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ABSTRACT
Reducing the energy consumption of computers is becoming
increasingly important with rising energy costs and environ-
mental concerns. It is especially important for mobile devices
such as laptops where battery lifetime is always an issue. Sleep
states such as S3 (suspend to RAM) save energy but prevent
the device from responding to incoming network events, for
example remote desktop logins and file transfer requests. Thus
many people do not use S3 and instead leave their computers
plugged in and active. Mobile users do not have this flexibil-
ity, and as a result their machines are unreachable during the
periods when they are in S3.

Somniloquy allows computers in S3 to be woken based on
incoming network traffic such as incoming VoIP calls or re-
mote file access requests, or other events such as the presence
of particular access points. This is done by adding a secondary
embedded processor attached to a network interface, forming
a low-power domain that remains active even when the rest of
the computer is in S3. This secondary processor acts trans-
parently on behalf of the computer, sharing the same MAC
address, IP address, host name, etc. Remote servers and net-
work hardware remain completely unaware of the low-power
state.

We present a prototype implementation of Somniloquy us-
ing a USB peripheral, which is therefore easily retrofitted to
existing computers. Our prototype achieves a ten-fold increase
in battery lifetime compared to an idle computer not in S3,
while only adding 4-7s of latency to respond to application-
layer events. Our system allows computers to appear always-
on when they are in fact talking in their sleep.

1. INTRODUCTION
As the use of networking has proliferated, computers need

not only to respond to local users, but also to remote users.
Remotely triggered actions include, for example, access to lo-
cal files, access to the desktop GUI, or establishing two-way
communication with a local user via a VoIP call (when the lo-
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cal user has indicated their availability). Unfortunately, this
remote access is not compatible with current power-saving
schemes such as suspend-to-RAM (S3), during which local
users can easily initiate wakeup but the computer is not re-
sponsive to remote network events.

This situation causes inconvenience to mobile users, who
have no choice but to place their laptops, tablet PCs and/or
ultra-mobile PCs (UMPCs) into a sleep state when they are
not in active use, since otherwise the battery would run down
too quickly. It also causes significant waste of energy because
mobile and desktop computers alike are often left plugged in
and always-on rather than put in a sleep mode, in case there
are incoming events for them to respond to.

This paper presents Somniloquy1, an architecture that al-
lows computers to respond to incoming network communica-
tion events in near real-time while simultaneously being in a
low-power state. It operates by supplementing the computer
with a secondary low-power processor that performs actions
on behalf of the main processor whenever the computer is
in a low power state such as S3. These actions can include
connecting to and maintaining connectivity with local access
routers such as wireless access points (APs), communicating
with network-based services such as DNS servers, dynamic
DNS servers and voice-over-IP (VoIP) proxies, and replying
to incoming requests such as ARP IP address resolution re-
quests or ICMP pings. The secondary processor is also able
to signal the computer to come out of the low-power state in
response to network events such as an incoming remote desk-
top request (use of the computer’s GUI remotely) or incoming
VoIP call.

Significant power savings are achieved with Somniloquy
since the secondary processor requires much less power than
the computer as a whole, with our prototype system exhibit-
ing a ten-fold increase in battery lifetime. At the same time,
the system responds to network events in near real-time, in our
prototype a latency of only 4-7s was added to respond to in-
coming application requests such as VoIP calls and remote file
transfers. A particular advantage of our architecture is that the
computer’s sleep status can be made transparent to both the
local network and to remote servers, and even transparent to
applications running on the computer.

Somniloquy therefore allows mobile users to leverage S3
for good battery lifetime without sacrificing reachability from
the network. It also allows stationary computers such as lap-
tops which are mains powered, desktops or even servers to dra-

1somniloquy: the act or habit of talking in one’s sleep.



matically reduce their energy consumption while idle, again
maintaining reachability. Furthermore, Somniloquy can be
added to existing computers easily, as it can be implemented
entirely as a USB peripheral and associated software drivers.

We make the following contributions.

• We present Somniloquy, a system that enables connec-
tivity to computers even when they are asleep. In con-
trast to prior automatic wake-up systems (see Section 3),
Somniloquy is transparent. It does not require changes
to either the applications or the infrastructure, and works
with mobile/nomadic devices.

• We present a practical way in which Somniloquy can
be realized today, using a USB based low power device
(gumstix) that consumes little power. We show how
a number of applications, such as file sharing, remote
desktop, VoIP and push e-mail can be implemented with-
out requiring any changes to the application or the in-
frastructure. Furthermore, our USB-based prototype is
easily applied to existing computers, requiring just an
external peripheral and software drivers.

• We evaluate our system in a real setting, and show that
energy consumption is reduced ten-fold (and hence bat-
tery lifetime is increased ten-fold) while incurring an ex-
tra latency of just 4 to 7 seconds for an application-layer
operation such as retrieving a file on the sleeping device.

2. SCENARIOS
Before we continue, we present three simple scenarios that

demonstrate the need for Somniloquy.

• The user is mobile, e.g. in a cafe or airport, and is wait-
ing for an important voice call using VoIP on their lap-
top, but their battery is running slightly low, and having
it wait in an active on state is wasting battery that could
be used during the call itself.

• The user responds to some emails using their laptop on
the train home, where there is no free wireless access.
When they arrive home they are greeted by their spouse
and young children, and would rather not have to wake
the laptop up just to have it send the emails in the out-
box.

• The user occasionally works from home using a per-
sonal notebook, and when doing so prefers to connect
to a computer (desktop or laptop) in their office for re-
mote desktop use and for access to files, since that ma-
chine has greater resources, work-related software and a
backed-up and large disk. However, they are conscious
of the monetary and environmental costs of leaving their
work computer on 365 days a year just in case they were
to want remote access.

For the first two scenarios, the user’s laptop could benefit
from Somniloquy for application reachability during sleep and
for the ability to wake up when a suitable AP comes into range,
send the emails, and go back to sleep. For the third scenario,
if the work computer were to run Somniloquy, the mobile user
could access it remotely at any time without incurring the en-
ergy cost of continuously keeping that computer on.

3. BACKGROUND
Computers employ various techniques to reduce power con-

sumption. For example, the hard disk can be spun down, the
display can be dimmed or shut off completely, system mem-
ory can be put into lower power states and the main applica-
tion processor can be operated at a reduced clock frequency
and supply voltage. Another way of reducing system power is
to operate the network interfaces in low-power modes where
possible. A common example is that of 802.11’s power save
mode (PSM) [12, 13]. When using PSM the 802.11 radio is
duty-cycled to save power, periodically waking up to check
for any packets destined for it which have been buffered at the
802.11 access point (AP). By varying the period of wake-ups,
the radio can save power with an associated increase in packet
delivery latency. Various modifications to the parameters of
PSM have been proposed, such as a bounded delay addition
which maintains the level of power savings of PSM while re-
ducing latency [14]. PSM reduces the power consumption of
the radio interface from typically almost 1W (without PSM)
to around 250mW [1, 2, 21]. However, even with these mea-
sures in place, modern laptops still draw a minimum of around
10-20W if they are to remain responsive to incoming network
traffic. We refer to this minimum as the ‘base power.’ The
only way to reduce this power consumption further is to switch
the computer off completely, or put it into a so-called ‘sleep’
mode such as the suspend to RAM state (S3) where the sys-
tem state is maintained in RAM but most of the other system
components are powered off. The advantage of maintaining
system state in this way is that the laptop can be resumed to
an active, usable state much more quickly than would be pos-
sible otherwise, typically within a few seconds. We present
more detailed figures on laptop power consumption in various
modes of operation including S3 in Section 7.

Of course, when a device is in the S3 state, its utility is very
limited. It can respond to local user initiated ‘resume’ events
such as pressing a key or opening the laptop lid. The universal
serial bus (USB) also allows certain peripherals to generate re-
sume events, although it mandates that the peripheral operates
in a suitably low-power mode whilst the host is in S3 to pre-
vent excessive system power drain. In this way, it is possible
for a key press on an external USB keyboard to cause a laptop
in S3 to resume, for example.

To improve the responsiveness of a laptop in S3, Wake-
on-LAN [16] (WoLAN) and its wireless equivalent wake-on-
WLAN (WoWLAN) provide another mechanism to wake up a
device based on certain packets received over a network inter-
face. In both cases power to the respective network interface is
maintained when the main processor is asleep. However, both
schemes have some major limitations which have to date lim-
ited their adoption. Since they operate at the link layer, the net-
work interface may no longer have a valid IP address when the
host is powered down, and is thus unable to respond to IP traf-
fic. Instead, the interface only responds to suitably addressed
link layer requests, i.e. those with the matching MAC address
of the particular network interface. These include broadcast
packets such as ARP requests, which are typically very com-
mon and result in very frequent wakeups. Since this is im-
practical, an alternative scheme known as the ‘magic packet’
is also supported. In this case, a specially-formed packet con-
taining the MAC address of the network interface of the tar-
get machine is transmitted as a subnet directed broadcast and



only this magic packet triggers wake-up. However, the router
support required to allow magic packets to be sent from hosts
outside the local subnet is not widely enabled thus limiting
the scope of this scheme. Special management stations act-
ing as proxies can be added to the networking infrastructure to
send magic packets, but these are unable to maintain applica-
tion transparency or support mobility in the case of a device
moving between different subnets or networks. Most impor-
tantly, there is only very coarse-grained control of wake-up in
both WoLAN and WoWLAN. There is no mechanism for de-
vices to specify under which conditions they should be woken
up, even if different machines are interested in wake-up events
from different sources or relating to different applications.

4. RELATED WORK
Several projects have investigated methods to reduce the

power consumption of mobile devices to increase their bat-
tery lifetime. Most of these techniques attempt to reduce the
power consumption of the various subsystems of a mobile de-
vice, such as the processor [8], communication [4, 15, 21, 22],
the memory subsystem [10] or the storage device [18]. On
the other hand, systems such as Odyssey [9] aim to reduce the
total system-level power consumption of a mobile device by
trading off application fidelity with reduced the energy con-
sumption. Dynamic power management (DPM) to reduce the
power consumption across various subsystems has also been
proposed [27, 7]. All of these approaches are, however, un-
able to reduce the “base power” of a mobile device such as a
laptop, which as stated earlier is still significant [17, 28].

Various projects have proposed leveraging heterogeneous
wireless network interfaces with different power consumption
characteristics to save power [5, 21, 23, 26]. Cell2Notify [1],
Wake-on-Wireless [26] and On-Demand-Paging [2] propose
the use of separate low power radios to serve as a separate out
of band wake-up channel for a higher power WiFi radio. How-
ever, the use of heterogeneous radios requires either additions
to the infrastructure [2, 26] or modifications to intermediate
proxies [1]. CoolSpots [21] and Context-for-Wireless [23] aim
to reduce energy consumption of mobile devices by dynami-
cally choosing between multiple available wireless interfaces
for data transfer based on various factors. However, these
projects are all based on the assumption that the wireless in-
terface is the major power consumer, which is valid for smart-
phone class devices but not so applicable to laptops.

Wake-on-WLAN [19] is a research project based on the sce-
nario of rural connectivity. In Wake-on-WLAN, wake-up sig-
nals propagate down a mesh network to establish network con-
nectivity on-demand, building up the network path one hop
at a time until end-to-end connectivity is achieved. Wake-
on-WLAN is therefore specifically geared towards reducing
the power consumption of custom built intermediate routers,
rather than end mobile devices such as laptops.

The One Laptop Per Child project (OLPC) are working on
including mesh networking as feature of their XO laptop [20].
This would allow a sleeping OLPC to act as a router in a
mesh network. There are similarities in the approach using
an augmented network interface, though their work is targeted
at retaining network coverage despite a lack of infrastructure,
while our work targets existing network access points and re-
taining application responsiveness.

Turducken [28] and Triage [6] take a different approach to-

wards reducing the power consumption of mobile devices by
proposing a multi-tiered architecture with each heterogeneous
tier having a different power consumption profile. Triage is
geared more towards energy efficient micro-servers in a sen-
sor network scenario, while Turducken [28] considers mobile
devices such as laptops. For applications such as NTP, IMAP
email synchronisation and maintaining web caches, which can
all be handled by periodic polling for updates, Turducken pro-
poses executing the applications themselves on the lower power
consuming tier, while keeping higher tiers in a lower power
state. In this way, a tier can act as a proxy for tiers above
it. In order to save energy the lower power tier is then fur-
ther duty cycled to trade-off consistency of data with power
consumption. Somniloquy uses a two-tiered model similar
in spirit to Turducken, however we aim to support a differ-
ent class of applications for which the laptop needs to present
an ‘always reachable’ abstraction. In contrast to Turducken,
while the laptop is in S3 our secondary processor is always on
and connected to WiFi whenever it is available. It can there-
fore respond to the appropriate network events by waking up
the laptop immediately, maintaining transparent reachability.
Applications that are inherently asynchronous, such as remote
access (RDP, SSH), incoming VoIP calls and push email, can-
not be handled by a periodic wake-up and polling scheme can
thus be supported by Somniloquy. Furthermore, the primary
processor (i.e. the laptop) and the secondary processor share
the same MAC and IP addresses and hostname, presenting a
single device abstraction to the network. This is unlike Tur-
ducken where the multiple tiers act in concert but do not use a
single-device abstraction.

Very recently, Allman et al. [3] have proposed the notion of
‘selective connectivity’ for hosts on the internet. The authors
propose that such hosts may be put into a low power state to
save energy, while generic software or hardware ‘assistants’
can take over some network functionality, although they do
not mention any specific details on how these would be im-
plemented. The paper also talks about application primitives
that might need to be in place to support this new model of
connectivity, targeting mainly target desktop computers rather
than wireless mobile devices. We present the challenges we
faced and the design decisions that we made in building and
evaluating our architecture, which supports some of the ideas
raised by the authors.

5. THE SOMNILOQUY ARCHITECTURE
In this architecture description, we focus on Somniloquy’s

applicability to mobile devices such as laptops, since that is
the nature of our prototype. However, our architecture is also
applicable to stationary PCs (desktops, servers), and we will
revisit this possibility in Section 8.

The primary aims of Somniloquy are:

• To enable a laptop in a sleep state (such as S3) to con-
tinue to be responsive to network events.

• To do this transparently to network routers and servers,
and require no new hardware/software in the network.

We accomplish this by adding hardware to the laptop, com-
prising a low-power secondary processor attached to a network
interface. The overall concept, illustrated in Figure 1, is that
the secondary processor remains active when the laptop is in
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Figure 1: High-level operation of Somniloquy. The sec-
ondary processor actively uses the network when the lap-
top is asleep. At any time, only one of the laptop or the
secondary processor is actively using the network.

S3, and performs networking operations on its behalf (i.e. us-
ing the same MAC address, IP address, etc as the laptop). The
secondary processor hands off control to the laptop when the
laptop wakes up from sleep state. We describe the design of
Somniloquy in detail in the rest of this section.

5.1 Somniloquy hardware
There are two main ways to implement Somniloquy: inte-

grated into a laptop as shown in Figure 2(a), or as a separate
peripheral as in Figure 2(b). The advantages of an integrated
solution are reduced cost and a more compact form factor,
which avoids the duplication of network interface hardware.
Potentially this would also result in a more highly optimized
system. The advantage of a peripheral solution is that it can be
retro-fitted to existing systems and is also easier to prototype
and experiment with. This is facilitated by the fact that many
existing laptops already have support for powering peripheral
devices while in S3, e.g. via USB.

Note that in Figure 2(b) the laptop potentially has an inter-
nal network interface as well as the one available through the
Somniloquy peripheral — and by this we mean specifically an
interface of the same technology (e.g. 802.11a/b/g). There
are two ways to handle this. The laptop’s built-in interface
can be permanently disabled so that the peripheral interface is
used when it is on and by the secondary processor when the
laptop is in S3. Alternatively, the laptop can use its internal
network interface and the secondary processor can use its sep-
arate network interface. However, in order to maintain our aim
of transparency to the network, the two interfaces must share
the same MAC address (using MAC address spoofing). This
creates a few extra demands on the software in order to trans-
fer state between the two network interfaces, and to make sure
that they are never active simultaneously.

The rest of this section will discuss the hardware config-
uration where Somniloquy is implemented as a separate pe-
ripheral, but where the laptop has a network interface using
the same technology as that peripheral that it uses when it is
awake. Architecturally, we believe this is the most complex
case.

5.2 Operation of Somniloquy
We describe the operation of Somniloquy by walking through

the timeline of a laptop going into suspend, whereupon the
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Figure 2: Somniloquy hardware for (a) future laptops that
come with a secondary processor and network interface,
and (b) existing laptops where the secondary processor and
network interface can be attached via a peripheral connec-
tion, for example, via USB

secondary processor performs certain network-related opera-
tions on its behalf and at some point most likely wakes up
the laptop again. Figure 3 shows some of the interactions de-
scribed in this section. The dashed lines show features that
have not been completely implemented in our first prototype
of Somniloquy .

5.2.1 Going to sleep
Before going to sleep, the laptop sends information to the

secondary processor on the wireless networks which it can
associate to, a list that the operating system typically keeps
to perform “wireless zeroconfig” association. This includes
authentication credentials where appropriate. When going to
sleep, it also transfers thecurrentnetworking state to the sec-
ondary processor, i.e. the AP which is currently being used
and the DHCP lease details if appropriate (including the cur-
rently assigned IP address). The transfer of this data is trig-
gered by the event of the laptop going to sleep.

The secondary processor detects when the laptop has en-
tered sleep by sensing a USB suspend. It then activates its
network interface, and configures it with the current network
configuration (including the MAC address) provided by the
laptop. Ideally the secondary processor should silently move



Main processor

Management 
Software

Applications

Operating 
System

Secondary 
processor

TCP/IP
UDP/IP

ICMP etc

Application 
stubs

AP 
Configuration

Stub config/app-layer wakeup filters

Get/set
network
config.

Sleep/wake 
management

Sleep detection/signalling

Wake-up signal and updated state

Application state

Figure 3: Somniloquy software components on the laptop
and the secondary processor, and their interactions. The
dotted lines represent components that have not been com-
pletely implemented, but are nice to have.

into an associated state with the AP and start using the IP ad-
dress that the laptop was previously using, in actual fact it is
acceptable for the secondary processor to reassociate as nor-
mal with the AP and make a new DHCP request, since both
association and DHCP protocols are resilient to re-execution,
and the secondary processor will reacquire the same network
details. To be specific, we use a “DHCP renew” packet, in
which the secondary processor specifies the preferred IP ad-
dress (which was previously in use). Once complete, it appears
to the network and to remote servers that the same system is
still connected; any holes in firewalls will still be open (as long
as the same AP is used — see Section 5.2.4 for further discus-
sion).

5.2.2 While asleep
The secondary processor uses filters on the contents of in-

coming packets to determine when to wake the laptop. These
filters can happen at the link layer, network layer, transport
layer or application layer, with progressively higher complex-
ities and higher capabilities. As application layer filters are
more complex, they are described separately in Section 5.2.4.

At the link layer , the secondary processor can be told to
wake the laptop when it detects a particular AP or set of APs.
This is useful in situations where a laptop may have network
operations to perform but no network connectivity, as it can
then go to sleep and instruct Somniloquy to wake it when
there is connectivity. By default, the detection of a suitable
AP causes the secondary processor to associate, and this in
turn enables higher layer functionality as discussed below.

At the network layer, the secondary processor can use a
Dynamic DNS server such as the publicly available DynDNS
(www.dyndns.org) to associate its current IP address with a
long-lived hostname. Conceptually, this means that whilst asleep
the laptop can still be reachable to incoming traffic no matter
where it is in the network. This is true even if the laptop is mo-
bile as long as it is within range of a suitable AP. In this way

it is theoretically possible to create a “ping of life” (in contrast
to the “ping of death2”), a special ICMP packet to mimic the
magic packet of WoWLAN, but operating at an Internet scale
through standard routers rather than limited to a single subnet.
Although this would work in some situations, it may be that
the AP or router behind the AP either (a) uses IP masquerad-
ing to share a single IP address, or (b) has a firewall preventing
incoming traffic. In this case, application-layer techniques dis-
cussed in Section 5.2.4 must be used.

At the transport layer , incoming traffic directed at specific
TCP and UDP ports can be detected by the secondary proces-
sor and can then generate a wakeup of the main processor. This
simple approach has the advantage that application-specific
code does not need to be executed on the secondary processor.
Filtering only for relevant ports has the obvious side effect that
traffic on other ports will be rejected. Somniloquy also pro-
vides the ability to further restrict the set of ports/applications
which can cause wake-up, or to cause wake-up only when traf-
fic from a certain subset of IP addresses is received.

5.2.3 Waking up
The secondary processor must support a mechanism to trig-

ger the laptop to wake up. This could be accomplished using a
hardware relay (i.e. mimicking a power button being pressed),
or by using the wake-up functionality built into many buses
such as USB. Of course, the laptop can also be woken by other
causes such as a user pressing a resume button, or by an inter-
nal timer. It is important that the secondary processor detects
this so that it stops performing operations on the laptop’s be-
half (since there may be duplicate identity issues e.g. with
duplicate MAC addresses otherwise). In the case of a USB
connected secondary processor, this can be done by detecting
USB coming out of suspend.

When a laptop wakes from suspend, it typically resets its
hardware and device drivers, and then performs wireless net-
work association from scratch. While this is acceptable, one
optimization that Somniloquy enables is the transfer of associ-
ation details (channel, SSID, security credentials, DHCP lease
details including IP address, etc) from the secondary processor
to the main processor. This expedites the process of rejoining
the network. Further optimizations are possible if the main and
secondary processors share a common network interface (as in
Figure 2(b), since the physical hardware of the card is already
in the correct mode. However, these optimizations will likely
require modifications to the operating system.

Although the laptop has been woken up and may have reas-
sociated quickly, it has probably missed incoming application-
layer packets, in particular the packets which triggered the
wake-up. We can handle this in two ways. Firstly, many pro-
tocols designed for Internet use are designed to cope with loss
and automatically retransmit packets. For example, any proto-
col using TCP as the transport layer will retransmit automat-
ically at exponentially increasing intervals so a retransmitted
packet will eventually be received by the laptop even if re-
sume from sleep takes several minutes. Of course, the longer
the laptop takes to resume, the larger the subsequent delay be-
fore another retransmission will be. The second way of han-
dling this is for the secondary processor to proactively inject
the packets which it received on behalf of the laptop (particu-

2http://insecure.org/sploits/
ping-o-death.html



larly the one(s) which triggered wakeup) into the laptop’s re-
ceive queue. Since the MAC and IP addresses are the same,
the injected packet will be processed correctly. This may be
simpler in incarnations of Somniloquy where the network in-
terface hardware is shared between the two devices.

5.2.4 Application layer stubs
We now discuss operations by which the secondary proces-

sor can perform application-layer tasks on behalf of the laptop.
Note that this functionality is not completely implemented in
our prototype, and the ensuing discussions are included for
completeness.

At the application layer, the secondary processor can run
“stub” code which performs a subset of the functionality of
specific applications on the laptop. This is a more powerful
technique than simply using port-level triggers for a number
of reasons. First, many application protocols such as those
for IM and email may require periodic activity on the client
side in order to maintain the connection, e.g. sending “heart-
beat” packets allowing the presence information in IM to re-
main current, or sending periodic polls for new emails in the
POP protocol. Second, in case of mobility when the laptop
moves to a new AP, it may obtain a new IP address and would
in that case have to re-log-in to application servers. Even if
a given application server supported a “push” protocol, client-
initiated connections may be necessary to ensure that holes are
made in any firewalls as described previously. Third, the use
of application code means that event filters can specify events
at this layer, e.g. wake on an incoming VoIP calls only from
my friends outside work hours and not my work colleagues, or
wake only for software patch updates if the laptop is plugged
in/the battery level is not low.

To enable application layer functionality, appropriate stubs
for each of the desired applications may be loaded onto the
secondary processor before the laptop goes to sleep. Further-
more, configuration details such as login credentials have to
be transferred, and also the current state of that application on
going to sleep (so the secondary processor can seamlessly pick
up on that state). This state must also include transport-layer
state such as TCP sequence/acknowledgement numbers.

One could imagine that suitably augmented application clients
on the laptop would be Somniloquy-aware and support these
operations, including the provision of stub code and its config-
uration. However, application layer functionality could also be
achieved without modified client-side applications, if a Som-
niloquy configuration application were used to specify these
details for transfer to the stubs.

On waking up, there is the potential for network/transport
layer and application layer state on the laptop to be out of
date due to operations performed by the secondary processor
on its behalf. For example, if packets in a TCP stream were
generated by the secondary processor, then the sequence and
acknowledgement numbers would have moved on and when
the main processor tried to continue using that stream there
would be errors leading to the reset of the stream. This can
be addressed in three ways. First, the secondary processor can
avoidsendingany packets in a particular stream, or more gen-
erally only send packets using protocols/streams which do not
require an updated client-side state (e.g. using UDP to send
heartbeats if possible). This means that no state inconsistency
will occur on wakeup. Second, the secondary processor can
transfer the updated state at the transport layer and/or appli-

cation layer to the laptop on wakeup — this requires modi-
fication to the networking stack and/or to applications in or-
der to accept this state update, but doing this widens the set
of possible actions that Somniloquy can perform while asleep
without causing errors on wakeup. The third option is to rely
on the built-in error resilience of particular protocol(s) and not
transfer the state, causing error conditions but recovering from
them. An example would be if an incoming email from the
user’s spouse caused wakeup — to determine who the email
was from might have updated the state of the connection to
the server causing the laptop to drop that connection, but the
connection would be restarted by the email application and the
email would be received anyway.

5.3 Configuring Somniloquy
Control should remain with the user as to when Somnilo-

quy is active, and we achieve this by using the current dialogs
that specify how a laptop goes to sleep (e.g. whether the lid
closing means do nothing, suspend, or hibernate) and adding
Somniloquy as another option.

If Somniloquy is active, as we have stated, the laptop sends
to the secondary processor a list of events on which to wake,
including events at the link, network, transport or application
layers. One question that remains is how the laptop knows
what events are worth waking up for, i.e. what the user’s pref-
erences are. We accomplish this by detecting the network ports
that applications have open, and then allowing the user to con-
figure (periodically, not every time Somniloquy is activated)
which applications should be allowed to wake the device. This
configuration is similar in nature to current operating systems’
firewall configuration in which the applications allowed to ac-
cess the network are configured. In cases that applications are
aware of Somniloquy, they can request wakeup functionality
be enabled for them via similar dialog boxes as for enabling
access through the firewall.

5.4 Mobility and naming
An important goal of Somniloquy is to enable reachability

in the event of mobility. A laptop in sleep state should be
reachable even when it handoffs from one AP to another, ob-
tains a new IP address, or moves across domains, e.g. when a
laptop in S3 moves from the user’s workplace to their home.

Somniloquy increases reachability by (i) maximizing the
amount of time the secondary processor is connected (by op-
portunistically connecting to WiFi networks), (ii) implement-
ing naming services on the secondary processor (by respond-
ing to naming service requests, such as DNS, WINS, ARPs),
(iii) supporting the use of application-layer stubs to maintain
application-server connectivity despite mobility, and (iv) sup-
porting a globally reachable name for the laptop wherever pos-
sible using DynDNS. To support DynDNS, Somniloquy re-
quires client software to run on both the laptop and the sec-
ondary processor. When the IP address changes, the client
software communicates with a centralized server hosted by
www.dyndns.org. The machine is then accessible over the In-
ternet using the name:< machinename >.dyndns.org. We
note that the machine might still not be reachable if it is be-
hind a NAT. Rather than taking a fresh approach to solving
this problem, we plan to borrow ideas from the well-studied
literature on NAT traversal, such as STUN [24], TURN [25],
Teredo [11], and others.



5.5 Security
We now present a short analysis of the security threats raised

by our architecture. While this is by no means rigorous or
complete, it does give a high-level indication as to the issues
raised.

The functionality that Somniloquy provides, of waking the
laptop based on network events, can form the basis of a denial-
of-energy attack. If an attacker were to learn how to trigger
wakeup events, a Somniloquy-enabled device could be repeat-
edly woken by an attacker, wasting its energy in contrast to a
device which was asleep and not wakeable. We combat these
using two possible responses. One is to implement secure pro-
tocols at the various layers on Somniloquy and only wake on
events that are received using such secure protocols, e.g. not
waking when an AP is seen but only when it is securely asso-
ciated with using (e.g.) WPA, and not waking when an incom-
ing packet over TCP is received but only after an initial secure
handshake such as SSL has been conducted so that the remote
host is known to be legitimate. The problem with this solu-
tion is that the complexity of the secondary processor’s tasks
rises significantly, as does the amount of state that needs to be
transferred to and from the secondary processor when going
to sleep or resuming. This increases the materials and deploy-
ment cost, and will likely reduce the energy benefits. A less
secure but much simpler solution is to detect false wake events
and either inform the user then or automatically modify the fil-
ters to omit those events and inform the user offline. While the
functionality of Somniloquy is impaired, the user can then take
out-of-band action to determine the cause of the attack (which
may also be accidental rather than malicious) and act upon it.

The complexity of having network-facing code running in
both the main and secondary processors does increase the risk
of bugs causing security holes. A security hole on the sec-
ondary processor causing it to reveal data kept on it has the po-
tential to reveal network access or application credentials that
have been transferred to it. A security hole allowing “root” ac-
cess and reprogramming of the secondary processor has even
more severe implications, for example, that device can be used
to launch subsequent attacks, it can be used to electronically
spy in locations which it is carried to by the unaware user, or
it could use that processor’s privileged communications path
to the main processor to attack the rest of the device. For that
reason, Somniloquy limits the code that runs on the secondary
processor to programs that monitor, and “at most” wake up the
laptop with very limited state transfer.

Despite the denial-of-energy issue and the added complex-
ity of two devices to secure, Somniloquy does not in some
sense intrinsically bring any new security problems, in that the
secondary processor is simply performing a set of actions that
the main processor would perform anyway if it was awake. As
such it is not expected that deployment of Somniloquy will
cause large security concerns in practice.

6. PROTOTYPE IMPLEMENTATION
We have implemented a prototype based on the Somniloquy

architecture using a standard Lenovo X60 and a low power pe-
ripheral platform called thegumstixmanufactured by gumstix
Inc3. Both processors use an 802.11 b/g (WiFi) network inter-
face. We now present the details of that implementation with

3http://www.gumstix.com
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Figure 4: Block diagram of the Somniloquy prototype sys-
tem. The figure shows various components of the gumstix
and the USB interfaces to the host laptop.

reference to the more general architecture presented in Section
5.

6.1 Hardware
A block diagram of our prototype is shown in Figure 4 and

a photograph of the laptop with the gumstix attached is shown
in Figure 5.

The Lenovo X60 has an internal Intel 3945 802.11 a/b/g
module and runs Windows Vista. It supports several sleep
states, including S3 and S4 (suspend to disk), but we only use
S3 since the resume time is much faster than S4. We explicitly
configured Vista not to use a further sleep state “hybrid sleep”
(S5) in which the RAM is written to disk but the computer
is left in suspend (S3) mode (though able to turn off and re-
sume from disk if power is low) since this also causes suspend
latency to increase significantly.

We implemented the Somniloquy model presented in Fig-
ure 2(b), i.e. we use an external device with its own network
interface (the gumstix) as the low power secondary processor
but we switch to the X60’s internal 3945 WiFi module when
the main processor is operational. This allows us to simplify
the implementation of the gumstix since it does not have to act
as a WiFi interface when the computer is on, in other words it
is only ever used by the secondary processor.

We chose a gumstix-based solution due to the wide range
of peripherals supported, the convenient form factor and low
power consumption. For our prototype we use a processor
board (connex-200xm), a WiFi module (wifistix) and a com-
bined USB interface/breakout board (thumbstix). The proces-
sor on the connex-200xm is a low power 200MHz PXA255
XScale processor with 16MB of non-volatile flash and 64MB
of RAM. The wifistix incorporates a Marvell 88W8385 chip
which is optimised for low power operation; previous mea-
surements have shown that the Marvell chip consumes around
half the power as some other WiFi chipsets when using WiFi’s
Power Save Mode (PSM) (100mW versus 250mW) [21]. The
thumbstix provides a USB connector, serial connections and
general purpose input and output (GPIO) connections from the
XScale.



To this, we added a custom designed PCB incorporating a
single chip, the FT232RL from FTDI, which provides USB-to-
serial functionality. This is attached to the laptop via a second
USB port and to the thumbstix module (and thence to the XS-
cale processor) via a two-wire RS232 serial interface plus two
GPIO lines. The latter are connected to the FT232RL’s ring
indicator input and sleep output and provide a means of wak-
ing the computer and a means of detecting when the computer
is in S3 respectively.

The gumstix platform executes an embedded distribution of
Linux, supporting a full TCP/IP stack, DHCP, configurable
routing tables, wireless configuration tools, a configurable fire-
wall, SSH, serial port communication, etc. This allows us to
implement the various functionality needed to support Som-
niloquy.

6.2 USB connection
As mentioned above (and shown in Figure 4), the laptop is

connected to the secondary processor via two USB connec-
tions. One of these provides power and two-way communica-
tions between the two processors, whilst the second provides
sleep and wake-up signaling, and a serial port for debugging.
We did this for ease of prototyping, but in a more refined im-
plementation a single USB port could be used.

Modern laptops continue to power their USB ports in S3
mode. Although a USB peripheral is allowed to draw up to
2.5W from its host when enumerated (500mA at 5V), the USB
specification technically requires peripherals to draw no more
than 2.5mW when the bus is suspended. This is not enough
power to operate the gumstix. However, in practice it turns
out that many USB peripherals actually consume significantly
more than this, and doing so does not cause any issues for the
USB hosts we tested (three different laptops and one desktop
machine).

The USB connection between the gumstix and the laptop is
configured to appear as a point-to-point network interface. We
use statically assigned IP addresses and normal TCP/IP sock-
ets based communication over this link. The ring indicator
signals to the laptop that it should resume from S3, while the
sleep signal is active whenever the laptop is in S3 mode. Ad-
ditionally, the serial port connected using the FTDI interface
is used as a debug console.

6.3 Software on the laptop
We have added some software to the laptop to transfer state

to the gumstix before the laptop goes to sleep. If the computer
is currently associated, this transfers the current SSID of the
associated wireless network, the IP address and gateway/DNS
IP addresses, and whether these details were provided by a
DHCP server or were statically configured. We also send a
list of other wireless networks which the gumstix is authorised
to attach to. This is achieved using a daemon on the gumstix
listening on a specified port on the point-to-point connection
with the laptop.

In addition to network details, the laptop provides the gum-
stix with a set of filters to determine when the laptop should
be awoken. These are discussed further in section 6.5.

We initiate sleep on the laptop using our own script placed
as a shortcut on the desktop. This ensures that the state on the
gumstix is up-to-date before putting the laptop into S3 mode.
We could have performed this transfer automatically by hook-
ing into the operating system to trap the suspend event, but us-

Figure 5: Photo of Somniloquy prototype. The gumstix can
be seen connected to one USB port while the custom PCB
with the FTDI chip is connected to the other USB port on
the laptop.

ing an explicit action facilitated comparative testing with nor-
mal suspend.

6.4 Gumstix activity when the laptop en-
ters S3

On the gumstix, the sleep signal from the laptop is used to
turn on the Marvell WiFi interface when the laptop goes into
S3 and turn it off again as soon as the laptop starts to resume.
Since we configured the laptop and gumstix wireless interfaces
to have the same MAC address, this was done to ensure that
the two were never active at the same time as various protocols
assume that devices attached to a network have unique MAC
addresses. When active, the Marvell interface is put into PSM
to maximise battery lifetime.

Once S3 has been detected and the Marvell interface en-
abled, the gumstix proceeds to configure its wireless inter-
face with the parameters received from the laptop (e.g. SSID,
DHCP or Static IP, and in the latter case what gateway and
DNS servers to use). If the gumstix uses DHCP, the DHCP
server is requested to re-lease the same IP address that was
previously allocated by using a ‘preferred address’ field in the
DHCP protocol. This was always successful during the oper-
ation of the prototype, which is not suprising since the MAC
address does not change.

The gumstix also executes a dynamic DNS client (inadyn4)
to update a central server with its domain name-to-IP address
mapping. In case of mobility within a single WiFi network
the gumstix can also seamlessly perform MAC layer (layer 2)
hand off between various APs to maintain connectivity.

In this state, the gumstix is responsive to AP beacons, ARP
packets and ICMP pings, and it can receive incoming TCP/IP
packets. In short, the gumstix has transparently taken the place
of the laptop’s internal WiFi connection with respect to net-
work reachability.

6.5 Triggering wakeup
In our current prototype we have not yet implemented ap-

plication stubs on the gumstix (see Figure 3). We have instead
implemented a simple and flexible packet filter using the BSD

4http://inadyn.ina-tech.net/



raw socket interface. Our packet handler applies regular ex-
pression (regex) filters to the packets received (from the IP
layer and higher). When the packet handler detects a regex
match on any field or combination of fields, it triggers a wake-
up of the host laptop.

We use the linux ‘iptables’ firewall configuration utility to
disable any outgoing responses to TCP requests. This stops
the gumstix from sending TCP reset packets in response to a
TCP connection that it knows nothing about (that the laptop
had for example previously set up with a remote host). It also
stops the gumstix from sending a TCP SYN-ACK packet in
response to an incoming TCP SYN packet. In both cases, if
those events warrant waking up the laptop, a suitable packet
filter would be in place and so the laptop will wake and even-
tually handle the packet. It’s important that outgoing responses
from the gumstix are disabled since they would invalidate the
state of those TCP connections (by resetting them or by send-
ing a SYN ACK containing state that the laptop is not aware
of when it wakes). In the current implementation we rely on
TCP to retransmit those packets, we do not forward them from
the gumstix to the laptop.

Currently, the packet filters we use simply search for incom-
ing packets on TCP or UDP port numbers that the laptop soft-
ware has specified before going to sleep. This is enough to re-
alize a number of applications, described below. However, our
prototype is not yet capable of performing application-layer
keep-alives that may be required for certain applications.

Using port-based filtering, we have implemented wake-up
triggers based on the incoming remote desktop requests (RDP),
remote shell (SSH), file access requests (SMB), and voice over
IP calls (SIP). As such, even with this simplest of implementa-
tions of Somniloquy, we can provide support for a number of
applications. The advantage of such a simple implementation
is the small modification required to the laptop and no modi-
fication to applications. However, we expect our prototype to
be readily extensible to support more of the features described
in Section 5 such as waking up on application-layer criteria,
for example an IM from a particular person.

7. SYSTEM EVALUATION
The goal of the Somniloquy architecture is to allow a com-

puter such as a laptop to continue to communicate whilst it is
in S3, and to do so in a way that is transparent to the network
and which does not significantly impact S3 battery lifetime.
In this section we present our evaluation of the Somniloquy
prototype presented in Section 6. To quantify the power con-
sumption of Somniloquy and the impact this has on S3 battery
lifetime, we start by evaluating the power consumption of a
standard laptop in its various modes of operation. We then
present detailed power consumption figures of the prototype
Somniloquy hardware under a number of different test condi-
tions. The power consumption and communication latency of
the complete Somniloquy system is presented, and the corre-
sponding effect on system battery lifetime is evaluated.

7.1 Base power consumption of laptops
As mentioned in Section 3, a number of techniques are fre-

quently employed to reduce laptop power consumption. To
understand the effect of these and provide a suitable base-
line against which we can compare the power consumption
of our proposed architecture, we evaluated three popular lap-

Condition Lenovo Toshiba Lenovo
X60 M400 T60

No power management 16.0W 27.4W 29.7W
Backlight minimum 13.8W 22.4W 24.7W

Screen turned off 11W 18.3W 21.3W
‘Base power’ 11W 18.3W 21.3W

Suspend state (S3) 0.74W 1.15W 0.55W

Battery capacity 65Wh 50Wh 85Wh
Base lifetime 5.9h 2.7h 4.0h

Suspend lifetime 88h 43h 155h

Table 1: Power consumption and battery lifetime of three
laptops under various operating conditions. In all cases
the processor is set to the lowest speed and is idle, the hard
disk is spun down and the wireless network interface is on.

tops. These machines, a Lenovo X60 tablet PC running Win-
dows Vista (our prototype machine but without the gumstix
attached), a Toshiba Portege M400 laptop running Windows
XP, and a Lenovo T60 laptop running Windows Vista, were
tested under a variety of conditions including the suspend to
RAM state (S3). This data is presented in Table 1. Initially
we used a commercially available mains power meter,Watts-
Up5, to collect power consumption data, having first removed
the battery from the device to prevent any spurious battery
charging current. Watts-Up supports a 100mW resolution for
measuring average power, and a USB interface which we at-
tached to a separate machine used for logging. However, it
turns out that in S3 (and even when switched off) the power
consumed by the laptop, as reported by Watts-Up, fluctuates
significantly. Therefore, Watts-Up was not suitable to mea-
sure the laptop’s power consumption in S3. For this reason
we switched to a technique which uses the ‘gas gauge’ chip
present in modern laptop batteries to measure the amount of
energy drawn from the battery over a known period, and cal-
culate the power consumption from this number [28]. We cor-
roborate these numbers with the measured power consumption
from Watts-Up (except when the laptop is in S3).

From the table it can be seen that laptop ‘base power’, the
minimum power consumption where the device is operating
and can be reached from the network, is on the order of 10-
20W, resulting in a battery lifetime of around 4 to 5 hours.
(Note that both of the Lenovo machines were fitted with ex-
tended life batteries.) Putting the device into S3 dramatically
extends lifetime of course, to between 90 and 150 hours for
the laptops we tested, and although in this state the laptop is
unreachable, it can be resumed and reconnected to the network
in the order of several seconds.

In order to get a feel for the typical time taken to enter S3
and subsequently to resume from S3, these times were mea-
sured (using a stopwatch) for the three evaluation laptops. Ta-
ble 2 shows the mean times for each of these experiments (in
each case averaged over five runs again). The suspend time
was measured from the time the request was made to the lap-
top power LED going out, and similarly the resume time was
measured between the resume event and the user interface be-
ing operational.

7.2 Gumstix power consumption
5http://www.wattsupmeters.com/



Condition Lenovo Toshiba Lenovo
X60 M400 T60

Time to enter S3 8.7s 5.5s 4.9s
Time to resume from S3 3.0s 3.6s 4.8s

Table 2: Time to resume from S3 and suspend into S3 for
three laptops.

gumstix + WiFi state Power

1 gumstix only – no WiFi 210 mW
2 gumstix + WiFi associated (PSM) 290 mW
3 gumstix + WiFi associated (CAM) 1300 mW
4 gumstix + WiFi un-associated 1300 mW
5 gumstix + WiFi scanning 1350 mW
6 gumstix + WiFi broadcast storm 1350 mW
7 gumstix + WiFi unicast storm 1600 mW

Table 3: Power consumption for the gumstix platform in
various states of operation.

To characterize the power consumption of the gumstix, we
built a USB extension cable with a 100mΩ 0.1% sense resistor
inserted in series with the +5V supply line and used this to
connect the gumstix to the laptop. By measuring the voltage
drop across the sense resistor we can calculate the power draw.

The power consumed by the gumstix platform in various
states of operation are reported in Table 3. In creating the
prototype, we tried to minimize power consumption, thus we
chose the lowest power processor version (200MHz XScale)
which has a base power of almost 210mW (WiFi interface dis-
abled), as can be seen in row 1 of the table. Unfortunately the
Linux build on the gumstix currently lacks the ability to use
the dynamic voltage and frequency scaling controls supported
by the XScale which we believe would lower the base power.

The Marvell 88W8285 WiFi module is a relatively low power
WiFi chipset [21, 1] consuming only an additional 80mW of
power (row 2) when it is associated to an AP using the 802.11
power save mode, which duty cycles the radio to save power [12,
13]. In comparison, when the WiFi interface is in the 802.11
continuous awake mode (CAM) it consumes almost 1100mW
(row 3).

Unfortunately, there is no low power mode for an unassoci-
ated radio (row 4), which consumes as much power as CAM
when there is no nearby AP that the gumstix can associate to.
To save energy in these cases, the secondary processor can
simply duty cycle the radio, periodically performing an ac-
tive scan and powering down the radio in between. Since an
active scan typically takes 150-200 milliseconds, with a 5 sec-
ond duty cycle the average energy consumption is dominated
by the 210mW drawn by the processor.

The final rows of Table 3 report the power consumption for
the gumstix in case of continuous packet reception using either
the broadcast address (row 6) or the unicast address (row 7) of
the gumstix. The higher unicast power can be explained since
broadcast packets are sent using a lower bitrate. In normal
operation, we do not expect this power level to be sustained for
any length of time. In any case, the total power consumption
of our prototype even in the worst case of continuous network
usage is under 2W, and the average use case is more likely to
be around 0.3W, both of which are significantly lower than our
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Figure 6: Power consumption of the entire system during
operation. A laptop wakeup event occurs at point A and
the machine is fully resumed by point B. At point C a sus-
pend to RAM request is made, which completes at point
D.

X60’s base power consumption of 11W (see Table 1).

7.3 Latency and power consumption dur-
ing state transition

Figure 6 shows the power consumption of our prototype
system during operation. Initially the laptop is in S3 but at
time=24 seconds (label A in the plot) the secondary processor
wakes the laptop in response to a network event. Note that
during S3 the gumstix is active and is in PSM. As the diagram
shows, resuming takes around 3 seconds. Incoming events
such as VOIP calls or remote file transfer requests which cause
the secondary processor to trigger wakeup can be responded
to by the laptop, without a latency that is too high either for
humans or for TCP’s retransmission timers to give up on the
connection. In Figure 6 the laptop is returned to S3 at time=64
seconds (label C), and within 10 seconds the power draw has
returned to the quiescent level.

The worst case delay for our system would arise if an in-
coming network event occurred just as the laptop had just been
instructed to go into suspend mode, a process which takes 10
seconds for our prototype (and depends on the operating sys-
tem and applications running at the time). In this case, the
10 second latency would be incurred, then a retransmission of
the network event would have to take place and be detected by
the gumstix, before a wake-up would be initiated. A further
retransmission would then be required. Even in this unlikely
case, the network event will eventually cause a response.

7.4 Network-layer reachability
Our test infrastructure for the following experiments con-

sisted of a single AP which the prototype laptop was config-
ured to communicate with (and which in turn instructed the
gumstix to communicate with). For some experiments we ad-
ditionally used atest laptopalso associated with that AP.

Figure 7 shows the results of ICMP ECHO (ping) messages
sent from the test laptop to the prototype laptop, which goes
from active mode to S3, and later back to active. From the
figure we can see the connectivity gap is minimal – 6 seconds
for suspend and 2 seconds for resume, and that we have ful-
filled our aim of transparent IP reachability of a device despite
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Figure 7: ICMP echo-response (ping) trace for prototype
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it being in suspend mode.
The missed pings occur between the time that the laptop

WiFi interface is disabled and the gumstix interface is enabled
and associated with the AP, and vice versa. As explained in
Section 6, we conservatively disable the Marvell WiFi when
the laptop signals that it is gone to sleep or is waking up based
on the Sleep signal received from the USB interface. This
signal is conservative in that it signals Sleep after the laptop
has already turned off all its network interfaces, and signals
resume at the very beginning of that process. (On our platform
we observed the timing to be synchronized with the case LED
indicator indicating S3 mode).

The latency of the pings can be explained since both the
laptop and the gumstix use WiFi’s PSM mode to avoid being
active up more than once every 100ms and hence save power.
The laptop delays around 10 seconds before going into PSM
mode, while the gumstix enters PSM immediately.

We can however envisage an infrequently occurring race
condition, where the laptop’s WiFi card may have disassoci-
ated with the AP but the gumstix WiFi was not yet associ-
ated and an incoming network packet arrives at the AP. In this
case the AP may return an ICMP error message. In this case,
we currently rely on application- or human- resilience, in that
an important request would be retried. With further prototyp-
ing and optimization, particularly with integrated Somniloquy
functionality as shown in Figure 2, the laptop can be made to
not explicitly disassociate, and the gap can be reduced by fur-
ther optimization so that the system as a whole does not miss
a single AP beacon.

7.5 Application-layer reachability
Table 4 shows the time taken to respond to an incoming net-

work request for four different scenarios. In each case, the
latency under ‘normal operation’, when the laptop is powered
on and the primary processor is connected to the network, is
shown by way of a baseline. The second row of the table shows
the latency exhibited when Somniloquy is operating — in all
cases this is more than under normal operation, because the
secondary processor initiates wake-up of the main processor
when the first communications attempt is made and only when
the main processor is up and running, and connected to the
network, can the request (which will have been re-transmitted
in the mean time) be honored. The third and fourth rows show
the overhead introduced by Somniloquy, both in terms of ab-

solute delay in seconds and as a percentage of the total time
taken to complete the task. In each case the latency reported is
the mean of five tests.

The four scenarios which we tested were:

1. Remote desktop access (RDP): Here a stopwatch was
used to time the latency between requesting a remote
desktop session and that remote desktop being displayed.
The secondary processor was configured to wake the
main processor on detection of TCP traffic on port 3389
(the RDP port). Note that the overhead of Somnilo-
quy in this case is much less than the table would in-
dicate in some ways, because the ensuing desktop ses-
sion may well be comparatively long-lived, such that the
time taken to initiate it is not particularly significant.

2. Remote directory listing (SMB): A directory listing from
the Somniloquy laptop was requested remotely (via Win-
dows file sharing, which is based on the SMB proto-
col). The time between the request being initiated and
the listing being returned was measured using a simple
script. The secondary processor was configured initiate
wakeup on detection of traffic on either of the TCP ports
used by SMB, namely ports 137 and 445.

3. Remote file copy (SMB): The SMB protocol was used
again, but this time to transfer an 17MB file from the
Somniloquy laptop to a remote machine.

4. VOIP call (SIP): A voice-over IP call was placed to a
user who had been running a SIP client on the Somnil-
oquy laptop before it had entered S3. The SIP server
was configured to respond to the connection request by
establishing a TCP connection with the target machine
in a similar way to that presented in [1], and this in turn
was detected by the secondary processor in order to trig-
ger wakeup. Once again, the latencies presented in the
table were measured using a stopwatch.

To broadly summarize the results presented in Table 4, Som-
niloquy adds a constant overhead of around 4 seconds in most
cases, which is a reasonable setup latency for most applica-
tions (since the ensuing sessions are usually much longer).
This overhead is dominated by the resume time of the lap-
top (around 3 seconds) plus the time for TCP retransmission
of the original request from the remote host. The exception to
this was the VOIP application, in which it introduces a signif-
icantly longer delay. This is because the SIP client running on
the resumed laptop has to re-register with the SIP sever before
the incoming call (which triggered the wakeup) can connect.
This takes an additional 4 seconds or so, on average.

7.6 Effect on battery lifetime
Figure 8 shows the average power consumption of the Lenovo

X60 tablet used in the prototype when operating normally (i.e.
no power saving mechanisms), with standard power saving
mechanisms in place (the base power), when Somniloquy is
operational (laptop in S3 with the gumstix secondary proces-
sor attached and connected to the network), and standard S3
(without the gumstix attached). Somniloquy adds a relatively
low overhead of 300mW to S3 mode, resulting in a total power
consumption which is close to just 1W. compared to the 12W
of the idle laptop. This means that when the laptop needs to be
attached to the network and available for remote applications



Remote desktop Remote directory Remote file VOIP call
access (RDP) listing (SMB) copy (SMB) (SIP)

Normal operation 11.9s 0.9s 30.9s 3.4s
Using Somniloquy 16.1s 4.5s 35.0s 11.1s

Overhead of Somniloquy 4.2s 3.6s 4.1s 7.7s
35% 400% 13% 226%

Table 4: Mean application response latency when using Somniloquy.
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Figure 8: Power consumption and the resulting estimated
battery lifetime of an Lenovo X60 using Somniloquy. The
lifetime is calculated using the standard 65 Watt hour bat-
tery of the laptop.

but is otherwise idle, it can be put into S3 to give an order of
magnitude decrease in power consumption and a resulting in-
crease in battery lifetime from 5.9 hours to 63 hours (using a
65WH battery).

7.7 Summary of results
In summary, our prototype system has fulfilled our aims of

having both transparent application-layer reachability and low
power consumption. We have shown that the prototype can
respond to application requests with an overhead of around 4
seconds, while exhibiting a tenfold increase in lifetime com-
pared to an idle-but-powered on laptop, and consequently a
ten-times decrease in energy requirements. On the other hand,
the overhead of Somniloquy compared to standard S3 is low,
with a 28% reduction of suspend-mode lifetime.

8. FUTURE DIRECTIONS
We feel that there are a number of interesting and poten-

tially valuable directions for future extensions to the prototype
system described in this paper. Some of these are discussed
here.

8.1 Integrating Somniloquy into devices
Our prototype implementation is based on an external pe-

ripheral using a duplicate network interface. This is easily
retro-fitted to existing devices. However, a more elegant solu-
tion is to build Somniloquy directly into the laptop, for exam-
ple by modifying the built-in network interface to incorporate
a secondary processor operating in a separate power domain.
In fact since the network interface already includes an embed-
ded processor for packet processing, a separate processor may
not even be required. (The OLPC mesh networking effort [20]

targets an integrated processor in the Marvell 88W8388 NIC in
similar fashion.) This would prevent a duplication of hardware
and hence reduce the bill of materials cost, would improve the
form factor, and would likely reduce power consumption fur-
ther.

Another improvement would involve integrating Somnilo-
quy with the laptop operating system. Currently, when a com-
puter resumes from sleep, it typically resets its network in-
terface, and begins to search for available networks from an
unassociated state. With Somniloquy, a network association
may already exist, with authentication and DHCP complete.
Therefore, the operating system need not apply a reset but in-
stead learn the current networking parameters from the card,
and hence start using networking functionality more quickly.

8.2 Hibernation
Our results show that the responsive lifetime of laptops can

increase ten-fold by using S3 mode. However, S3 mode de-
vices have an intrinsic power drain associated with maintain-
ing system RAM. To further lengthen the responsive lifetime,
let us briefly explore how Somniloquy might be used in hiber-
nate (S4) mode.

If S4 is used, we encounter a few problems. Firstly, it is not
possible (as far as we are aware) to get USB power in S4. This
could be overcome by using another power tap, e.g. directly
to the battery, or by tighter integration with the laptop’s power
subsystem. Alternatively, with a legacy peripheral, this could
operate using a small external battery for the Somniloquy de-
vice; if this battery runs low, Somniloquy need only wake the
laptop and place it in S3 for the time it takes to recharge the
battery.

Secondly, S4 resume times are significantly longer than for
S3, so we must consider whether incoming TCP connections
may suffer unacceptably long delays before they are replied
to. One way of stopping TCP timing-out would be for the
secondary processor to reply to an incoming TCP packet with
a TCP packet advertising a zero receive window. This should
have the effect of stopping the remote TCP’s timers; when the
laptop has resumed and been passed the packet by the gumstix,
it will reply properly with a non-zero receive window. We
have not yet tried this idea but put it forward as an interesting
possibility.

Using S4 and a further power-optimized version of Somnil-
oquy, we can potentially achieve always-reachable lifetimes
measured in weeks.

8.3 Green computing
In addition to lengthening battery lifetimes, Somniloquy’s

ability to reduce energy consumption while maintaining reach-
ability has another very important application domain: that
of environmentally-aware or “green” computing. Many mil-
lions of computers are habitually left powered on and active



in homes and offices. In many cases, this is deliberately done
to ensure the computer remains reachable over the network,
e.g. for remote file access, applying software patches, remote
desktop access, etc.

Using Somniloquy, we can obtain the best of both worlds
of a computer in low-power mode that is also reachable using
standard application-layer protocols over the network, without
special network or router support as is required for Wake-On-
LAN. Since Somniloquy functionality can be added as a USB
peripheral (as in our prototype), it can even be added to exist-
ing computers without internal modification.

9. CONCLUSIONS
We have presented the Somniloquy architecture, which aims

to support transparent reachability for computers in a low-
power state such as S3. Our prototype implementation based
on a gumstix USB peripheral achieved this aim, increasing la-
tency for various application by around 4-7s only, while de-
creasing the energy requirement ten-fold. This enabled a reach-
able lifetime of 63 hours, compared to 6 hours in idle mode and
88 hours in S3 when not able to respond to incoming events.

There is much future work possible in this area. The inclu-
sion of application-layer stubs in the secondary processor ex-
tends the capabilities of the system but poses significant chal-
lenges in the transfer of state. While we have discussed ways
of addressing these challenges we have not implemented these
yet and there are likely to be unforeseen hurdles to overcome.
The closer integration of Somniloquy in terms of both internal
hardware and in operating system support for devices that re-
main active during S3 could provide significant further power
savings and latency gains. However, arguably the greatest po-
tential impact for Somniloquy lies in the area of green com-
puting and in the use of Somniloquy to reduce the collective
energy consumption of the large number of computers which
are habitually left powered on but idle in case remote access is
required.
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