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Measurements studies show that there exist large spatial and temporal fluctuations in the traffic load handled
by different access points in Wireless LANs. In order to alleviate this problem, researchers have proposed
various load-balancing techniques based for instance on channel assignment, power control, or client allocation.
Fundamentally, however, assigning each AP the same amount of bandwidth (one channel) can inevitably lead to
inefficient usage of the spectrum. In this work, we address the problem by adaptively tuning a radio parameter
that has so far been largely untouched in Wireless LAN networks: the channel-width. Particularly, we show that a
significant improvement in network capacity and per-client fairness can be achieved if the channel-widths at different
APs are made a function of the traffic load. We propose the use of dynamic-width channels, where every AP adjusts
its center-frequency and channel width to match its current traffic load. Our techniques are made possible by recent
advances in radio hardware design and do not require changes in current hardware. We demonstrate the effectiveness
of our scheme through analysis and simulations using real-world scenarios.
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I. I NTRODUCTION

One of the core design principles of IEEE 802.11 networks
is the use of a simple, fixed channelization structure. The
entire available spectrum is divided into smaller channels
of equal bandwidth, and the network is operated as a cell
network with one channel allocated per cell. For example, the
2.4GHz ISM band has 3 non-overlapping channels, and each
Access Point (AP) operates on a particular channel. A Wi-Fi
client can only communicate with an AP on one IEEE 802.11
channel at any given instant in time. We argue that this fixed
channelization structure severely constrains the total capacity
and fairness of IEEE networks. Here’s why: typically, clients
are distributed across the network unevenly, certain APs
become hotspots while others remain unused. Having a-priori
channels of fixed width does not account for this scenario
and suchspatial disparityof traffic distribution [21], [14],
[15] reduces the overall achievable capacity of the network.
To make it more concrete, consider for example the case of
a single client in a Wireless Local Area Network (WLAN)
with multiple APs. Current IEEE 802.11 will allow the client
to only utilize the bandwidth of one channel.

A second reason for inefficiency is un-fairness. The fact that
some APs are heavily loaded while others are not, creates a
location-induced fairness problem. For example, an AP near
a conference room might serve multiple clients on a single
channel, which hurts the performance of all clients associated
to this AP, while an AP in the corner of a building serves very
few clients.

We take a fresh look at the concept of channelization
in IEEE 802.11 networks. Our work is inspired by recent
advances in hardware technology that allow wireless devices
to dynamically change their operating frequency and channel-
width [3], [6], [28] with very little overhead. Based on
these developments, we propose and evaluate a radically new
WLAN architecture that breaks the conventional channeliza-
tion paradigm – a centralized controller dynamically allocates
variable size channel-widths and center-frequencies to every
AP. The width of an AP’s channel is determined as a function
of the traffic demand and the number of interfering APs in
its vicinity.

By dynamically allocating variable-length bands to each AP,
the network is able to cope with both temporal and spatial
disparity of user traffic, which significantly increases the
overall network capacity. If there are few clients in the system,
the centralized controller assigns a channel with larger width
to each AP (subject to practical limitations), enabling the
clients to communicate at a higher speed. In addition, this
approach is better in terms of fairness than IEEE 802.11,
because heavily-loaded APs get larger bandwidth and are thus
able to balance the per-client throughput across the network.

We also provide a careful exploration of the theoretical
problem of allocating channels of variable width to APs.
Whereas the problem of channel assignment in the conven-
tional channelization framework can be modelled as graph
coloring, this approach does not model the practical constraint
that, due to hardware limitations, each AP can only use a

contiguous spectrum band. The presence of this contiguity
constraint introduces important new algorithmic challenges.
We present a compact integer linear program (ILP) that finds
the optimal solution. Being computationally inefficient, the
practical applicability of this ILP is limited to small scale
networks. Since the problem of allocating dynamic-width
channels is NP-hard, we present a efficient approximation
algorithm that succeeds in avoiding fragmentation and can be
shown to be within a small constant factor of the optimum in
terms of both throughput and fairness. Finally, we also pro-
pose three computationally efficient heuristic approaches. Our
algorithms take into account the practical constraint that often,
only a discrete set of channel-width options is available; and
they achieve close to optimal performance while significantly
outperforming IEEE 802.11’s fixed channelization approach.

To summarize, we make three primary contributions:

• We revisit channelization, which is a fundamental, yet
largely unexplored, aspect in the design of WLANs. We
show that among other parameters, such as transmission
power and data rate, WLAN designers should consider
the channel-width as a configurable parameter in the
design of efficient WLANs.

• We expose and quantify the vast potential increase in
both capacity and fairness that results from abandoning
today’s fixed channelization concept, and we propose a
system that is capable of tapping this potential.

• Based on a formal definition of the resulting optimization
problem, we devise and evaluate novel algorithms that
dynamically and flexibly allocate channels of variable
width to different APs. These algorithms are computa-
tionally efficient and directly applicable in practice as
they operate under the constraints implied by today’s
available hardware platforms. All our algorithms achieve
significantly better results than the state-of-the-art solu-
tions based on fixed channels.

Our results are obtained using extensive simulation in
QualNet that are triggered by real data traces from large
enterprise/campus WLAN deployments, as well as a network
with user mobility. Additionally, since the simulations closely
capture the capabilities and constraints of existing hardware,
our results show that our approach can be used to significantly
improve the per-client capacity and fairness of IEEE 802.11
networks.

II. A DAPTIVE CHANNEL BANDWIDTH

Recent advances in hardware technology allow wireless
devices to dynamically change their center frequency and
bandwidth to a range of values. For example, WiMAX allows
clients to use bandwidths that are multiples of 1.25 MHz,
1.5 MHz and 1.75 MHz [6]. Atheros 802.11 chipsets [2]
forms a 40 MHz channel by bonding two continuous 20 MHz
channels. Furthermore, we have modified an Atheros chipset
to use 5 MHz channel width and any central frequency in
steps of 1 MHz in the 2.4 GHz ISM band. These technical
advances enable us to reconsider some of the previous design
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Fig. 1. A network with four mutually interfering APs. With fixed channel
bandwidths, both throughput and fairness is suboptimal.

TABLE I

BANDWIDTH RECEIVED BY EACH CLIENT (NORMALIZED BY 20MHZ)

Scenario AP1 AP2 AP3 AP4 B FI
Case 1:C 1/6 1 1/3 1 4 0.58
Case 1:A 2/6 1/2 1/3 1/2 4 0.97

Case 2:C 1/6 X 1/3 1/2 3 0.82
Case 2:A 2/6 X 1/3 1/2 4 0.97

decisions in wireless networks that were made due to practical
limitations of the time.

IEEE 802.11 divides the spectrum into a fixed number of
channels with equal channel width, which is 22 MHz wide
in IEEE 802.11b/g and 20 MHz wide in IEEE 802.11a.
Under the assumption of uniform traffic distribution across
the network, channelization increases capacity and reduces
interference. However, in dynamc conditions, the adherence
to fixed-width channels can be problematic and suboptimal.
When the number of APs is fewer than the number of avail-
able channels, the spectrum is not fully utilized since each
AP uses only one channel. On the other hand, if the number
of APs is large, two or more neighboring APs are inevitably
assigned the same channel, which creates interference [9].
Recent measurements have shown that spatial and temporal
disparity in client distributions [11], [21], [14], [15] in large-
scale WLANs exist. For example, a recent study of IBM’s
WLAN consisting of 177 APs [11] shows that 40% of the
APs never have more than 10 active clients, while a few
APs in auditoriums and cafeterias have 30 simultaneously
associated users. The study also shows that the set of heavily
loaded APs changes over time, but the current practice of
assigning fixed-width channels in IEEE 802.11 networks does
not take into account such spatial and temporal disparity in
client distributions.

Figure 1 illustrates the scenario with four APs all within
mutual interference distance of one another. In case 1,AP1

has 6 clients,AP3 has 3 clients, while the remaining two APs
have one client each. In case 2, client A moves away from
AP2 and associates toAP4. We compare the performance
of using the fixed-width channels (C) with adaptive-width
channels (A). In the fixed-width channel case, the spectrum is
divided into 4 channels of 20 MHz each. In the adaptive-width
channel case, channels may be 10, 20, or 40 MHz. Table I lists
the bandwidth receivedper client at each AP. Also included
is the total bandwidth used (B), and Jain’s fairness index (FI).
The index is calculated using(

∑
ci)2/n

∑
c2
i , whereci is the

bandwidth obtained by clienti, andn is the total number of
clients.

In case 1, the fixed-width channelization leads to severe un-
fairness among different clients. The client in the crowded
location (AP1) receives 1/6 of bandwidth compared to the
client associated withAP2 and AP4. In contrast, with an
allocation of 40 MHz toAP1, 20 MHz toAP2 and 10 MHz
to the remaining APs, fairness improves significantly to 0.97.

Flexible and adaptive channelization is not only important
for fairness, but also for system capacity. For instance, in case
2 if client A moves fromAP2 to AP4, an adaptive approach
can reallocate the 10 MHz spectrum formerly used byAP2

to AP4 (thus givingAP4 a total of 20 MHz).
Our study of real-world traces shows that in a large corpor-

tate and University wireless networks fairness and capacity
problems illustrated in Figure 1 occur frequently.

These examples motivate the need for adaptive-width chan-
nel allocation in IEEE 802.11 networks. In Section 6, we
show that a wireless network that implements our algorithms
to assign different channel-widths to different APs, achieves
higher capacity and better per-client fairness than a IEEE
802.11 network.

III. R ELATED WORK

AP load balancing in WLANs attempts to evenly distribute
the number of clients across all APs in a region. One way
to solve this problem is to use Cell Breathing [10]. In
this approach the APs in a region adjust their transmission
power to force some of its’ associated clients to handoff to
neighboring APs. Similarly, APs might also increase their
transmission power to induce clients to associate to them.
This technique is very useful in hotspot and flash crowd
scenarios, where many users associate to the same AP, even
when the neighboring APs are lightly loaded. Although this
scheme is useful is balancing the load across APs, it can
potentially worsen the performance if clients associate to far
away APs and send the packets at a lower data rate. An
alternate approach is client-based, where Wi-Fi devices take
smart decisions and associate to the more lightly loaded AP
[27]. However, this scheme does not completely solve the
user unfairness problem. For example, many clients close to
an AP might be contending for resources on a channel of
fixed bandwidth, while fewer clients on a neighboring AP
might be contending on the same bandwidth.

Another approach to solving the user unfairness problem is
to assign more APs to the WLAN [8], [23]. Each user will
have a dedicated AP in most scenarios, and so every user gets
around the same throughput. However, the benefits of these
schemes are limited because of fixed bandwidth channels.
First, in extremely dense hotspots, the number of clients might
outnumber the number of APs and user unfairness might
be unavoidable. Second, when there are very few clients in
the network, this technique will waste a large amount of
bandwidth.

We overcome the shortcomings of the above schemes by
attacking the fundamental problem of fixed-width channels.
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We allocate variable size contiguous spectrum to the APs as a
function of its load. Our previous work on context of cognitive
radio networks ([28], [29]) exploits tunable bandwidths, but
we are not aware of load-aware bandwidth assignment in
infrastructure-WLAN networks

There are several schemes that are complementary to ours
and can be integrated with our proposed approach to further
enhance the performance of the WLAN. For example, each
AP may allocate a different spectrum slice to every client
that is associated to it. This will minimize interference from
nearby transmitters and give better throughput.

IV. D ESIGN AND ALGORITHM

As pointed out, we envision a network architecture in which
the bandwidth of different APs can be adapted according to
their respective traffic intensity. Hotspots with many clients
will get wider channels at the cost of neighboring APs with
little load, which will receive less bandwidth. We begin
the section with an overview of our assumptions regarding
our system and architecture. Based on this, we formulate a
theoretical model which allows us to go on and formulate our
algorithms in Sections IV-C through IV-E.

A. System Assumptions

We primarily consider enterprise networks in which all APs
are connected via a backbone network. Each access point
is capable of obtaining some measure that represents its
currentload. A simple measure could be the number of clients
currently associated with this AP, but more sophisticated and
accurate measures that take into account the traffic demands
of each client may be preferable. At any rate, each AP
periodically reports its load to a centralized server that is
attached to the network’s backbone network and maintains
a view of the traffic distribution across the network in a
local database.1 Periodically, the centralized server—based
on information stored in its database—runs an algorithm that
computes an optimal or near-optimal allocation of channel-
widths and center-frequencies to APs. Once computed, it
sends the allocations to the respective APs which, along with
their associated clients, switch to the new center-frequency
and channel-width.

Besides the flexibility to assign more bandwidth to certain
APs, bandwidth allocation must also be adaptive in a temporal
sense. That is, in order to react to mobility and the dynamic
nature of user demand at different APs, bandwidth allocation
should not be static in time, as it is in the standard IEEE
802.11 architecture. The centralized server therefore reassigns
new bandwidths and center-frequencies to APs periodically,
say in intervals of 10 minutes. Alternatively, the spectrum
allocation may be updated whenever athreshold of subopti-
mality is surpassed. That is, APs switch to a new bandwidth

1Alternatively, using more decentralized, distributed solutions are
also possible and an interesting direction for future research. Since
the main focus of this work is to identify and quantify the potential
gain when abandoning fixed bandwidth channels in IEEE 802.11,
we focus on the conceptually simpler centralized solution.

assignment only when the efficiency of the currently used
assignment degrades below a certain point in comparison to
the optimal reassignment.

Efficiently setting up and managing a Wireless LAN network
poses challenging and complex problems. Several degrees of
freedom may be tuned to optimize the network’s throughput
and/or fairness, including transmission ranges (cell breath-
ing [10]), data rates, load balancing schemes, modulation
schemes, density of deployment, and even the locations of
the APs. In the sequel, we assume these variables to be fixed
(e.g., we assume that each AP has configured the transmission
power to obtain the uniform transmission range in different
bandwidth settings.), which allows us to more closely study
the impact of flexible and dynamic bandwidth allocation on
WLAN efficiency. Doing so keeps our results clean from
complex inter-dependencies. On the other hand, it is clear that
by simultaneously optimizing over multiple tuning parameters
(e.g., by combining our adaptive-bandwidth allocation with
cell-breathing), even better results are achievable.

Further assumptions we make is that the achievable data
rate is linear to the available bandwidth [13]. Also, we make
the conservative assumption that overlapping bandwidths al-
ways interfere. That is, we seek to assign non-overlapping
frequency interval to any two interfering access points.

Clearly, numerous problems of utmost practical importance
remain. For instance, since bandwidths of different APs are
variable and dynamic in time, there needs to be an efficient
method for clients to discover the bandwidth and center
frequency of its neighboring access points. Also, the process
of an AP (along with its associated clients) switching to a
different center-frequency and bandwidth must be smooth
and seamless. A more detailed discussion of these and other
important practical issues (including the issue of legacy
clients) follows in Section V.

B. Problem Formulation and Notation

The main algorithmic problem involved in the system ar-
chitecture sketched in the previous section is the selection of
appropriate channel-widths and center-frequencies. We study
a simple network model that allows us to characterize the
potential gain of our novel channelization approach. It also
allows us to analyze and understand the respective merits
of different allocation algorithms. The model makes several
simplifying assumptions, but manages to capture those char-
acteristics that govern the design of appropriate algorithms for
our bandwidth selection problem. As we focus on the impact
of having different channel-widths at APs, we assume each
AP to have a fixed (but not necessarily uniform) transmission
powerPi and fixed location.

Let the network consist ofn access pointsAP1, . . . , APn.
Given the fixed locations and transmission powers, we can
determine aconflict-graph G = (V, E) of the wireless
network as follows [19], [26]: Every AP is represented by
a node i ∈ V and there is an edge between two APs
if they have significantly overlapping coverage regions and
should therefore avoid transmitting on the same frequency.
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Fig. 2. Network in which a throughput-optimal solution is unfair.
T and F denote the allocations in a throughput-optimal and fair
solution, respectively.
Practically, we model an edge(i, j) ∈ E if simultaneous
transmission of bothAPi and APj could result in harmful
interference at some client in the network. Clearly, this
binary model of interference is a tremendous simplification
of physical reality [25]. In the context of our work, however,
it is justified as it is conservative and ignores additional
optimizations that could further enhance our system.

In our practical system, the interference relationship between
neighboring access points can be determined in an ad hoc
fashion (e.g., by APs using beacon messages to probe their
proximity to other APs, or by client feedback) as proposed
for instance in [26]; or it may be statically provided as part
of the network planning. In any case, the conflict graph is
static and needs to be updated only rarely, therefore posing no
serious practical problem on our system design. For anAPi,
we denote byN(i) the set of all neighboring APs that are
potentially in conflict withAPi, N(i) = {APj | (i, j) ∈ E}.

Let the totaldemandof clients that are associated toAPi be
denoted byDi bit/s. This demand, along with the interference
graph, forms the input to the spectrum assignment algorithm
running in the centralized server. Theload that an AP can
serve depends on its clients’ demand and, crucially, on its
channel-width. Let Bi be the channel-width allocated toAPi

and let Btot be the total system bandwidth available. As
pointed out, it can be modeled as

Li = min{χBi, Di}, (1)

whereχ is a constant that captures how efficiently the avail-
able frequency spectrum can be utilized [13]. With standard
modulation techniques, this constant is roughlyχ ≈ 1.2

Dynamic-Width Channel-Assignment Problem: The
dynamic-width channel-assignment problem in infrastructure-
based wireless networks asks for anon-interfering assignment
of a start frequencySi and a bandwidthBi to each access
point APi. The access pointAPi uses the frequency band
Ii = [Si, Si + Bi] for serving its clients and satisfies a load
of Li = min{χBi, Di}. The assignment isnon-interferingif
the assigned intervalsIi andIj of any two neighboring APs
i and j, (i, j) ∈ E, is non-overlapping.

A practical algorithm for the dynamic-width channel-
assignment problem should achieve two goals:high through-
put and fairness. The former is achieved by maximizing

2Formula 1 abstracts away the fact that different frequency bands
have different signal propagation characteristics. Within the spectrum
and bandwidth range studied in this paper, however, the formula is
a reasonable approximation.

system throughputLSys =
∑

i∈V Li. For fairness, various
definitions can be considered and the optimization criterion
can be defined appropriately. The difficulty is that in many
cases, achieving high system throughput and fairness are
contradicting aims. Consider the star graph with uniform
demands shown in Figure 2. An allocation maximizing system
throughput assigns each leaf AP the entire spectrum, while
giving no bandwidth to the center AP. While achieving max-
imum throughput, such a solution starves clients associated
to the AP in the center. A completely fair solution, on the
other hand, consists of assigning each AP a channel-width
spanning half of the totally available spectrum. In this paper,
we address this fairness vs. throughput trade-off by a simple
practical solution: We fix a lower bound on the degree of
fairness that must be maintained between different APs and
strive to optimize the system throughput under this condition.

C. Optimal Solution

The dynamic-width channel-assignment problemis funda-
mentally different fromcoloring problemsor multicoloring
problemsthat have been extensively studied in the networking
community. The reason is that, unlike in (multi)coloring
problems, the interval assigned to each AP must consist
of a contiguouschunk of spectrum of various sizes. This
contiguity constraint that does not exist in coloring problems
can lead tofragmentationof the spectrum. When spectrum
becomes fragmented, APs may be unable to reserve a large
contiguous part of the spectrum even though the totality
of unused spectrum would be sufficiently high. Besides its
practical importance, the problem is thus of great theoretical
importance as it combines the complexity of both coloring
and packing problems.

It is possible to characterize the optimal solution of a
problem instance by means of an integer linear program (ILP).
Let bi andsi be variables that denote the bandwidth and start
frequency allocated toAPi. Further, for each pair of APsi
and j with (i, j) ∈ E, we use two binary indicator variables
fij andfji. The following ILP determines the optimal system
throughput achievable in a network with arbitrary channel-
width options.

max
∑

APi∈V

bi

si + bi − sj − fij ·B < 0 , ∀(i, j) ∈ E

sj + bj − si − fji ·B < 0 , ∀(i, j) ∈ E

fij + fji ≤ 1 , ∀(i, j) ∈ E

si + bi ≤ Ftop , ∀ APi ∈ V

si ≥ Fbottom , ∀ APi ∈ V

χ · bi ≤ Di , ∀ APi ∈ V

fij , fji ∈ {0, 1} , ∀(i, j) ∈ E

The first two constraints force the auxiliary variablesfij and
fji to behave as follows. The variablefij is 1 if and only if
the top-frequencysi+bi of APi’s spectrum interval is “above”
(higher frequency) than the lower endsj of APj ’s interval.
Conversely,fji = 1 if and only if sj + bj > si. Considering
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two intervals[si, si+bi] and[sj , sj +bj ], it is easy to observe
that these intervals overlap if and only ifsi+bi > sj andsj +
bj > si, i.e., if the top-frequency of both intervals are higher
than the start-frequencies of the respective other interval. The
third constraint therefore guarantees that no two neighboring
intervals in the graph overlap, i.e., the resulting channel
assignment is non-overlapping. The remaining constraints are
straightforward. The first two ensure that the assigned interval
is located within the available spectrum[Fbottom, Ftop]. And
finally, the sixth one expresses that raising the bandwidth
above the demand does not increase throughput.

The important aspect missing in this ILP formulation is
fairness. However, fairness conditions can easily be integrated
into our ILP by adding additional constraints. In our evalua-
tion section, for instance, we consider a fairness condition in
which every AP is guaranteed to receive at least its fair share
of bandwidth in its neighborhood. In particular, we define
φ(i) = Di/(Di+

∑
j∈N(i) Dj) as theminimum fair spectrum-

sharethatAPi should receive. We can then enforce this notion
of fairness by adding the following constraint to the ILP:
bi ≥ αφ(i) · Btot, ∀ APi ∈ V. The constantα characterizes
the trade-off between fairness and throughput. The smallerα,
the more flexibility the ILP solver has to sacrifice fairness in
order to improve throughput. Other notions of fairness can
similarly be included into our ILP formulation.

The ILP formulation assumes start-frequencies and channel-
widths to be arbitrarily tunable. This is in contradiction to
existing hardware platforms which typically have a small
limited number of bandwidth options, a set of available
channel-widths to which the transceiver can be tuned. Discrete
sets of bandwidths can easily be incorporated in our ILP
formulation by restricting the variablesbi to belong to a
corresponding set of integers. In Section VI, we examine the
impact of this discrete set of bandwidth options.

While the ILP formulation describes the theoretical optimum
of any problem instance, it is computationally practicable only
in small networks. Specifically, the dynamic-width channel-
assignment problem is NP-hard and hence, unlessP = NP ,
there exists no efficient solution for its ILP formulation. For
the sake of simplicity, we present a simplified version of the
theorem that proves hardness only forα > 2/3.

Theorem 4.1:The dynamic-width channel-assignment
problem problem is NP-hard for any fairness parameter
α > 2/3. This holds even in restricted geometric graph
models such as the unit disk graph.

Proof: The proof is by reduction to the 3-coloring
problem of a graph, which is known to be NP-complete
even in unit disk graphs [17]. Given an instanceG =
(V, E) of the 3-coloring problem, construct an instanceG′ =
(V ′, E′) of the dynamic-width channel-assignment problem
as follows. For eachvi ∈ V , create 7 APsAP 1

i , . . . , AP 7
i

and connect them to build three triangles as(AP 1
i , AP 2

i ),
(AP 1

i , AP 3
i ), (AP 2

i , AP 4
i ), (AP 2

i , AP 5
i ), (AP 3

i , AP 6
i ), and

finally, (AP 3
i , AP 7

i ) (cf Figure 3). Further, assume that for
eachi, AP 2

i andAP 3
i have1/(α− 2/3) backlogged clients,

and all other APs have one client. When scaling,D2
i =

v1
i

v3
i

v6
i

v7
i

v2
i

v4
i

v5
i

v1
zv1

y
v1

x

Fig. 3. The gadget representing a node inG.

D3
i = α− 2/3 and all other demands are1. Finally, for each

(vi, vj) ∈ E, add a link(AP 1
i , AP 1

j ) to E′. Observe that due
to the fairness condition, every feasible solution must assign
APs AP 2

i andAP 3
i a spectrum block of width at least

B2
i = B3

i

!≥ αφ(i)Btot ≥ α/(α− 2/3)Btot

2/(α− 2/3) + 3
=

Btot

3
.

We first show that ifG is 3-colorable (yes-instance), the
total system throughput is at leastT yes

Sys ≥ 7|V |Btot/3. Since
G is 3-colorable, the graph induced by the APsAP 1

i can also
be colored using three colors. Since each gadget itself can
also be colored using three colors (regardless of the specific
color assigned to its connector APAP 1

i ), it follows that the
entire graphG′ is 3-colorable. The lower bound onT yes

Sys is
now easily obtained by assigning each AP with colors 1, 2,
and 3 the spectrum[Fbottom, Fbottom + Btot/3], [Fbottom +
Btot/3, Fbottom+2Btot/3], and[Fbottom+2Btot/3, Fbottom+
Btot], respectively.

Next, we show that ifG is not 3-colorable (no-instance),
the total system throughputTno

Sys is strictly less than7|V |/3.
Since the subgraph induced by APsAP 1

i is not 3-colorable,
there must exist at least one AP, sayAP 1

x , that is assigned a
channel-width of at mostBtot/4. The total throughput achieve
by APsAP 1

x , . . . , AP 7
x is then at most(2 + 1/4)Btot. Also,

because all APsAP 2
i andAP 3

i have a bandwidth of at least
Btot/3, no APAP 1

i in G′ can have a higher bandwidth than
Btot/3. Hence, the total throughput is at most|V − 1|Btot ·
7/3 + (2 + 1/4)Btot < T yes

Sys. This concludes the proof.
While the ILP formulation can thus be used to compute

optimal assignments in small-scale networks, this approach
does not scale. Therefore, we now investigate computationally
efficient approximate solutions.

D. LP-Based Approximation
As mentioned earlier, whereas the problem of channel

assignment in the conventional channelization framework can
be modelled as graph coloring, a key new flavor in our
problem is the need for avoidingfragmentation. Specifically,
we need to assign one interval to each node, which does not
overlap with the intervals assigned to its conflicting nodes
(neighbors in the conflict graph). We have degrees of freedom
in deciding how long the intervals should be and in deciding
where to put them.

1) A Packing Algorithm that avoids Fragmentation:We
start by first studying the packing problem in isolation.
Assume that the widths of the bandwidth interval allocated to
each AP was already determined. How should we efficiently
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place these intervals? Intuitively, adhering to the following
rules of thumb may help:

R1. Pack large items first.
R2. Try to fill up from one end.

Besides being a packing problem, our channel-bandwidth
assignment problem also has the flavor of a complex (inter-
val) coloring problem. In greedy coloring algorithms, nodes
are visited one-by-one, and each node tries to reuse some
existing color if possible selecting a new color only if
necessary. Clearly, this procedure colors any graph using at
most ∆(U) + 1 colors, where∆(U) is the maximum node-
degree. Similarly, if we were not constrained to assign a
contiguous intervalto each AP, we could assure that all
required bandwidth can be packed in a total bandwidth of

δ(b) ∆= max
u∈V

(
bu +

∑

v∈N(u)

bv

)
, (2)

which is essentially the continuous counterpart of the∆(U)+
1 upper-bound. That is, without the contiguity constraint, the
greedy coloring algorithm assures that the total bandwidth
requirement isδ(b).

We now present an approximation algorithm that combines
both the packing and coloring aspects of the problem. Assume
that the sizes of all bandwidth intervals followed a power
series, i.e., each interval has length2k for some integerk.
Applying rule of thumb #1, we sort the items in decreasing
order of their sizes and try to pack them one by one into the
real axis[0,+∞]. Applying rule of thumb #2, when packing
each item, we always try to fill up from one end, closer to
the origin. When packing in this way, it can be proven by
induction that whenever an interval of size2k is packed, all
available intervals (the spectrum gaps still available) are of
size at least2k (in fact, they are an integer multiple of2k).
Hence, in this case, we do not suffer from fragmentation and
as pointed out before, the total bandwidth required to pack all
intervals is at mostδ(b). Therefore, this method achieves for
the joint packing and coloring problem the same performance
that one can achieve for coloring.

If the bandwidth intervals to be packed do not follow a
power series, we can round them accordingly. Suppose the
given interval lengths areb0 ≥ b1 . . . ≥ bN . Then we round
eachbi to b̃i = dbi/b0e ∗ b0, where thedxe = 2−k, for some
integerk. Consequently, all intervals can be packed within a
maximum length of

max
u∈V

(
b̃u +

∑

v∈N(u)

b̃v

)
≤ 2δ(b). (3)

Finally, we can linearly map the assigned frequencies
in [0, 2δ(b)] to the entire available spectrum interval
[Fbottom, Ftop]. Doing so, we have packed demandsb in a
maximum interval of2δ(b), which is at most by a factor of 2
(due to the rounding) worse than applying the greedy coloring
algorithm to a relaxed problem where each node can make
use of non-contiguous bands.

2) Optimizing the interval lengths:The packing algorithm
presented in the previous subsection is effective in assuring
the performance for the worst AP (with maximum demand
in its neighborhood). While this is good from the fairness
perspective, it may harm throughput in scenarios in which
some parts of the graph are dense, and others are sparse.
(Consider for instance a dense clique and a line-network
attached to it. Due to the linear scaling at the end of the pack-
ing procedure, APs on the line will not utilize the available
spectrum efficiently). In this section we present a method for
enhancing the overall throughput without sacrificing fairness.
We use the packing algorithm as a building block that packs
any demand vectorb into an spectrum of width[0, 2δ(b)]. The
idea is to employ linear programs to search for a demand
vector with good worst-case performanceδ(b) and good
overall throughput. We then run the packing algorithm over
the resulting demand vectorb to pack it into[0, 2δ(b)].

Consider the following linear program:

Btotal(α) ∆= max
b

∑
u

bu, subject to: (4)

bu ≥ αφu ·Btot, ∀u (5)

bu +
∑

v∈N(u)

bv ≤ B, ∀u. (6)

Constraint (6) ensures that the computed vectorb results
in a feasible solution with a greedy coloring algorithm.
Constraint (5) maintains fairness by guaranteeing nodeu
a resource share ofαbu. By varying the constant scaling
parameterα from 0 to some maximum valueα∗, different
tradeoffs between fairness and throughput efficiency can be
achieved. Using the maximum valueα∗ maximizes the worst
node’s performance; this value can be determined using the
following LP:

α∗ = max
b,α

α, subject to: (5)(6) (7)

Practical Deployment: Our LP-based algorithm leaves open
various parameters for tuning the involved fairness vs.
throughput trade-off. A simple way of employing it in prac-
tice is the following: First, determine the optimal fairness
parameterα = α∗ using LP 7. Then, using thisα, use the
first LP to computeBtotal(α). This amounts to a conservative
approach that maximizes the sum throughput (by “flattening”
the demands at the nodes) while assuring the maximum
level of fairness at the worst node. The LPs can either be
solved directly using an LP solver, or we can apply efficient
approximation algorithms for so-called packing LPs [16].

3) Greedy Tuning Step for Discrete Bandwidth Options:
The LPs and the packing algorithm together present a method
for allocating frequency intervals while avoiding fragmenta-
tion. It is designed from the outset for the case where the
intervals can be arbitrarily placed. As hardware advances,
eventually the hardware may achieve full flexibility in ad-
justing the center frequency and bandwidth. If instead only
a discrete set of bandwidth options are available (as is the
case in most currently available hardware), we can round the
resulting assignment to comply with the available bandwidth
options. In our implementation, we use an additional simple
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greedy tuning step in order to increase bandwidth wherever
possible. The tuning step considers all the APs one by one. If
for an AP there exists a wider band that is available, use it; if
there is a band with lower-start position, switch to it (recall
rule of thumb #2). Repeat thus iterating over all APs until no
more improvement are possible.

For any specificα, the performance achieved by the LP-
based algorithm can be shown to be within a small constant
factor of the optimal algorithm. Due to lack of space, we
present the claim without proof.

Claim 4.2: When modeling the wireless network as a disk
graph, it holds that for any fairness parameterα, the LP-
based algorithm achieves a system throughput that is within a
constant factor of the optimal solution. The constant depends
on the underlying network model.
E. GreedyRaising: Simple Greedy Heuristics

The LP-based approximation algorithm presented in the
previous chapter provides provable performance guarantees
with regard to both fairness and system throughput. In this
section, we propose three simpler heuristic solutions that is
both easier to deploy (it does not require solving a linear
program) and, as we show in Section VI still manages to
achieve an excellent performance.

All three algorithms are based on the greedy-packing sub-
routine shown in Algorithm 1. This greedy packing routine
takes as its input an ordering of the APs (for example, from
heaviest to lightest load) and a bandwidth requirement for
each AP. It then proceeds in order of the given ordering
and, when consideringAPi, greedily attempts to pack a
non-overlapping frequency interval of channel-widthBi into
the spectrum. As in the packing scheme of Section IV-D,
intervals are packed at the lowest possible frequency at which
the interval is non-overlapping with any previously assigned
interval at a neighbor.

Depending on the given ordering and bandwidth input,
the greedy-packing scheme may not succeed. If the desired
channel-widths are too wide, it becomes theoretically impos-
sible to correctly pack. However, even if itis theoretically
possible to achieve a valid assignment of bandwidth intervals
to APs, the greedy allocation may make suboptimal decisions
and get stuck in the process. In this case, the subroutine
returns false, thereby indicating the the caller should retry
using narrower channel-widths.

The basic idea of our so-called GreedyRaising heuristics
is the following. Starting from a feasible initial assignment,
the heuristics “probes” APs one-by-one and checks whether
greedy-packing remains successful if the AP’s channel-width
is raised. More specifically, GreedyRaising considers all APs
in a given sequenceO. When considering an AP, its channel-
width is increased to the next higher bandwidth option,
and the greedy-packing subroutine is called in order to see
whether it still succeeds. If it does, the higher bandwidth is
adopted; if not, its channel-width is reset to its original value.

The only thing that remains to be defined is the orderingO
in which the access points are considered in both the greedy
packing subroutine and the main algorithm. In our studies, we

Algorithm 1 GreedyPack(B1, . . . , BN ,O) Routine
Input: BandwidthsB1, . . . , BN and an orderingO of APs
Output: If possible, a non-overlapping packing of

bandwidths into the available spectrum.
Return false if no packing is found.

1: In the order ofO: for each APi ∈ V do
2: pack an interval of channel-widthBi in the lowest

possible non-overlapping frequency.
3: end for
4: if the interval of all APs was successfully packed

within the total bandwidth[Fbottom, Ftop] then
5: return for eachAPi ∈ V its starting frequencySi in

the successful packing.
6: else return false
7: end if

Algorithm 2 GreedyRaising Algorithm
Input: An orderingO of APs
Output: A non-overlapping packing of bandwidth

intervals in the available spectrum.
1: Set parameterθ := 1 and letsuccessful := FALSE;
2: while not successful do
3: Let φ′i := θ ·Di/(Di+

∑
j∈N(i)Dj) for eachAPi ∈ V .

4: Let Bi be the largest bandwidth option s.t.Bi ≤ φ′i ·B
5: successful := GreedyPack(B1, . . . , BN ,O).
6: θ := θ/2;
7: end for
8: In the order ofO: for each APi ∈ V do
9: Let B̂i be the next higher bandwidth option ofBi.

10: successful := GreedyPack(B1, . . ., B̂i, . . ., BN ,O).
11: if successful = TRUE then Bi := B̂i.
12: end for

distinguish three possible orderings and evaluate their relative
merits. The three orderings are:

• Most-Congested-First: In this ordering, APs are sorted
in decreasing order of their load.

• Random: In this ordering, APs are ordered randomly.3

• Smallest-Last: Consider an orderingO and let τi be
the number of APs that are neighbors ofAPi and that
appearbeforeAPi in O. The smallest-last ordering is an
ordering which minimizes the maximumτi over all APs
in the network [22]. This ordering has been studied in the
context of coloring problems and is based on the following
observation. When consideringAPi in the greedy-packing
routine, τi reflects the number of potentially interfering
intervals that have already been packed inAPi’s neigh-
borhood. Intuitively, the fewer such intervals, the easier
it is packAPi’s allocated bandwidth chunk. Considering

3When using this ordering, we slightly adapt our heuristic in the
following way. Instead of initially computing a single orderingO
that is used throughout the procedure’s execution, we generate a
new random orderingO whenever the greedy packing subroutine is
called. This reduces the risk of being stuck with a bad ordering.

7



1

5

6

4

3

2

B

R,
HF

SL
Init

SL
Final

B

R,
HF

SL
Init

SL
Final

B

R,
HF

SL
Init

SL
Final

B

R
HF

SL
Init

SL
Final

B

R
HF

SL
Init

SL
Final

B

R
HF

SL
Init

SL
Final

1

6

5

2

3

4

Fig. 4. Ring network with bandwidth optionsB/2 and B/3 and
uniform load. The smallest-last (SL) packing heuristic performs
better (LSys = 3B) than the heavy-first (HF) and random (R)
heuristics (LSys = 2B). In the example, the ordering of HF and
R isO = (1, 4, 2, 3, 5, 6).

the APs in smallest-last order minimizes the maximum
obstruction that any AP faces when its bandwidth interval
is packed. It has been shown in [22] that the smallest-last
ordering can be computed efficiently in a single pass:

1. j := N ; H := G;
2. Let APj be a minimum degree AP inH;
3. RemoveAPj from H and setj := j − 1;
4. Return to step 2 untilH is empty;
5. OutputO = (AP1, . . . , APN ).

As our evaluations in Section VI will show, all three
GreedyRaising heuristics have the potential of significantly
outperforming the scheme based on fixed channels currently
employed in IEEE 802.11. The evaluations further indicate
that of the three heuristics, the one based on smallest-last
orderings consistently achieves the best results.

The tendency of smallest-last to perform better than other
orderings can be illustrated using simple scenarios. Consider
for instance a network whose APs have (close to) uniform
load and are deployed such that the resulting interference
graph forms a ring (a line would yield the same results) as
shown in Figure 4. In such a network, an optimal allocation
would be to assign half of the total bandwidth to each AP,
alternating between the upper and lower half. Assume that
the ordering of the heavy-first and random orderings are
O = (1, 4, 2, 3, 5, 6) (in the case of heavy-first, this can be the
case if the loads are slightly different among APs, or simply
by random tie-breaking). After the initial packing (Line 7
of Algorithm 2), all APs are assigned a bandwidth ofB/3.
When attempting to greedily increase some these bandwidths
in the second phase, however, no further progress is possible.
In particular, regardless of which interval is increased, the
packing gets stuck in the process. With the smallest-last
ordering, however, the optimal allocation will be reached.
Assume for instance thatAP3 is the first AP to be selected
(possibly using a random tie-breaking rule). The next AP
is one of the two having the least number of neighbors in
G\{AP3}, i.e., eitherAP2 or AP4. Whichever the algorithm
selects, the next AP to be selected must be one that has just
one neighbor left in the graph. All possible resulting orderings

therefore have the characteristics that the ring is considered
“in sequence”. In the initial allocation of the smallest-last
ordering, every AP is allocated a bandwidth ofB/3 as in the
other heuristics (SL-Init). But, due to the efficient packing,
the channel-width of all APs can be raised to the next higher
bandwidth option,B/2.

F. Discussion

One of the assumptions made in our theoretical modeling
is that the frequency bands assigned to neighboring APs
should never overlap, which may be overly conservative
in many cases [24]. However, both our model and all our
algorithms can easily be adapted to incorporate co-channel
interference. Particularly, if it is known how much spectrum
overlap between neighboring APs is tolerable, our algorithms
can be adjusted as follows. For OPT, the first two conditions
of the ILP have to be adapted. In the LP-based algorithm
packing algorithm it suffices to round up to a power of less
than 2, and finally, the packing scheme of all our heuristic
approaches will be able to pack the bandwidths more tightly.
Finally, notice that both the LP-based algorithm and the
GreedyRaising heuristics are computationally efficient and
quickly converge to a solution even in large-scale networks.

V. PRACTICAL CONSIDERATIONS

Adaptively changing the center frequency and bandwidth
allocated to an AP poses several interesting systems chal-
lenges. We need to design a new scanning mechanism for
clients to discover the APs, since it might be infeasible for
them to explore all possible values of center frequencies
and bandwidths. Our design should be backward compatible,
and the APs should also work with legacy (unmodified) Wi-
Fi network cards. In this section, we present some initial
thoughts on how these problems can be addressed in a real
deployment.

We propose adding an extra radio to each AP, similar to a
few commercially available two-radio APs [1], [4]. One radio
will operate on the first channel of the band, for example
channel 1 for IEEE 802.11b/g networks, or channel 36 for
IEEE 802.11a networks. The other radio will adaptively adjust
its center frequency and bandwidth to operate in the frequency
spectrum that is not occupied by the first radio. Each AP will
use the first radio to broadcast beacons and provide service
to legacy clients. The beacons will also contain information
about the center frequency and bandwidth of the second radio.
Clients can then discover the center frequency and bandwidth
of the APs by listening to beacons on the channel of the first
radio. Even legacy clients will eventually go to channel 1 or
36 as part of the normal scanning process, and discover the
APs.

The above architecture has multiple benefits beyond dis-
covery and backward compatibility. For example, it enables
fast handoff among clients by allowing a client to quickly
discover the nearby APs, by switching to the first channel,
and discovering the operating frequency and bandwidth of
nearby APs (using Probe Requests and Responses).
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Another practical concern is the feasibility of dynamically
changing the bandwidth and central frequency of wireless
cards. We are currently implementing a proof-of-concept on
a wireless card based on the USB and MiniPCI Atheros
ar5523 chipset [2]. We have modified the firmware to tune
the bandwidth of the wireless card to 5 MHz and 20 MHz,
and change the frequency to any value in the 2.4 GHz band.
To change the bandwidth, we reduced the speed of the crystal
clock by tuning a register value of the Phase Locked Loop
(PLL) in the firmware. Consequently, our approach requires
the card to go through a firmware reset, which takes a few
milliseconds. However, we strongly believe that a firmware
reset is unnecessary given the evidence that the same chipset
can change the bandwidth to 40 MHz using Turbo mode [2]
without a firmware reset.

VI. PERFORMANCEEVALUATION

In this section, we quantify the benefits of dynamic-width
channels using simulations QualNet [5]. We compare our
schemes, including ILP, LP, and GreedyRaising, against a
recently proposed channel assignment algorithm based on
fixed channels, called RaC [9]. We analyze the performance
using two metrics: aggregate throughput of all clients in the
WLAN and per-client fairness. The fairness metric reflects
the uniformiy of throughput achieved by all clients, and we
define it using Jain’s fairness index:(

∑
Ci)2/n

∑
C2

i , where
Ci is the throughput obtained by clienti, andn is the total
number of clients.

We first confirm the assumption that the bandwidth, and
in turn throughput, achieved by an AP is proportional to
the bandwidth allocated to it. We tested this assumption for
two bandwidth values: 5 MHz and 20 MHz, on a Netgear
AWG132 USB wireless card, which has the Atheros ar5523
chipset, with our modified firmware. In the 5 MHz case, we
confirm that the data rate of the packets when the client and
the AP were close to each other was 54/4 = 13.5 Mbps.
The UDP throughput when using 5 MHz bandwidth was
5.9 Mbps, which is slightly less than 1/4th the throughput
when using 20 MHz bandwidth (25.7 Mbps at 54 Mbps data
rate). A more accurate reference clock and better frequency
alignment mechanisms are required to further improve the
effective throughput for smaller bandwidths. We believe that
the advances in current radio devices, such as software defined
radios [3], will greatly improve these throughput numbers.

A. Simulation Settings

We simulate three real-world usage scenarios: a small-
scale enterprise WLAN, a large enterprise/campus WLAN
deployment, and a network with user mobility. For a small
scale enterprise WLAN, we use the wireless usage data from
[12]. This dataset contains monitoring information of 6 APs
on the floor of an office building. The floorplan and location
of APs is illustrated in Figure 5. The dataset includes the
location of all the clients and their wireless usage over a 5-day
work week from 8 AM to 8 PM everyday. For our simulations,
we feed the coordinates of the APs and the clients in QualNet,

�

�

� �

�

�

Fig. 5. Floor plan and AP locations on the floor of an office building. The
solid lines represent two interfering APs, and dashed lines indicate that the
APs interfere at one of the clients.

and use our algorithms to decide the center frequency and
bandwidth of each AP.

In the second set of simulations, we consider a larger
enterprise network of 20 to 50 APs. We use the data from [11]
that analyzed a network across three buildings comprising
177 APs to determine the number of clients associated to
each AP. Since we did not have information about the clients’
location, we simulate scenarios in which the associated clients
are randomly placed within the transmission range of the AP.

Finally, we consider the impact of user mobility on our AP
bandwidth allocation scheme. We use the model, called Model
T [20], which is based on traces collected across 2 years
from the large WLAN deployment in Dartmouth College, and
incorporate it with the Random Waypoint Model, to model
the mobility pattern of each client.

In our simulations, we study two sets of bandwidth pos-
sibilities to show the impact of bandwidth settings on our
proposed approach. The first set of bandwidths includes 5,
10, 20 and 40 MHz. The second set includes a wider range
of bandwidths: 3, 5, 6, 7, 10, 12, 14, 20, 24, 28 and 40 MHz.
We assume that each 1 MHz spectrum delivers 1.2 Mbps
data rate [18]. The overall available spectrum is 86 MHz,
i.e. the size of 2.4 ISM band. When using channels of 20
MHz, we have 4 non-overlapped channels. Without loss of
generality, we neglect the overhead of guide band between
two adjacent channels. In our proposed schemes, the clients
always associate to the nearest AP and the weight of APs in
our algorithms is measured by the number of clients served by
the AP. In addition, to stress test the system, we set each client
to have at least one backlogged CBR flow to the associated
AP. The MAC layer we use is IEEE 802.11 [7]. We use the
two-ray propagation model to model path loss. Furthermore,
to isolate the impact of varying channel width, we assume no
rate or power control.

B. Small WLAN Deployment

We first study the effect of our scheme on a small, but real,
WLAN deployment. The floorplan of the office building is
illustrated in Figure 5. We extract the user activities from
the dataset of [12]. Figure 6 shows the maximum number of
clients that are simultaneously associated to each AP during
every hour from 8 AM to 8 PM on Monday and Tuesday of
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Fig. 7. Throughput and fairness index of different allocation schemes

a work week.4 Clearly, there is a spatial and time disparity
in network usage across different APs. At any given time,
APs at some locations serve a significantly larger number
of clients then the others. For example, from 11 AM to
2 PM on Monday, AP 4 had up to 22 clients during the
peak period since it is located close to several conference
rooms. Furthermore, the client populations at the APs varies
significantly over time. The set of heavily-loaded APs also
changes at various times of the day across different days.

Using this trace, we studied the performance of four
schemes: ILP, LP, GreedyRaising (using smallest-last order),
and RaC using 4 bandwidth options. Figure 7 depicts the
throughput and the fairness index of each AP across 5 days.
In all cases, ILP achieves the highest performance, up to
45% higher throughput than RaC, which is based on the
fixed channels. The fairness index achieved by ILP is about
0.8, while RaC’s fairness index is less than 0.5. This result
shows that adaptively assigning the bandwidth to each AP not

4The plots for the other 3 days are omitted due to the space limitations,
but they all show a similar trend.
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Fig. 8. Average number of clients associated to each AP and the
corresponding bandwidth allocated by our scheme.

only improves the capacity of the WLAN, but also ensures
more uniform service to all associated clients. On the other
hand, when using 4 fixed channels, RaC uses coloring on the
AP conflict graph, such that no two interfering APs use the
same channel. However, the service received by each client is
heavily biased based on their location. The clients associated
to a crowded AP suffers from degraded performance, which
is reflected as a suboptimal fairness index.

Compared with ILP, GreedyRaising obtains comparable
performance since it emulates the operation of ILP. Based
on a certain order, it attempts to raise the bandwidth for
each AP starting from the initial feasible assignment. The
advantage of GreedyRaising is that it is fast as it benefits
from a small set of available bandwidth possibilities. The
worst case complexity of the GreedyRaising algorithm is
O(n3), wheren is the number of APs. These properties make
GreedyRaising a practical solution. LP reduces the throughput
by up to 14% since it evaluates all contiguous bandwidth
possibilites. Consequently, it loses some throughput as it
rounds the bandwidth to the nearest permissible value.

Figure 8 illustrates the number of clients associated to each
AP and the corresponding throughput achieved by each AP.
The graph shows the average and standard deviation for these
values, which demonstrate that dynamic-width channels give
more bandwidth to the AP that serves more clients, and the
assigned bandwidth varies depending on the variance of the
number of associated clients. RaC uses fixed channels, and
therefore the amount of bandwidth allocated to each AP does
not depend on the number of clients associated to it.

We also studied our algorithms with a larger set of band-
width options. We observe that in this simple scenario, adding
more bandwidth options does not noticeably improve the per-
formance. We also varied the packing schemes and compared
their performance. Among them, the smallest-last scheme
consistently achieve 5 –10% throughput gain compared to
the other two schemes. The gain can be explained by the
intuition that assigning the least congested APs last has a
higher chance to fit all APs in the available spectrum.

C. Large Wireless Networks

We now study the performance of dynamic-width channel
allocation in large campus WLAN deployments. We use
observation of the number of clients associated to each AP
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Fig. 9. Throughput and fairness in a WLAN of 20 APs

from a previous study [11]. In this trace, 50% of APs serve
less than 5 users, while 10% of APs serve over 15 users.
The average number of clients served by each AP is 8. Since
the traces provide no information about the location of APs
and clients, we randomly place the APs in a flat area of
1000 x 1000 meters. For each AP, we randomly place the
client within the transmission range of the AP. The clients
are assumed to be static during the experiment. We study our
bandwidth allocation scheme for two different scenarios: a 20
AP WLAN and a 50 AP WLAN. For each scenario, we varied
the interference among APs by changing the transmission
power from -1.6 dbm to 4.2 dbm. All our results are averaged
over 20 simulation runs.

Figure 9 illustrates the throughput and fairness index of all
clients in sparse and dense deployments when using 20 APs.
We emulate a sparse deployment by changing the transmit
power of each AP to -1.6 dbm, such that each AP has 2
to 3 neighboring APs. In this scenario, ILP achieves 47%
more throughput than RaC. This can be explained by ILP’s
attempt to allocate all the available bandwidth to the APs. In
contrast, RaC is unable to utilize all the channels, as each AP
might not have sufficient interfering neighbors. Furthermore,
ILP allocates bandwidth to APs proportional to the number
of clients associated to it, which further improves system
throughput. In fact, it assigns each AP with 40 MHz of
bandwidth, as there is little contention among the APs. We
note that the fairness index of ILP in the sparse deployment is
less than 0.6 since even APs with fewer clients are allocated
the maximum of 40 MHz. This appears to be the right
behavior as it maximizes spectrum utilization.

We also analyzed a dense AP deployment by setting the
transmission power of each AP to be 4.2 dbm (each AP
has 5 to 6 interfering APs on average). In this scenario, ILP
achieves 53% more throughput than RaC, and improves the
fairness index to about 0.9. However, the total throughput
of the system is much lesser due to increased interference.
ILP allocates separate bandwidths to interfering APs, and
therefore it is able to obtain better spectrum utilization.
Further, since there is more contention in the system, the
lightly loaded APs do not get allocated a 40 MHz bandwidth,
and hence the fairness index for ILP is much higher. We note
that LP and GreedyRaising obtain near optimal throughput.

We now compare the GreedyRaising algorithm with RaC
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Fig. 11. Fairness Index of 160 clients in a 25 AP WLAN when aggregated
over 20 second intervals over 700 seconds.

in a larger WLAN of 50 APs. As we see in Figure 10,
the system throughput achieved by GreedyRaising and RaC
decreases with increased interference among APs. However,
GreedyRaising gets much higher throughput. This can be
explained by the second graph, which plots the number
of collisions per client with an increase in the number of
interfering APs. GreedyRaising allocates separate chunks of
the spectrum to interfering APs, and hence the number of
per-client collisions stays the same. However, there are not
enough non-overlapping channels available to RaC, and hence
increased interference among APs increases the number of
collisions at each client.

D. Handling User Mobility

Given the recent growth of mobile applications, such as
VoIP, over WLANs, we study the effectiveness of our ap-
proach in handling user mobility. We stress test our system
by having 40% of wireless clients mobile. We combine the
registration and mobility pattern defined in Model T [20] with
the Random Waypoint Model. Model T captures the popular
APs towards which most of the client movements are directed.
Each node selects an AP using Model T, and moves towards
it with a speed chosen randomly from an interval, (Vmin,
Vmax]. Upon reaching its destination, the node moves to a
new destination after it pauses for a random period between
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0 and 10 seconds. We setVmin at 0.01 m/s and varyVmax

from 0.2 to 1.2 m/s.
We consider a WLAN with 25 APs deployed uniformly in a

500 m x 500 m area. The transmission power of each AP set
to -1.6 dbm, which gives an approximation transmission range
of 100 meters. The number of interfering APs varies from 3 to
8. Initially, clients are uniformally distributed across each AP.
At the start of the simulation, clients begin to move towards
the APs defined by model T. RaC reassigns the channel every
50 seconds. GreedyRaising adjusts the bandwidth allocation
if a new assignment improves the fairness index or the system
throughput by more than 10%.

Figure 11 shows the fairness index for the WLAN over
time. Each point in the graph is an aggregate fairness value
computed over a 20 second interval. Initially, GreedyRais-
ing has a worse fairness index than RaC. This is because
GreedyRaising assigns more bandwidth to APs on the edge,
and lesser bandwidth to APs in the middle to create enough
channels. As clients begin to move, their distribution across all
the APs gets skewed as the popular APs serve a much larger
number of clients. GreedyRaising captures this change and
dynamically adjusts the channel widths, therefore, achieving
consistent fairness over time. On the other hand, RaC is based
on the fixed channels, and consequently it is unable to handle
skewed client AP distributions.

We also measured the overall system throughput aggregated
over the entire 700 second interval. Our approach delivers
a total throughput of 273 Mbps while RaC delivers 195
Mbps throughput. The reason for the difference is similar
to observations in the previous subsections.

VII. C ONCLUSIONS

The fixed-width channelization technique in IEEE 802.11
networks is inherently incapable of efficiently coping with the
spatially non-uniform and temporally dynamic user demand
that is prevalent in most infrastructure networks deployed
today. In this paper, we have argued that by moving beyond
these pre-determined channels of fixed width, a significant
increase of both per-client fairness and system capacity can
be achieved. Made feasible by recent advances in hardware
technology, we propose a system and a set of algorithms that
efficiently and dynamically allocate center-frequencies and
channel widths to APs as a function of their traffic load.

REFERENCES

[1] Aruba Networks, http://www.arubanetworks.com.
[2] Atheros Communications, http//www.atheros.com/pt/whitepapers/atheros-

superg-whitepaper.pdf.
[3] GNU Software Radio, http://www.gnu.org/software/gnuradio/.
[4] Meru Networks, http://www.merunetworks.com.
[5] QualNet, http://www.qualnet.com/.
[6] Wimax forum whitepapers: http://www.wimaxforum.org/.
[7] IEEE 802.11b/D3.0, Wireless LAN Medium Access Control(MAC)

and Physical (PHY) Layer Specification: High Speed Physical Layer
Extensions in the 2.4 GHz Band, 1999.

[8] N. Ahmed and S. Keshav. SMARTA: A Self-Managing Architecture
for Thin Access Points. InACM CoNext, 2006.

[9] A. M. V. B. S. B. A.Srinivasan and W. Arbaugh. Client-driven Channel
Management for Wireless LANs. InIEEE INFOCOM, 2006.

[10] P. Bahl, M. T. Hajiaghayi, K. Jain, V. Mirrokni, L. Qiu, and A. Seberi.
Cell Breathing in Wireless LANs: Algorithms and Evaluation.IEEE
Transactions on Mobile Computing, 2006.

[11] M. Balazinska and P. Castro. Characterizing mobility and network
usage in a corporate wireless local-area network. InMobiSys, 2003.

[12] R. Chandra, J. Padhye, A. Wolman, and B. Zill. A Location-Based
Management System for Enterprise Wireless LANs. InFourth Sympo-
sium on Networked Systems Design and Implementation (NSDI), April
2007.

[13] T. M. Cover and J. A. Thomas.Elements of Information Theory. John
Wiley and Sons, Inc., 1991.

[14] David Kotz and Kobby Essien. Analysis of a Campus-wide Wireless
Network. Wireless Networks, 11:115–133, 2005.

[15] Diane Tang and Mary Baker. Analyis of a Local-Area Wireless
Network. InProceedings of the Annual ACM International Conference
on Mobile Computing (MobiCom), August 2000.

[16] N. Garg and J. Koenemann. Faster and Simpler Algorithms for
Multicommodity Flow and other Fractional Packing Problems. InProc.
of the39 th Annual Symposium on Foundations of Computer Science
(FOCS), 1998.

[17] A. Graf, M. Stumpf, and G. Weissenfels. On Coloring Unit Disk
Graphs.Algorithmica, 20, 1998.

[18] J. Proakis, Digital Communications, McGraw Hill, 2001.
[19] K. Jain, J. Padhye, V. Padmanabhan, and L. Qiu. Impact of Interference

on Multi-hop Wireless Network Performance. InACM MobiCom 2003.
[20] R. Jain, D. Lelescu, and M. Balakrishnan. Model T: An Empirical

Model for User Registration Patterns in a Campus Wireless LAN. In
mobicom, pages 170–184, 2005.

[21] D. Kotz and K. Essien. Analysis of a campus-wide wireless network.
In Proceedings of the Annual ACM International Conference on Mobile
Computing (MobiCom), 2002.

[22] D. W. Matula and L. L. Beck. Smallest-last ordering and clustering in
graph coloring algorithms.Journal of the ACM, 30(3):417–427, 1983.

[23] V. Mhatre and K. Papagiannaki. Optimal Design of High Density
802.11 WLANs. InACM CoNext, 2006.

[24] A. Mishra, V. Shrivastava, S. Banerjee, and W. Arbaugh. Partially
Overlapped Channels not Considered Harmful.SIGMETRICS Perform.
Eval. Rev., 34(1):63–74, 2006.

[25] T. Moscibroda, R. Wattenhofer, and Y. Weber. Protocol Design Beyond
Graph-Based Models. InACM HotNets, 2006.

[26] J. Padhye, S. Agarwal, V. Padmanabhan, L. Qiu, A. Rao, and B. Zill.
Estimation of Link Interference in Static Multi-hop Wireless Networks.
In In Proc. of Internet Measurement Conference (IMC), 2005.

[27] K. Sundaresan and K. Papagiannaki. The Need for Cross-layer Infor-
mation in Access Point Selection Algorithms. InInternet Measurment
Conference, pages 257–262, 2006.

[28] Y. Yuan, P. Bahl, R. Chandra, P. A. Chou, I. Farrel, T. Moscibroda,
S. Narlanka, and Y. Wu. KNOWS: Kognitiv Networking Over White
Spaces. InProceedings of IEEE DySpan, 2007.

[29] Y. Yuan, P. Bahl, R. Chandra, T. Moscibroda, and Y. Wu. Allocating
Dynamic Time-Spectrum Blocks in Cognitive Radio Networks. In
Proceedings of ACM MobiHoc, 2007.

12


