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Abstract

A machine learning approach to rank learning trains a madeptimize
a target evaluation measure with repect to training datarre@tly, exist-
ing information retrieval measures are impossible to opndirectly except
for models with a trivial number of parameters. The IR comityuthus
faces a major challenge: how to optimize IR measures ofastetirectly. In
this paper, we present a solution. Specifically, we show lthatbdaRank
[1], which smoothly approximates tlggadientof the target measure, can be
adapted to work with three popular IR target evaluation messusing the
same underlying gradient construction. It is likely, tHere, that this con-
struction is extendable to other evaluation measures. Warigally show
that LambdaRank finds a locally optimal solution for NDCG, RlAnd MRR
with a99% confidence rate. We also show that the amount of effective-tra
ing data varies with IR measure and that with a sufficienthgdatraining
set size, matching the training optimization measure tdalget evaluation
measure yields the best accuracy.



1 Introduction

Learning to rank is an increasingly popular area of research. Rankingépping
from a set of items to an ordered list; the ranking of Web search resulteraman
example. This task consists of a set of queries and a set of retrievathdats for
each query. The document-query pairs are labeled according to afrecaleot
relevant to highly relevant, and the ranking systems use the training data pote
a model that outputs a rank order based on a real-valued scoring furi€ti. It

is more important to predict the correct ordering rather than the valyéxof In

Web search ranking, the cost function is typically defined with respecstotad
order of documents at the query level, and averaged over a large nahtaegeries.

The ranking problem generally employs a cost function (target evaluaiian
sure) that is not necessarily the one used to train the system. Typical iagge
sures used in IR (see [8] for a detailed list) depend only on the sortechtistha
relevance levels of the listed items. These measures are generally eitegefiat
where or non-differentiable with respect to the model parameters; hiregeare
difficult to optimize directly. One way to address this issue is to find a close smooth
approximation to the target measure, and optimize it via gradient descent. How
ever, this is quite challenging due to the sort component of the target camidn-
sures. LambdaRank [1] tackles the problem by defining a smooth apprixima
to thegradientof the target cost instead of searching for a smooth approximation
to the target cost itself. The basic idea of LambdaRank is to specify ruieswa-
ing how the rank order of documents should change. These rules arpanated
into a A\—gradient that defines the gradient of an implicit cost function only at the
points of interest [1]. LambdaRank was originally proposed for NDC@Grhal-
ized Discounted Cumulative Gain), but the method is general and works mjith a
target cost function. Recently, LambdaRank was shown to be locally opfiimal
NDCG [12].

In this paper, we defink—gradients for three widely used IR measures, namely
NDCG, MAP and MRR, using the same underlying construction as useddor th
NDCG A-gradient in [1]. This construction is likely extendable to other IR mea-
sures as well. We empirically show, with a confidence bound, the local optimality
of LambdaRank on these measures by monitoring the change in trainingegcur
as we vary the learned weights of the net. We change the weights by prgjectin
a random direction on a unit ball and moving the weights in that direction. If the
accuracy decreases as the original net weights change, it meangtiesl le@ights
are at a local optimum. By checking the accuracy decreases for khuedred
random directions, we show, wifl9% confidence, that the learned net weights are
at a local optimum, using a Monte-Carlo test with one-sided error. We also sho
that the gradient vanishes at each learned weight by fixing all but @nghtis



value and varying that weight’s value while checking for a decreasedaracy
on the training set. If the highest accuracy is achieved at the learnetitweige,
then the gradient has vanished. We find LambdaRank to be locally optimal and
that the gradient vanishes for all weights. Our work is not only the firshtuw
empirical optimality of a learning algorithm, but also the first to show optimality
across several IR measures. In addition, it shows IR practitionensaaiulirectly
optimize for the IR measure they care about, and the model need not be limited to
only a few parameters. We also show that with large enough amounts of ¢grainin
data, the best test accuracy is achieved when matching the training optimization
measure to the target evaluation measure.

The paper is organized as follows: we review related rank learning literatu
in Section 2 and the IR measures under consideration in Section 3. Webdescr
in detail the \—gradients in Section 4. Local optimality testing is described in
Section 5. Our datasets are described in Section 6 and experimental egsults
presented in Section 7. We conclude in Section 8 with final remarks anc futur
work.

2 Related Work

The ranking task has become increasingly popular among researchbesgast

few years. Some ranking algorithms approach the problem as structutot o
prediction such as the large margin methods of [9, 10]. The learned seacite
mapped to the reals, and then the best structure is chosen to give the hégthes
valued score among all possible outputs. Another line of work casts tkegan
problem as ordinal regression, that is, learning the mapping of an irgatdnvto

a member of an ordered set of numerical ranks [6]. Like many otheinguai-
gorithms, their cost functions depend on pairs of examples. Crammer ager Sin
[5] proposed a similar solution where the ranker is a perceptron whdpatas a
weight vectorw. Cao et al. [4] proposed a listwise approach to rank learning where
a cross-entropy loss is defined between two parametrized probability disirs

of permutations. Qin et al. [7] proposed a method called RankCosine, wkich
pends on a listwise loss function that takes the cosine similarity between tlee scor
vectors of the predicted result and the ground truth.

In addition, there are methods that claim to directly optimize the evaluation
measures, such as SVMMAP [13] and AdaRank [11]. SVMMAP incrafes
MAP into the listwise optimization constraints. In reality, the number of con-
straints is exponential in the number of rankings. SVMMAP tackles this pmoble
by performing optimization only on a working set of constraints which is ex¢dnd
with the most violated constraint at each step. The resulting algorithm works in



polynomial time. AdaRank, on the other hand, performs a boosting-type optimiz
tion where the IR measure is embedded into the loss function used in updating the
distribution of the data. The authors claim a theoretical guarantee that ithiadra
error defined in terms of the IR measure will reduce constantly with some mild
assumptions.

Another approach is to train on pairs of documents per query. Ranl@\et [
is a neural net based ranking algorithm that optimizes a cross-entrgpyuct-
tion using gradient descent. It is trained on pairs of documents per,quibeye
documents in a pair have different labels. The RankNet cost consiatsigioid
followed by a pair-based cross-entropy cost. RankNet modifies thdasthback-
prop algorithm by trying to minimize the value of the cost function by adjusting
each weight in the net according to the gradient of the cost with respdicato
weight. The training time of RankNet scales quadratically with the average num-
ber of pairs per query, and linearly with the number of queries. Thiegdipg up
RankNet training becomes crucial especially for large training sets. LaRdotk
[1] provides a significant training speed-up as well as a frameworkgtmizing
a cost function while avoiding the difficulties of working with non-differebta
IR measures. In addition, LambdaRank has been shown to empirically optimize
NDCG [12]. We empirically show not only that it optimizes NDCG, but also MAP
and MRR.

3 IR Measures

IR measures are typically defined with respect to a permutation of docuroets f
given query. The relevance labels can be binary or multilevel. For bmasasures,
we assume labeld), 1} (1 for relevant, and) for non-relevant). Binary measures
include Mean Average Precision (MAP), Mean Reciprocal Rank (MRRgJ Win-
ner Takes All (WTA) (see [8] for a more complete list). In this paper, waifoon
three of the most commonly used IR metrics: MAP, MRR, and NDCG.
Average Precision (AP) computes for each relevant document thisipreat
its position in the ranked list; these precisions are then averaged oveleadine

documents: .

AP = ZT‘Zl Z(T)P@I" (1)

R

wherer is the rank positionL is the truncation levelR is the number of rele-
vant documentd(r) is the binary relevance label of the document at rank position
r, and P@ is the precision up to rank position i.e. P@ = M Mean
Average Precision is the average of the average precisions ovéf glieries,
% Zf\il AP;, where AR is the average precision for query



Reciprocal Rank (RR) for a given query is the reciprocal of the @osition
of the highest ranking relevant document for the query. MRR is justibeage of
the reciprocal ranks over queries:

1 L1
MRR= — S = 2

whereN is the number of queries anglis the highest position of a relevant docu-
ment for queryi.

Unlike binary measures such as MAP and MRR, NDCG recognizes multi-
relevance levels. NDCG for a given query is formulated as follows:

1 <L 20—
NDCG@k = ~ Z 1 ©)
r=1

(r)
og(l+r)
wherel(r) € {0,...,4} is the relevance label of the document at rank position
r. Z is chosen such that the perfect ranking would result in NDAG@ 1,
and L is the truncation level at which NDCG is computed. Mean NDCGi®
5N NDCG@¥;, where NDCG@; is the NDCG@: for queryi. NDCG is
particularly suited for Web search applications since it accounts for migtraece
levels and the truncation level can be set to model user behavior. lesuits, we
report mean NDCG@o.

4 LambdaRank

In most machine learning tasks, a target cost is used to assess theepafuree
system at test time, and an optimization cost, generally a smooth approximation to
the target cost, is used to train the system. Ideally, the optimization cost matches
the target cost, but typical IR target costs (e.g. MAP, MRR, NDCG, ete.gither

flat or non-differentiable everywhere. Hence, direct optimization otdhget cost

is quite challenging. LambdaRank [1] solves this problem by defining tiokegrts

of a given cost function only at the points of interest. The gradientsefieeat! by
specifying rules about how swapping two documents, after sorting thesaodrg

for a given query, changes the cost. This general method can worlamyttarget

cost function, but was originally formulated for NDCG due to its suitability for
Web search applications. In this section, we defirgradients for three different

IR measures.



41 XN—Gradient for NDCG

A LambdaRank gradienty;, is defined to be a smooth approximation to the gra-
dient of a target cost with respect to the score of the document at @sikiom
j. A—gradients have a physical interpretation; documents are represeneihby
masses and—gradients are forces on those point masses [1]. On two documents
in a pair, thex—gradients are equal and opposite, where a poshivgradient in-
dicates a push toward the top of the list, and a negativgradient indicates a push
toward the bottom of the list. With a choice of suitablegradient, the gradient of
any target cost can be smoothly approximated for a given document.

The authors of [1] tried several alternatives forgradients and chose the best
according to accuracy on validation data (for a detailed list, the readefeisee
to [2]). The best\—gradient found in [1] is a combination of the derivative of the
RankNet cost [3] scaled by the NDCG gain from swapping two documeitibs w
differing labels (for a given query). The RankNet cost is a pairwisssentropy
cost applied to the logistic of the difference of the model scores. If dontime
i, with scores;, is to be ranked higher than documentwith scores;, then the
RankNet cost can be written as follows:

Cij = C(0ij) = s5 — s; +1og(1 + e%%) 4)

whereo;; = s; — s; is the score difference of a pair of documents in a query. The
derivative of the RankNet cost according to score difference is

50@/50@' = 50@]/532 = —1/(1 + eoij) (5)
The A—gradient can now be written as follows:
(50@‘

_ . 1 1 1
1(i) _ ol(j) _
Nz : )<10g(1 +74) log(1+7'j)> <1 +6””‘)

whereN is the reciprocal max DCG for the quetyandi; are the relevance labels
andr; andr; are the rank positions of documeritand j, respectively. The sign
of \ij, Sij € {—1,1}, is plus one ifl; > [; (document; is more relevant than
documenty), indicating document must move up the ranked list to reduce the
cost, and minus one if < I;. Note that the sign only depends on the labels of
documentg and;j and not on their rank positions (see Eqn 5). Thegradient for

a single document is computed by marginalizing over the pairwisgradients;

ie.
A=\ (")
jEP
where the sum is over all pairs in a query which contain document
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4.2 X\—Gradient for MAP

The LambdaRank algorithm is designed to work with any target cost funcsn
long as the\—gradient can be defined. We design-agradient for MAP based
on the same principles as the one designed for NDCG, with the exception that
ANDCG is substituted witlAAP.

The A\—gradient for MAP uses the RankNet cost, scaled by the AP (Average
Precision) gain found by swapping two documenasd; at rank positions; and
r;. Assume documentsand; are misranked by the current net, i»g.> r; but
1(i) > 1(j)* then

Aij = (8)
1 = 1
= (,; 1(k)P@k — k;'z (k)P’@k) (1 o > '

wherel(k) = 1 if the document at rank positiok is relevant, and) otherwise;
P@xk is the precision at rank; R is the number of relevant documents for that
query. I'(k) is the relevance value after we swap the documents at positjons
andr;. Infact,l'(k) = (k) forall k € {r; +1,...,r; — 1}, '(r;) = I(r;), and
U'(r;) = l(r;). PQF is the precision at the rank positions betweemndr; after
the swap. We can rewrite the above formula as:

Aij = ()]

A0 5 ()

k:Tj+1

wheren andm (n < m) are the number of relevant documents at thestopnd
the topr; positions, respectively. The sign af; determines the direction of the
move; i.e. relevant documents get the upward move and non-relevamnédats
move downward. Finally, th&@—gradient for a single documenbecomes the sum
of the pairwise gradients,; = 3, p Ai;.

4.3 M\—Gradient for MRR

The A—gradient for MRR follows that of NDCG and MAP. It uses the RankNet
cost scaled by the RR (Reciprocal Rank) gain for that query, foynsiAapping
documents andj at the corresponding rank positionsandr;, for any {i,j}.

Throughout the paper, we assume higher rank means lower rank inde



Assume documeritis relevant, and documepitis non-relevant,

Aij = Sij

1
ARR(r;,7;) calculates the difference in the reciprocal rank of the top relevant
document as a result of the swap:

11
T

if r; <
ARR(r;,7;) = { 2 "Ti<TST (12)

0 otherwise

wherer is the rank of the top relevant document in the ordered list. Clearly, there
is no RR gain (or loss) unless the rank of the top relevant document shéftslae
swap.

5 Monte Carlo Testing of L ocal Optimality

In order to verify local optimality, we must show that the training accuracy of
LambdaRank decreases as the weights’ learned values are chaittggrdrfereased
or decreased in value). We project iid random directignss, ..., 7. on a unit ball
by first sampling each dimension of a vector from a Gaussian distriutiith
0 mean and unit variance and then projecting the vector onto the unit spifere.
modify the net weights in each direction as follows: {étbe the vector of net
weights, andfy, (@) be the accuracy of the net with weightswith respect to a
given evaluation measur®. We use a Monte-Carlo test with one-sided error; we
compare, foralf € {1,2,...,k}, far (@) to fas (w+nr;) for smallp > 0 and check
if far(W) > far(0 + nr;) . If there exists at least one directiopfor which this
condition does not hold{ has higher accuracy), ther is not a local optimum.
If the accuracy decreases for all directiofjsthen the probability of missing an
increasing direction is upper bounded @dy— ¢)*, whereq is a lower bound on
the number of random directiotks We can further upper bound this probability by
exp(—gk). We required9% confidence that the probability of finding an increasing
direction is less thaih%:

exp(—0.01k) = 0.01

Solving fork yieldsk = 460 random directions. Thus, if we can show that varying
the net weights in 460 random directions all yield worse accuracy thanaheele
set of weights, then the learned set of weights represents a local optinthm w
99% confidence. We choos#® different step sizeg € {0.1,0.2, ..., 1} to analyze

2Any spherically symmetric distribution can be used, not just a Gaussitribdion.



Table 1. MAP scores with standard error (SE) of differantgradients on the
validation set.

A—gradient MAP + SE

RankNetWeightPairs 0.462+0.0048
LocalGradient 0.435+0.0048
LocalCost 0.42°740.0049
SpringSmooth 0.424+0.0048
DiscreteBounded 0.401£0.0049

the change in accuracy as we move away from the net weighté/e compare
the change in mean accuracy averaged over all queries faé@idirections. In
Section 7, we report the results for each IR measure.

6 Datasets

We conducted experiments on three different datasets. Two of theraaréd/eb
datasets from a commercial search engine. The other is an artificial dgthse
created to remove any variance caused by the quality of features aeldance
labels. The artificial data, first introduced in [3], was generated fromdom cubic
polynomials. It has 300 features, 50 URLs per query, and a randé@bK0 OK
train/valid/test split for queries. We refer to it as the Artificial Data. The firs
Web search dataset has 26.1 URLSs per query, 420 features, afBKIDBK query
train/valid/test splits. We call this dataset the 10K Web Data. The second Web
dataset contains 30K/5K/10K query train/valid/test splits, 100 URLs peryque
and 420 features. We refer to this dataset as the 30K Web Data.

All the document-query pairs are assigned integer labels betwéthe least
relevant) andt (the most relevant). For the binary measures, MAP and MRR, we
transform the multilevel relevance levels to binary by converting all labe\gd®n
2 and4 (inclusive) to relevantl(), and all the rest to non-relevart)(

7 Experiments

We empirically show the local optimality of LambdaRank on three datasets for
three IR measures. We also investigate if matching the training measure to the tar-
get evaluation measure yields the best test accuracy, and if so, howtrainthg

data is required. First, we select the best ofXt3gradient constructions [2] by
training each construction for each measure on a 5K query Web setanding

the one with the best validation accuracy on a 5K query validation set. In Table



Table 2. MRR scores with standard error (SE) of differdntgradients on the
validation set.

A—gradient MRR + SE

RankNetWeightPairs 0.524+0.0059
LocalCost 0.515+0.0060
LocalGradient 0.512+0.0059
SpringSmooth 0.498t0.0058
DiscreteBounded 0.471:0.0059

we report the validation accuracy of a selective subsatajradients for MAP. In
Table 2, we compare the accuracywefgradients for MRR. ‘RankNetWeightPairs’

is the construction explained in detail throughout Section 4. ‘SpringSmaoth’
smoothed version of ‘RankNetWeightPairs’ where the gain obtained bymEng

a pair is lower-bounded bl. ‘LocalGradient’ estimates the gradient by the change
in accuracy with respect to the difference in scores between two adljdoen-
ments in an ordered list. A margin is added to handle very small score difiesen
‘LocalCost’ uses a cost based on a document’s neighbors to compugtimate

of the local gradient. ‘DiscreteBounded’ computes the change in ancwien

a document is moved to its ideal position in the ranked order, and-tiggadient

is upper-bounded by. We adopt ‘RankNetWeightPairs’ as the construction for
NDCG, MAP, and MRR since it outperformed the other constructions, with sta
tistical significance, on the validation set for all three measures. It is likédy th
construction can be extended to other IR measures as well.

7.1 Empirical Optimality of LambdaRank

We trained LambdaRank on each training set and each evaluation mesisigte,
we denote by.ambdaRankNDCG, LambdaRankMARdLambdaRankMRR-or
each algorithm, we varied the learning rate betw@n’ to 10~2, and picked the
rate that gave the best validation accuracy. Each algorithm was ratif@pochs.
If the training accuracy decreased at a given epoch, the learningiaateeduced
by a factor of0.8 with 30% probability. The output of each algorithm is a set of
learned model weights. We report results in this paper based on both-kEipgte
and two-layer nets with 10 hidden nodes.

Figure 1 shows the change in mean NDCG@10 on the three training sets when
varying the weights of the single-layer net in a given random directione Kom
this point on we use NDCG and mean NDCG@10 interchangeably. In alegur
for readability, we graph only 4 of the 460 random directions tested. Wen
step sizep = 0, the accuracy corresponds to the training accuracy of the original
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Figure 1: Shifting single-layer weights for mean NDCG@10. x-axis is the step
sizen.

NDCG@10
NDCG@10
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0 0.2

04 0.6 08 1 02 06
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Figure 2: Shifting 2-layer weights for mean NDCG@10. x-axis is the step size

(learned) net. On all three training sets, mean NDCG@10 decreasehange
the values of the learned weights. The training accuracy score is highitreo
Artificial dataset, as expected, since it is a much less noisy dataset. Fighosv2
the training accuracy on all three training sets when varying the 2-layightge
where we vary the hidden and first layer weights together. In all cdBEG
curves are smooth functions of the weights and it is apparent the leamigttsy
result in the best accuracy.

We also compare the change in accuracy with respect to MAP and MRR. Fig-
ures 3 and 4 show the results foambdaRankMARN all three training sets for
the single-layer and 2-layer net, respectively. We see that all varidtidearned
weights cause a decrease in accuracy and satisfy the test for local laptiiae
MAP score on the Artificial Data is higher than the MAP score on the Web efstas

Lastly, we evaluate the local optimality ambdaRankMRRMRR training
accuracy decreases as a relatively smooth function of the weightstfonets and
all training sets, as shown in Figures 5 and 6, and therefore also satfifigsst
for local optimality.
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Figure 3: Shifting single-layer weights for MAP@10. x-axis is the step size.
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Figure 4: Shifting 2-layer weights for MAP@10. x-axis is the step size.
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Figure 5: Shifting single-layer weights for MRR. x-axis is the step size.
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Figure 6: Shifting 2-layer weights for MRR. x-axis is the step size.

We also verify that the training accuracy decreases fod@lldirections for
all three metrics. We tested steps for all directions, and found that the accuracy
never increases, within a small= 0.003, for both single-layer and two-layer
nets trained on any of the three measures. \8th confidence, this empirically
guarantees that LambdaRank finds the locally optimum solution for NDCG,, MAP
and MRR. We also verify that the gradient in fact vanishes at eachddaveight
by fixing all weights but one and varying the one weight under consideraAs
the single weight value is varied, we again check that accuracy desregih all
variations. We find this to be true for all weights, all measures, and all tpgts.

7.2 Matching Training and Target M easures

We investigate if matching the training measure to the target measure yieldsthe bes
test accuracy. We evaluate the nets trained by each algotitomydaRankNDCG,
LambdaRankMAP, LambdaRankMR#h all three IR measures. We report the
results on the 10K Web data in Table 3. The left column shows the test evaluatio
measure. The middle columns show the measure used for training LambdaRank
and the scores on the test set for the test measure. The right colummisahe
resulting from a pairwisé-test. Thep-value is positioned in the table between
the two training measures compared in thest. Ifp < 0.05, then the results

are statistically signigicant with5% confidence, and are shown in bold. When
testing on NDCG, training on NDCG gives the best test accuracy, with statistic
significance. However, when testing on MAP, a het trained on NDCG ysirhaigar

test accuracy to a net trained on MAP. Similarly, NDCG-based trainingppasf
better than MRR-based training when testing on MRR. It appears matching the
training and test measures is only best for NDCG. An immediate question:arises
how training on, say, MAP can give a local optimum, but training on NDCG ygield
better MAP test accuracy. Recall the local optimum is found for the trairehg s
but not the test set. Here, accuracy is reported on the test set, andetiog is

13



Table 3: Accuracy comparison between different metrics on 10K Web. [Bata
indicates statistical significance.

Test Train | Test Score| p value
NDCG | 0.416 005
NDCG | MAP | 0.412 p oo
MRR | 0.396 p=*
NDCG | 0.442
MAP | MAP | 0.439 p z 882
MRR | 0.429 p=*
NDCG | 0.519
MRR | MAP | 0516 p i 882
MRR | 0.508 p=*

rather one of generalization, which, as we show, can be solved with nadmengy
data.

To correctly interpret these results, we consider the amouwgftedtivetraining
data. Note that MAP and MRR are both binary metrics. NDCG, on the othel; han
is trained using multiple relevance levels. When the data is transformed to binary
relevance, the number of training pairs decreases significantly. FoOt&\Eb
data, the number of training pairs generated in the multilevel cas& 8000K
whereas it is~27,000K for the binary case. In fact, the number of pairs actually
used during training is potentially far less, especially for MRR. In Equatibn 1
the A—gradient evaluates to a non-zero value only for the pairs involving a non-
relevant document ranked higher than the top relevant document. Bthiedlpairs
{i,7}, \i; evaluates to zero; hence, they do not contribute to the training. MAP and
MRR lose valuable information due to the binary transformation, plus MRR loses
due to the calculation of the RR gain. As a resubimbdaRankNDC®as more
training data (more learning opportunity) to make fine-grained adjustments than
LambdaRankMAPRwhich has more training data thhkambdaRankMRR

We hypothesize that with asymptotically large amounts of effective training
data, matching the training measure to the test measure will yield the best test
accuracy results. To verify this claim, we repeat the analysis for 30Kirigiin
queries, shown in Table 4. The 30K Web data ké®,000K pairs in the binary
case, and-162,000K pairs in the multilevel case. Again, matching the training and
test measure for NDCG yields the best test accuracy with statistical sigiadica
In addition, matching the training and test measure for MRR vyields the best test
accuracy with statistical significance. For MAP, matching the training and test
measures also gives the best performance, but without statistical sigo#ic\We

14



Table 4: Accuracy comparison between different metrics on 30K Web. [Bata
indicates statistical significance.

Test Train | Test Score| p value
NDCG | 0.428 005
NDCG | MAP | 0.422 p oo
MRR | 0.406 p=*
NDCG | 0.453
MAP | MAP | 0.456 p z 882
MRR | 0.449 p=*
NDCG | 0.532
MRR | MAP | 0.533 p i 882
MRR | 0.537 p =1

predict with more queries for training, training on MAP will also produce testb
accuracy since with 10K training queries, NDCG training gives the bestracy,
but with 30K queries, MAP training gives the best accuracy. As the numbe
queries in the training set increases, the accuracy produced by traimihigsting
on the same measure yields the best results.

A related point is made by Robertson and Zaragoza in [8]. They claim dif-
ferent measures have different local optima, and likely have many Iqtaha.
They point out that a measure that responds to many flips (e.g. MAP a@G)\D
will have many local optima whereas a measure that responds to fewereflips (
MRR) will have fewer optima, but larger flat areas. These are the |laeges af the
parameter space that it cannot distinguish [8]. In other words, MAPNADGG
are more flexible than MRR, and NDCG has more granularity. Hence, it may be
better to use a finer-grained metric when there is not sufficiently large tgailaita
available.

8 Conclusions

Direct optimization of IR measures has been very challenging, causingal®k p
titioners to build models with one (like BM25) or a few parameters that can be
optimized using grid-search. However, it was recently shown that legaenmodel

on many weak features can significantly improve test accuracy [1, idipaper,

we have shown that three IR measures can in fact be optimized directlguand
A—gradient construction is very likely extendable to other IR measures. \We als
show that with enough training data, matching the training measure to the target
measure results in the best test accuracy. Our results open up a wpddsaibil-
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ities for directly optimizing sophisticated models on large numbers of features fo
possibly any IR measure of interest. In the future, we plan to work onlaigineg
theoretical results that support our empirical findings.
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