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Abstract

A machine learning approach to rank learning trains a model to optimize
a target evaluation measure with repect to training data. Currently, exist-
ing information retrieval measures are impossible to optimize directly except
for models with a trivial number of parameters. The IR community thus
faces a major challenge: how to optimize IR measures of interest directly. In
this paper, we present a solution. Specifically, we show thatLambdaRank
[1], which smoothly approximates thegradientof the target measure, can be
adapted to work with three popular IR target evaluation measures using the
same underlying gradient construction. It is likely, therefore, that this con-
struction is extendable to other evaluation measures. We empirically show
that LambdaRank finds a locally optimal solution for NDCG, MAP and MRR
with a99% confidence rate. We also show that the amount of effective train-
ing data varies with IR measure and that with a sufficiently large training
set size, matching the training optimization measure to thetarget evaluation
measure yields the best accuracy.
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1 Introduction

Learning to rank is an increasingly popular area of research. Ranking isa mapping
from a set of items to an ordered list; the ranking of Web search results is a common
example. This task consists of a set of queries and a set of retrieved documents for
each query. The document-query pairs are labeled according to a scalefrom not
relevant to highly relevant, and the ranking systems use the training data to compute
a model that outputs a rank order based on a real-valued scoring function f(x). It
is more important to predict the correct ordering rather than the value off(x). In
Web search ranking, the cost function is typically defined with respect to asorted
order of documents at the query level, and averaged over a large number of queries.

The ranking problem generally employs a cost function (target evaluationmea-
sure) that is not necessarily the one used to train the system. Typical target mea-
sures used in IR (see [8] for a detailed list) depend only on the sorted list and the
relevance levels of the listed items. These measures are generally either flatevery-
where or non-differentiable with respect to the model parameters; hencethey are
difficult to optimize directly. One way to address this issue is to find a close smooth
approximation to the target measure, and optimize it via gradient descent. How-
ever, this is quite challenging due to the sort component of the target ranking mea-
sures. LambdaRank [1] tackles the problem by defining a smooth approximation
to thegradientof the target cost instead of searching for a smooth approximation
to the target cost itself. The basic idea of LambdaRank is to specify rules determin-
ing how the rank order of documents should change. These rules are incorporated
into aλ−gradient that defines the gradient of an implicit cost function only at the
points of interest [1]. LambdaRank was originally proposed for NDCG (Normal-
ized Discounted Cumulative Gain), but the method is general and works with any
target cost function. Recently, LambdaRank was shown to be locally optimalfor
NDCG [12].

In this paper, we defineλ−gradients for three widely used IR measures, namely
NDCG, MAP and MRR, using the same underlying construction as used for the
NDCG λ-gradient in [1]. This construction is likely extendable to other IR mea-
sures as well. We empirically show, with a confidence bound, the local optimality
of LambdaRank on these measures by monitoring the change in training accuracy
as we vary the learned weights of the net. We change the weights by projecting in
a random direction on a unit ball and moving the weights in that direction. If the
accuracy decreases as the original net weights change, it means the learned weights
are at a local optimum. By checking the accuracy decreases for several hundred
random directions, we show, with99% confidence, that the learned net weights are
at a local optimum, using a Monte-Carlo test with one-sided error. We also show
that the gradient vanishes at each learned weight by fixing all but one weight’s

2



value and varying that weight’s value while checking for a decrease in accuracy
on the training set. If the highest accuracy is achieved at the learned weight value,
then the gradient has vanished. We find LambdaRank to be locally optimal and
that the gradient vanishes for all weights. Our work is not only the first toshow
empirical optimality of a learning algorithm, but also the first to show optimality
across several IR measures. In addition, it shows IR practitioners cannow directly
optimize for the IR measure they care about, and the model need not be limited to
only a few parameters. We also show that with large enough amounts of training
data, the best test accuracy is achieved when matching the training optimization
measure to the target evaluation measure.

The paper is organized as follows: we review related rank learning literature
in Section 2 and the IR measures under consideration in Section 3. We describe
in detail theλ−gradients in Section 4. Local optimality testing is described in
Section 5. Our datasets are described in Section 6 and experimental resultsare
presented in Section 7. We conclude in Section 8 with final remarks and future
work.

2 Related Work

The ranking task has become increasingly popular among researchers inthe past
few years. Some ranking algorithms approach the problem as structured output
prediction such as the large margin methods of [9, 10]. The learned structures are
mapped to the reals, and then the best structure is chosen to give the highest real-
valued score among all possible outputs. Another line of work casts the ranking
problem as ordinal regression, that is, learning the mapping of an input vector to
a member of an ordered set of numerical ranks [6]. Like many other ranking al-
gorithms, their cost functions depend on pairs of examples. Crammer and Singer
[5] proposed a similar solution where the ranker is a perceptron whose output is a
weight vectorw. Cao et al. [4] proposed a listwise approach to rank learning where
a cross-entropy loss is defined between two parametrized probability distributions
of permutations. Qin et al. [7] proposed a method called RankCosine, whichde-
pends on a listwise loss function that takes the cosine similarity between the score
vectors of the predicted result and the ground truth.

In addition, there are methods that claim to directly optimize the evaluation
measures, such as SVMMAP [13] and AdaRank [11]. SVMMAP incorporates
MAP into the listwise optimization constraints. In reality, the number of con-
straints is exponential in the number of rankings. SVMMAP tackles this problem
by performing optimization only on a working set of constraints which is extended
with the most violated constraint at each step. The resulting algorithm works in
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polynomial time. AdaRank, on the other hand, performs a boosting-type optimiza-
tion where the IR measure is embedded into the loss function used in updating the
distribution of the data. The authors claim a theoretical guarantee that the training
error defined in terms of the IR measure will reduce constantly with some mild
assumptions.

Another approach is to train on pairs of documents per query. RankNet [3]
is a neural net based ranking algorithm that optimizes a cross-entropy cost func-
tion using gradient descent. It is trained on pairs of documents per query, where
documents in a pair have different labels. The RankNet cost consists ofa sigmoid
followed by a pair-based cross-entropy cost. RankNet modifies the standard back-
prop algorithm by trying to minimize the value of the cost function by adjusting
each weight in the net according to the gradient of the cost with respect tothat
weight. The training time of RankNet scales quadratically with the average num-
ber of pairs per query, and linearly with the number of queries. Thus, speeding up
RankNet training becomes crucial especially for large training sets. LambdaRank
[1] provides a significant training speed-up as well as a framework foroptimizing
a cost function while avoiding the difficulties of working with non-differentiable
IR measures. In addition, LambdaRank has been shown to empirically optimize
NDCG [12]. We empirically show not only that it optimizes NDCG, but also MAP
and MRR.

3 IR Measures

IR measures are typically defined with respect to a permutation of documents for a
given query. The relevance labels can be binary or multilevel. For binarymeasures,
we assume labels{0, 1} (1 for relevant, and0 for non-relevant). Binary measures
include Mean Average Precision (MAP), Mean Reciprocal Rank (MRR), and Win-
ner Takes All (WTA) (see [8] for a more complete list). In this paper, we focus on
three of the most commonly used IR metrics: MAP, MRR, and NDCG.

Average Precision (AP) computes for each relevant document the precision at
its position in the ranked list; these precisions are then averaged over all relevant
documents:

AP =

∑L
r=1 l(r)P@r

R
(1)

wherer is the rank position,L is the truncation level,R is the number of rele-
vant documents,l(r) is the binary relevance label of the document at rank position

r, and P@r is the precision up to rank positionr, i.e. P@r =
Pr

i=1
l(i)

r
. Mean

Average Precision is the average of the average precisions over allN queries,
1
N

∑N
i=1 APi, where APi is the average precision for queryi.
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Reciprocal Rank (RR) for a given query is the reciprocal of the rankposition
of the highest ranking relevant document for the query. MRR is just the average of
the reciprocal ranks over queries:

MRR =
1

N

N
∑

i=1

1

ri

(2)

whereN is the number of queries andri is the highest position of a relevant docu-
ment for queryi.

Unlike binary measures such as MAP and MRR, NDCG recognizes multi-
relevance levels. NDCG for a given query is formulated as follows:

NDCG@k =
1

Z

L
∑

r=1

2l(r) − 1

log(1 + r)
(3)

wherel(r) ∈ {0, . . . , 4} is the relevance label of the document at rank position
r. Z is chosen such that the perfect ranking would result in NDCG@L = 1,
andL is the truncation level at which NDCG is computed. Mean NDCG@k is
1
N

∑N
i=1 NDCG@ki, where NDCG@ki is the NDCG@k for query i. NDCG is

particularly suited for Web search applications since it accounts for multi-relevance
levels and the truncation level can be set to model user behavior. In our results, we
report mean NDCG@10.

4 LambdaRank

In most machine learning tasks, a target cost is used to assess the accuracy of the
system at test time, and an optimization cost, generally a smooth approximation to
the target cost, is used to train the system. Ideally, the optimization cost matches
the target cost, but typical IR target costs (e.g. MAP, MRR, NDCG, etc.) are either
flat or non-differentiable everywhere. Hence, direct optimization of thetarget cost
is quite challenging. LambdaRank [1] solves this problem by defining the gradients
of a given cost function only at the points of interest. The gradients are defined by
specifying rules about how swapping two documents, after sorting them byscore
for a given query, changes the cost. This general method can work withany target
cost function, but was originally formulated for NDCG due to its suitability for
Web search applications. In this section, we defineλ−gradients for three different
IR measures.
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4.1 λ−Gradient for NDCG

A LambdaRank gradient,λj , is defined to be a smooth approximation to the gra-
dient of a target cost with respect to the score of the document at rank position
j. λ−gradients have a physical interpretation; documents are represented bypoint
masses andλ−gradients are forces on those point masses [1]. On two documents
in a pair, theλ−gradients are equal and opposite, where a positiveλ−gradient in-
dicates a push toward the top of the list, and a negativeλ−gradient indicates a push
toward the bottom of the list. With a choice of suitableλ−gradient, the gradient of
any target cost can be smoothly approximated for a given document.

The authors of [1] tried several alternatives forλ−gradients and chose the best
according to accuracy on validation data (for a detailed list, the reader is referred
to [2]). The bestλ−gradient found in [1] is a combination of the derivative of the
RankNet cost [3] scaled by the NDCG gain from swapping two documents with
differing labels (for a given query). The RankNet cost is a pairwise cross-entropy
cost applied to the logistic of the difference of the model scores. If document
i, with scoresi, is to be ranked higher than documentj, with scoresj , then the
RankNet cost can be written as follows:

Cij ≡ C(oij) = sj − si + log(1 + eoij ) (4)

whereoij ≡ si − sj is the score difference of a pair of documents in a query. The
derivative of the RankNet cost according to score difference is

δCij/δoij = δCij/δsi = −1/(1 + eoij ) (5)

Theλ−gradient can now be written as follows:

λij ≡ Sij

∣

∣

∣

∣

∆NDCG
δCij

δoij

∣

∣

∣

∣

(6)

= Sij

∣

∣

∣

∣

N(2l(i) − 2l(j))

(

1

log(1 + ri)
−

1

log(1 + rj)

)(

1

1 + eoij

)
∣

∣

∣

∣

whereN is the reciprocal max DCG for the query,li andlj are the relevance labels
andri andrj are the rank positions of documentsi andj, respectively. The sign
of λij , Sij ∈ {−1, 1}, is plus one ifli > lj (documenti is more relevant than
documentj), indicating documenti must move up the ranked list to reduce the
cost, and minus one ifli < lj . Note that the sign only depends on the labels of
documentsi andj and not on their rank positions (see Eqn 5). Theλ−gradient for
a single document is computed by marginalizing over the pairwiseλ−gradients;
i.e.

λi =
∑

j∈P

λij (7)

where the sum is over all pairs in a query which contain documentj.
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4.2 λ−Gradient for MAP

The LambdaRank algorithm is designed to work with any target cost function, as
long as theλ−gradient can be defined. We design aλ−gradient for MAP based
on the same principles as the one designed for NDCG, with the exception that
∆NDCG is substituted with∆AP.

Theλ−gradient for MAP uses the RankNet cost, scaled by the AP (Average
Precision) gain found by swapping two documentsi andj at rank positionsri and
rj . Assume documentsi andj are misranked by the current net, i.e.ri > rj but
l(i) > l(j)1 then

λij = (8)

Sij

∣

∣

∣

∣

1

R

( ri
∑

k=rj

l(k)P@k −

ri
∑

k=rj

l′(k)P′@k

)(

1

1 + eoij

)
∣

∣

∣

∣

wherel(k) = 1 if the document at rank positionk is relevant, and0 otherwise;
P@k is the precision at rankk; R is the number of relevant documents for that
query. l′(k) is the relevance value after we swap the documents at positionsri

andrj . In fact, l′(k) = l(k) for all k ∈ {rj + 1, ..., ri − 1}, l′(ri) = l(rj), and
l′(rj) = l(ri). P′@k is the precision at the rank positions betweenrj andri after
the swap. We can rewrite the above formula as:

λij = (9)

Sij

∣

∣

∣

∣

1

R

[(

n + 1

rj

−
m

ri

)

+

ri−1
∑

k=rj+1

l(k)

k

](

1

1 + eoij

)
∣

∣

∣

∣

wheren andm (n ≤ m) are the number of relevant documents at the toprj and
the topri positions, respectively. The sign ofλij determines the direction of the
move; i.e. relevant documents get the upward move and non-relevant documents
move downward. Finally, theλ−gradient for a single documenti becomes the sum
of the pairwise gradients,λi =

∑

j∈P λij .

4.3 λ−Gradient for MRR

The λ−gradient for MRR follows that of NDCG and MAP. It uses the RankNet
cost scaled by the RR (Reciprocal Rank) gain for that query, found by swapping
documentsi andj at the corresponding rank positionsri andrj , for any{i, j}.

1Throughout the paper, we assume higher rank means lower rank index.
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Assume documenti is relevant, and documentj is non-relevant,

λij = Sij

∣

∣

∣

∣

∆RR(ri, rj)

(

1

1 + eoij

)
∣

∣

∣

∣

(10)

∆RR(ri, rj) calculates the difference in the reciprocal rank of the top relevant
document as a result of the swap:

∆RR(ri, rj) =

{

1
rj

− 1
r

if rj < r ≤ ri

0 otherwise
(11)

wherer is the rank of the top relevant document in the ordered list. Clearly, there
is no RR gain (or loss) unless the rank of the top relevant document shifts after the
swap.

5 Monte Carlo Testing of Local Optimality

In order to verify local optimality, we must show that the training accuracy of
LambdaRank decreases as the weights’ learned values are changed (either increased
or decreased in value). We project iid random directions~r1, ~r2, ..., ~rk on a unit ball
by first sampling each dimension of a vector from a Gaussian distribution2 with
0 mean and unit variance and then projecting the vector onto the unit sphere.We
modify the net weights in each direction as follows: let~w be the vector of net
weights, andfM (~w) be the accuracy of the net with weightsw with respect to a
given evaluation measureM . We use a Monte-Carlo test with one-sided error; we
compare, for alli ∈ {1, 2, ..., k}, fM (~w) to fM (~w+η~ri) for smallη > 0 and check
if fM (~w) ≥ fM (~w + η~ri) . If there exists at least one direction~ri for which this
condition does not hold (~ri has higher accuracy), then~w is not a local optimum.
If the accuracy decreases for all directions~ri, then the probability of missing an
increasing direction is upper bounded by(1 − q)k, whereq is a lower bound on
the number of random directionsk. We can further upper bound this probability by
exp(−qk). We require99% confidence that the probability of finding an increasing
direction is less than1%:

exp(−0.01k) = 0.01

Solving fork yieldsk = 460 random directions. Thus, if we can show that varying
the net weights in 460 random directions all yield worse accuracy than the learned
set of weights, then the learned set of weights represents a local optimum with
99% confidence. We choose10 different step sizesη ∈ {0.1, 0.2, ..., 1} to analyze

2Any spherically symmetric distribution can be used, not just a Gaussian distribution.
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Table 1: MAP scores with standard error (SE) of differentλ−gradients on the
validation set.

λ−gradient MAP ± SE
RankNetWeightPairs 0.462±0.0048
LocalGradient 0.435±0.0048
LocalCost 0.427±0.0049
SpringSmooth 0.424±0.0048
DiscreteBounded 0.401±0.0049

the change in accuracy as we move away from the net weights~w. We compare
the change in mean accuracy averaged over all queries for all460 directions. In
Section 7, we report the results for each IR measure.

6 Datasets

We conducted experiments on three different datasets. Two of them are real Web
datasets from a commercial search engine. The other is an artificial dataset [3]
created to remove any variance caused by the quality of features and/or relevance
labels. The artificial data, first introduced in [3], was generated from random cubic
polynomials. It has 300 features, 50 URLs per query, and a random 10K/5K/10K
train/valid/test split for queries. We refer to it as the Artificial Data. The first
Web search dataset has 26.1 URLs per query, 420 features, and 10K/5K/10K query
train/valid/test splits. We call this dataset the 10K Web Data. The second Web
dataset contains 30K/5K/10K query train/valid/test splits, 100 URLs per query,
and 420 features. We refer to this dataset as the 30K Web Data.

All the document-query pairs are assigned integer labels between0 (the least
relevant) and4 (the most relevant). For the binary measures, MAP and MRR, we
transform the multilevel relevance levels to binary by converting all labels between
2 and4 (inclusive) to relevant (1), and all the rest to non-relevant (0).

7 Experiments

We empirically show the local optimality of LambdaRank on three datasets for
three IR measures. We also investigate if matching the training measure to the tar-
get evaluation measure yields the best test accuracy, and if so, how muchtraining
data is required. First, we select the best of 13λ−gradient constructions [2] by
training each construction for each measure on a 5K query Web set and choosing
the one with the best validation accuracy on a 5K query validation set. In Table1,
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Table 2: MRR scores with standard error (SE) of differentλ−gradients on the
validation set.

λ−gradient MRR ± SE
RankNetWeightPairs 0.524±0.0059
LocalCost 0.515±0.0060
LocalGradient 0.512±0.0059
SpringSmooth 0.498±0.0058
DiscreteBounded 0.471±0.0059

we report the validation accuracy of a selective subset ofλ−gradients for MAP. In
Table 2, we compare the accuracy ofλ−gradients for MRR. ‘RankNetWeightPairs’
is the construction explained in detail throughout Section 4. ‘SpringSmooth’is a
smoothed version of ‘RankNetWeightPairs’ where the gain obtained by swapping
a pair is lower-bounded by1. ‘LocalGradient’ estimates the gradient by the change
in accuracy with respect to the difference in scores between two adjacent docu-
ments in an ordered list. A margin is added to handle very small score differences.
‘LocalCost’ uses a cost based on a document’s neighbors to compute an estimate
of the local gradient. ‘DiscreteBounded’ computes the change in accuracy when
a document is moved to its ideal position in the ranked order, and theλ−gradient
is upper-bounded by1. We adopt ‘RankNetWeightPairs’ as the construction for
NDCG, MAP, and MRR since it outperformed the other constructions, with sta-
tistical significance, on the validation set for all three measures. It is likely this
construction can be extended to other IR measures as well.

7.1 Empirical Optimality of LambdaRank

We trained LambdaRank on each training set and each evaluation measure,which
we denote byLambdaRankNDCG, LambdaRankMAP,andLambdaRankMRR. For
each algorithm, we varied the learning rate between10−7 to 10−3, and picked the
rate that gave the best validation accuracy. Each algorithm was run for700 epochs.
If the training accuracy decreased at a given epoch, the learning ratewas reduced
by a factor of0.8 with 30% probability. The output of each algorithm is a set of
learned model weights. We report results in this paper based on both single-layer
and two-layer nets with 10 hidden nodes.

Figure 1 shows the change in mean NDCG@10 on the three training sets when
varying the weights of the single-layer net in a given random direction. Note from
this point on we use NDCG and mean NDCG@10 interchangeably. In all figures,
for readability, we graph only 4 of the 460 random directions tested. Whenthe
step sizeη = 0, the accuracy corresponds to the training accuracy of the original
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Figure 1: Shifting single-layer weights for mean NDCG@10. x-axis is the step
size,η.
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Figure 2: Shifting 2-layer weights for mean NDCG@10. x-axis is the step size.

(learned) net. On all three training sets, mean NDCG@10 decreases as wechange
the values of the learned weights. The training accuracy score is higher on the
Artificial dataset, as expected, since it is a much less noisy dataset. Figure 2shows
the training accuracy on all three training sets when varying the 2-layer weights,
where we vary the hidden and first layer weights together. In all cases,NDCG
curves are smooth functions of the weights and it is apparent the learned weights
result in the best accuracy.

We also compare the change in accuracy with respect to MAP and MRR. Fig-
ures 3 and 4 show the results forLambdaRankMAPon all three training sets for
the single-layer and 2-layer net, respectively. We see that all variationsin learned
weights cause a decrease in accuracy and satisfy the test for local optimality. The
MAP score on the Artificial Data is higher than the MAP score on the Web datasets.

Lastly, we evaluate the local optimality ofLambdaRankMRR. MRR training
accuracy decreases as a relatively smooth function of the weights for both nets and
all training sets, as shown in Figures 5 and 6, and therefore also satisfiesthe test
for local optimality.
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Figure 3: Shifting single-layer weights for MAP@10. x-axis is the step size.
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Figure 4: Shifting 2-layer weights for MAP@10. x-axis is the step size.
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Figure 5: Shifting single-layer weights for MRR. x-axis is the step size.
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Figure 6: Shifting 2-layer weights for MRR. x-axis is the step size.

We also verify that the training accuracy decreases for all460 directions for
all three metrics. We tested10 steps for all directions, and found that the accuracy
never increases, within a smallǫ = 0.003, for both single-layer and two-layer
nets trained on any of the three measures. With99% confidence, this empirically
guarantees that LambdaRank finds the locally optimum solution for NDCG, MAP,
and MRR. We also verify that the gradient in fact vanishes at each learned weight
by fixing all weights but one and varying the one weight under consideration. As
the single weight value is varied, we again check that accuracy decreases with all
variations. We find this to be true for all weights, all measures, and all training sets.

7.2 Matching Training and Target Measures

We investigate if matching the training measure to the target measure yields the best
test accuracy. We evaluate the nets trained by each algorithm,LambdaRankNDCG,
LambdaRankMAP, LambdaRankMRR, on all three IR measures. We report the
results on the 10K Web data in Table 3. The left column shows the test evaluation
measure. The middle columns show the measure used for training LambdaRank
and the scores on the test set for the test measure. The right column is thep value
resulting from a pairwiset-test. Thep-value is positioned in the table between
the two training measures compared in thet-test. If p < 0.05, then the results
are statistically signigicant with95% confidence, and are shown in bold. When
testing on NDCG, training on NDCG gives the best test accuracy, with statistical
significance. However, when testing on MAP, a net trained on NDCG yieldssimilar
test accuracy to a net trained on MAP. Similarly, NDCG-based training performs
better than MRR-based training when testing on MRR. It appears matching the
training and test measures is only best for NDCG. An immediate question arises:
how training on, say, MAP can give a local optimum, but training on NDCG yields
better MAP test accuracy. Recall the local optimum is found for the training set,
but not the test set. Here, accuracy is reported on the test set, and the question is
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Table 3: Accuracy comparison between different metrics on 10K Web Data. Bold
indicates statistical significance.

Test Train Test Score p value

NDCG
NDCG 0.416

p < 0.05
MAP 0.412

p < 0.05
MRR 0.396

MAP
NDCG 0.442

p > 0.05
MAP 0.439

p < 0.05
MRR 0.429

MRR
NDCG 0.519

p < 0.05
MAP 0.516

p < 0.05
MRR 0.508

rather one of generalization, which, as we show, can be solved with more training
data.

To correctly interpret these results, we consider the amount ofeffectivetraining
data. Note that MAP and MRR are both binary metrics. NDCG, on the other hand,
is trained using multiple relevance levels. When the data is transformed to binary
relevance, the number of training pairs decreases significantly. For the 10K Web
data, the number of training pairs generated in the multilevel case is∼73,000K
whereas it is∼27,000K for the binary case. In fact, the number of pairs actually
used during training is potentially far less, especially for MRR. In Equation 11,
the λ−gradient evaluates to a non-zero value only for the pairs involving a non-
relevant document ranked higher than the top relevant document. For allother pairs
{i, j}, λij evaluates to zero; hence, they do not contribute to the training. MAP and
MRR lose valuable information due to the binary transformation, plus MRR loses
due to the calculation of the RR gain. As a result,LambdaRankNDCGhas more
training data (more learning opportunity) to make fine-grained adjustments than
LambdaRankMAP, which has more training data thanLambdaRankMRR.

We hypothesize that with asymptotically large amounts of effective training
data, matching the training measure to the test measure will yield the best test
accuracy results. To verify this claim, we repeat the analysis for 30K training
queries, shown in Table 4. The 30K Web data has∼60,000K pairs in the binary
case, and∼162,000K pairs in the multilevel case. Again, matching the training and
test measure for NDCG yields the best test accuracy with statistical significance.
In addition, matching the training and test measure for MRR yields the best test
accuracy with statistical significance. For MAP, matching the training and test
measures also gives the best performance, but without statistical significance. We
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Table 4: Accuracy comparison between different metrics on 30K Web Data. Bold
indicates statistical significance.

Test Train Test Score p value

NDCG
NDCG 0.428

p < 0.05
MAP 0.422

p < 0.05
MRR 0.406

MAP
NDCG 0.453

p > 0.05
MAP 0.456

p < 0.05
MRR 0.449

MRR
NDCG 0.532

p > 0.05
MAP 0.533

p > 0.05
MRR 0.537

predict with more queries for training, training on MAP will also produce the best
accuracy since with 10K training queries, NDCG training gives the best accuracy,
but with 30K queries, MAP training gives the best accuracy. As the number of
queries in the training set increases, the accuracy produced by trainingand testing
on the same measure yields the best results.

A related point is made by Robertson and Zaragoza in [8]. They claim dif-
ferent measures have different local optima, and likely have many local optima.
They point out that a measure that responds to many flips (e.g. MAP and NDCG)
will have many local optima whereas a measure that responds to fewer flips (e.g.
MRR) will have fewer optima, but larger flat areas. These are the large areas of the
parameter space that it cannot distinguish [8]. In other words, MAP andNDCG
are more flexible than MRR, and NDCG has more granularity. Hence, it may be
better to use a finer-grained metric when there is not sufficiently large training data
available.

8 Conclusions

Direct optimization of IR measures has been very challenging, causing IR prac-
titioners to build models with one (like BM25) or a few parameters that can be
optimized using grid-search. However, it was recently shown that learning a model
on many weak features can significantly improve test accuracy [1, 3]. Inthis paper,
we have shown that three IR measures can in fact be optimized directly, andour
λ−gradient construction is very likely extendable to other IR measures. We also
show that with enough training data, matching the training measure to the target
measure results in the best test accuracy. Our results open up a world ofpossibil-
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ities for directly optimizing sophisticated models on large numbers of features for
possibly any IR measure of interest. In the future, we plan to work on developing
theoretical results that support our empirical findings.
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