K., & Singer, Y. (2001). Pranking with ranking.
Proceedings of NIPS 2001.

Craswell, N., Hawking, D., Wilkinson, R., & Wu, M.
(2003). Overview of the TREC 2003 web track. Pro-
ceedings of TREC 2003 (pp. 78–92).

Freund, Y., Iyer, R., Schapire, R. E., & Singer, Y. (1998).
An efficient boosting algorithm for combining prefer-
ences. Proceedings of ICML 1998 (pp. 170–178).

Herbrich, R., Graepel, T., & Obermayer, K. (1999). Sup-
port vector learning for ordinal regression. Proceedings
of ICANN 1999 (pp. 97–102).

Hersh, W. R., Buckley, C., Leone, T. J., & Hickam, D. H.
(1994). OHSUMED: An interactive retrieval evaluation
and new large test collection for research. Proceedings
of SIGIR 1994 (pp. 192–201).

Jarvelin, K., & Kekanainen, J. (2000). IR evaluation meth-
ods for retrieving highly relevant documents. Proceed-
ings of SIGIR 2000 (pp. 41–48).

Joachims, T. (1999). Making large-scale support vector
machine learning practical. Advances in kernel methods:
support vector learning, 169–184.

Joachims, T. (2002). Optimizing search engines using
clickthrough data. Proceedings of KDD 2002 (pp. 133–
142).

Lebanon, G., & Lafferty, J. (2002). Cranking: Combining
rankings using conditional probability models on permu-
tations. Proceedings of ICML 2002 (pp. 363–370).

Luce, R. D. (1959). Individual choice behavior. Wiley.

Matveeva, I., Burges, C., Burkard, T., Laucius, A., &
Wong, L. (2006). High accuracy retrieval with multiple
nested ranker. Proceeings of SIGIR 2006 (pp. 437–444).

Nallapati, R. (2004). Discriminative models for informa-
tion retrieval. Proceedings of SIGIR 2004 (pp. 64–71).

Plackett, R. L. (1975). The analysis of permutations. Ap-
plied Statistics, 24(2), 193–202.

Shashua, A., & Levin, A. (2002). Taxonomy of large mar-
gin principle algorithms for ordinal regression problems.
Proceedings of NIPS 2002.

Yu, H. (2005). SVM selective sampling for ranking with
application to data retrieval. Proceedings of KDD 2005
(pp. 354–363).

Appendix
A: Proof of Lemma 2

Proof According to the definition of φ(.), we have
Ps(π) > 0 for any π ∈ Ωn. Furtheremore,
∑

π∈Ωn

Ps(π) =
∑

π∈Ωn

n∏

j=1

φ(sπ(j))∑n
k= j φ(sπ(k))

=

n∑

π(1)=1

n∑

π(2)=1,π(2),π(1)

...

n∑

π(q)=1,π(q),π(l),∀l<q

...

n∑

π(n)=1,π(n),π(l),∀l<n

n∏

j=1

φ(sπ(j))∑n
k= j φ(sπ(k))

=

n∑

π(1)=1

φ(sπ(1))∑n
k=1 φ(sπ(k))

n∑

π(2)=1,π(2),π(1)

φ(sπ(2))
n∑

k=2
φ(sπ(k))

...

n∑

π(q)=1,π(q),π(l),∀l<q

φ(sπ(q))∑n
k=s φ(sπ(q))

...

n∑

π(n)=1,π(n),π(l),∀l<n

φ(sπ(n))∑n
k=n φ(sπ(k))

Since for any 1 ≤ q ≤ n,
n∑

π(q)=1,π(q),π(l),∀l<q

φ(sπ(q))∑n
k=q φ(sπ(q))

= 1

Then, we have,
∑

π∈Ωn

Ps(π) = 1

Given the two properties above, we conclude that Ps(π),
π ∈ Ωn forms a probability distribution over the set Ωn.

B: Proof of Theorem 3

Proof From Definition 1, we have

Ps(π) =

n∏

j=1

φ(sπ(j))∑n
k= j φ(sπ(k))

and

Ps(π′) =

n∏

j=1

φ(sπ′(j))∑n
k= j φ(sπ′(k))

.

Learning to Rank: From Pairwise Approach to Listwise Approach

In order to prove Ps(π) > Ps(π′), we need to prove
q∏

j=p

φ(sπ(j))∑n
k= j φ(sπ(k))

>

q∏

j=p

φ(sπ′(j))∑n
k= j φ(sπ′(k))

.

Notice that
∏q

j=p φ(sπ(j)) =
∏q

j=p φ(sπ′(j)). Thus, we need
to prove

q∏

j=p

1∑n
k= j φ(sπ(k))

>

q∏

j=p

1∑n
k= j φ(sπ′(k))

. (4)

For any p < j ≤ q, because sπ(p) > sπ(q) and φ(.) is an
increasing function, we have φ(sπ(p)) > φ(sπ(q)). Conse-
quently, we have

1∑n
k= j φ(sπ(k))

>
1∑n

k= j φ(sπ′(k))
. (5)

With (6) and (5) we can validate that Ps(π) > Ps(π′) holds.

C: Proof of Theorem 6

Proof From Definition 2, we have
Ps(j) =

∑

π∈Ωn,π(1)= j

Ps(π) =

=
∑

π∈Ωn,π(1)= j

n∏

p=1

φ(sπ(p))∑n
k=p φ(sπ(k))

=

n∑

π(1)= j,π(2)=1,π(2),π(1)

...

n∑

π(q)=1,π(q),π(l),∀l<q

...

n∑

π(n)=1,π(n),π(l),∀l<n

n∏

p=1

φ(sπ(p))∑n
k=p φ(sπ(k))

=
φ(sπ(1))∑n

k=1 φ(sπ(k))

n∑

π(1)= j,π(2)=1,π(2),π(1)

φ(sπ(2))∑n
k=2 φ(sπ(k))

...

n∑

π(q)=1,π(q),π(l),∀l<m

φ(sπ(q))∑n
k=q φ(sπ(q))

...

n∑

π(n)=1,π(n),π(l),∀l<n

φ(sπ(n))∑n
k=n φ(sπ(n))

=
φ(s j)∑n

k=1 φ(sπ(k))
.

D: Derivation of gradient

For Eq. (2)

4ω =
∂L(y(i), z(i)(fω))

∂ω
= −

n(i)∑

j=1

Py(i) (x(i)
j)
∂ log(Pz(i)(fω)(x(i)

j))

∂ω

(6)
Furthermore, from

log(Pz(i)(fω)(x(i)
j)) = fω(x(i)

j) − log

n(i)∑

k=1

exp(fω(x(i)
k))

 ,

we have

∂ log(Pz(i)(fω)(x(i)
j))

∂ω
=
∂ fω(x(i)

j)

∂ω

− 1
∑n(i)

k=1 exp(fω(x(i)
k))

n(i)∑

k=1

exp(fω(x(i)
k))

∂ fω(x(i)
k)

∂ω

(7)

Substitute Eq. (7) into Eq. (6) we obtain

4ω =
∂L(y(i), z(i)(fω))

∂ω

= −
n(i)∑

j=1

Py(i) (x(i)
j)

∂ fω(x(i)

j)

∂ω

− 1
∑n(i)

k=1 exp(fω(x(i)
k))

n(i)∑

k=1

exp(fω(x(i)
k))

∂ fω(x(i)
k)

∂ω

= −
n(i)∑

j=1

Py(i) (x(i)
j)
∂ fω(x(i)

j)

∂ω

+

n(i)∑

j=1

Py(i) (x(i)
j)

(1
∑n(i)

k=1 exp(fω(x(i)
k))

n(i)∑

k=1

exp(fω(x(i)
k))

∂ fω(x(i)
k)

∂ω

)

= −
n(i)∑

j=1

Py(i) (x(i)
j)
∂ fω(x(i)

j)

∂ω

+

(1
∑n(i)

k=1 exp(fω(x(i)
k))

n(i)∑

k=1

exp(fω(x(i)
k))

∂ fω(x(i)
k)

∂ω

) n(i)∑

j=1

Py(i) (x(i)
j)

(8)

Since
n(i)∑

j=1

Py(i) (x(i)
j) = 1,

we have

4ω =
∂L(y(i), z(i)(fω))

∂ω

= −
n(i)∑

j=1

Py(i) (x(i)
j)
∂ fω(x(i)

j)

∂ω

+
1

∑n(i)

k=1 exp(fω(x(i)
k))

n(i)∑

k=1

exp(fω(x(i)
k))

∂ fω(x(i)
k)

∂ω

(9)

which is equivalent to Eq. (3).

