
Modular Real-Time
Resource Management in the

Rialto Operating System

Michael B. Jones, Paul J. Leach,
Richard P. Draves, Joseph S. Barrera, III

May, 1995

Technical Report
MSR-TR-95-16

Microsoft Research
Advanced Technology Division

Microsoft Corporation
One Microsoft Way

Redmond, WA 98052

Paper presented at the Fifth Workshop on Hot Topics in Operating Systems (HotOS-V), May, 1995.

Modular Real-Time Resource Management
in the Rialto Operating System

Michael B. Jones, Paul J. Leach, Richard P. Draves, Joseph S. Barrera, III

Microsoft Research, Microsoft Corporation
One Microsoft Way, Building 9S/1

Redmond, WA 98052

mbj@microsoft.com, paulle@microsoft.com, richdr@microsoft.com, joebar@microsoft.com

Abstract
This paper describes ongoing investigations into

algorithms for modular distributed real-time resource
management. These investigations are being conducted
in the context of the Rialto operating system – an object-
based real-time kernel and programming environment
currently being developed within Microsoft Research.

Some of the goals of this research include developing
appropriate real-time programming abstractions to allow
multiple independent real-time programs to dynamically
coexist and share resources on the same hardware
platforms. Use of these abstractions is intended both to
allow individual applications to reason about their own
resource requirements and for per-machine system
resource planner applications to reason about and
control resource allocations between potentially
competing applications. The set of resources being
managed is dynamically extensible, and may include
remote resources in distributed environments. The local
planner conducts resource negotiations with individual
applications on behalf of the user, with the goal of
maximizing the user’s perceived utility of the set of
running applications with respect to resource allocations
for those applications.

1. The Need for Modular Real-Time
Resource Management
One of our major research goals for the Rialto

operating system is to investigate programming
abstractions that make it possible for multiple independent
real-time applications to dynamically coexist and share
resources on the same hardware platforms. In particular,
just as it is possible to today to purchase or write time-
sharing applications that successfully coexist with other
time-sharing applications, we are researching a real-time
software architecture that is intended to make it possible
to purchase or write real-time applications that can
successfully coexist both with other real-time applications
and time-sharing applications. Furthermore, the
techniques we are developing are designed to be
applicable not just for single-machine applications, but

also to distributed applications that make use of remote
resources through remote object invocations.

To be usable in a tractable fashion, it is our belief that
resource management must be modular. By this, we mean
that it should be possible to write and use software
components (classes, modules, libraries, etc.) that have
real-time resource requirements as components of larger
real-time modules or programs without having to
understand their implementations in order to reason about
their real-time resource requirements. This allows the
traditional benefits of modularity (abstract interfaces,
information hiding, the ability to reimplement, etc.) to be
carried forward into real-time programming.

As well as applying to software components, we
believe that this kind of modularity of resource
requirements must also extend to entire real-time
applications. This allows a system resource planner
application to reason about and participate in overall
resource allocations between applications, just as an
application can reason about its own internal resource
requirements. The planner makes resource allocation
decisions between applications on behalf of the user.

2. The Problem Being Solved
This paper focuses on one aspect of the real-time

programming model provided by and used within the
Rialto operating system. This aspect is:

• An extensible modular distributed real-time resource-
management scheme with which programs can reason
about their own real-time resource needs and
negotiate for resource reservations based on those
needs.

2.1 Research Context
This research is being conducted in a larger context

of real-time systems work. While not the focus of this
paper, it is nonetheless useful to have an overview of this
larger systems context so as be able to better understand
our resource management strategy. Other features integral
to the programming model are:

• A constraint-based real-time scheduler. Time
constraints contain a deadline, a time estimate, and an

earliest start time. The scheduler notifies the
application if a constraint is unlikely to be met,
providing for proactive load shedding in cases of
transient overload. Actual time taken is reported
back to the application, providing the basis for a
realistic real-time feedback mechanism. This is a
simplification of the mechanism described in [Jones
93].

• An object invocation mechanism that propagates a
thread’s real-time scheduling constraints to remote
object invocations, both to remote processes and to
remote machines. (The object invocation mechanism
is a real-time implementation of the Component
Object Model (COM), the invocation mechanism
used by OLE2 [Microsoft 94].) Taken together, these
three facilities enable a consistent end-to-end
treatment to be applied to real-time scheduling
decisions.

• An I/O system that also schedules I/O operations
using the same real-time scheduling constraints.

• A set of I/O and RPC abstractions designed to avoid
data copies when transmitting and operating on large
quantities of data. This mechanism is derived from
Fbufs [Druschel & Peterson 93].

2.2 The Rialto Approach
Resource management can be viewed as a

generalization of admission control. Unlike CPU or I/O
scheduling decisions, resource management decisions
occur infrequently – typically at program startup, exit, or
mode change. Programs negotiate for the resources
needed to operate on an ongoing basis in a given mode,
and then operate in that mode until either exiting or
changing modes.

The Rialto programming model is designed to permit
incremental development and refinement of the resource
management code used by real-time programs. First, the
application can be developed (or ported) and its gross
real-time resource needs determined. Next, resource
management calls can be added to cover the gross real-
time resource requirements of the application, which is
still a relatively non-invasive change. Finally, real-time
scheduling constraints can be added to fine-tune the
behavior of critical sections of code in the application.

The model carefully separates mechanisms and
policies. This allows varied or dynamic resource
management policies to be used without modifying
applications.

We intend to use this flexibility to implement user-
centric, rather than application-centric, resource
management policies. By user-centric, we mean that they
attempt to dynamically maximize the user’s perceived
utility of the entire system, rather than the performance of
any particular application. We expect this to lead to
policies which focus on maximizing expected normal-case

resource utilization, rather than always limiting resource
allocations to account for worst-case behavior.

3. Resource Management Design
This section describes our approach to modular real-

time resource management, giving examples to help
clarify how it would be used in practice.

3.1 Resource Management Abstractions
The following abstractions are used by our approach

to real-time resource management:
• Resource: A limited hardware or software quantity

provided by a specific machine. Individual resources
might include CPU time, memory, I/O bus
bandwidth, network bandwidth, devices such as video
frame buffers and sound cards, or higher-level
software-defined resources, which may themselves
manage or use other resources.

• Resource Amount: An abstraction representing a
quantity of a specific resource. This is represented by
a number between zero and one, with one
representing 100% of a particular resource. Resource
amounts are derived by resource providers (see
below) from interface-specific quality-of-service
specifications supplied by interface clients.

• Resource Set: A set of (resource, resource amount)
pairs.

• Activity: The abstraction to which resources are
allocated and against which resources usage is
charged. Normally each distinct executing program
or application would be associated with a separate
activity. Activities may span address spaces and
machines and may have multiple threads of control
associated with them. Threads execute with rights
granted by secured user credentials associated with
their activity. Examples of tasks that might be
executed as distinct activities are playing a studio-
quality video stream, recording and transmitting
video for a video-conferencing application, and
recording voice input for a speech recognition
system.

• Resource Provider: The object that manages a
particular resource. Operations include allocating
amounts of the resource to activities, performing
resource accounting as the resource is used by
activities, and notifying the resource planner of
activities exceeding their resource allocations. The
resource provider object would typically be
implemented by the device driver that manages the
physical resource, by the scheduler (which manages
the CPU resource), by other parts of the system
software (which manages other physical resources,
such as memory), or by the module that implements
software-defined resources.

• Resource Planner: A server that arbitrates access to
the resources of a machine among different activities.
Rather than reserving resources directly from the
specific resource providers, applications negotiate for
resources with the resource planner. The planner, at
the conclusion of a successful resource negotiation, in
turn contacts the resource providers to grant specific
resource amounts to the requested activity, which can
then use up to that amount.

 The planner’s job is to implement the resource
arbitration policy between competing activities. The
expected policy goal is to maximize the user’s
perceived utility of the system as a whole – the policy
is user-centric rather than application-centric. The
planner makes all resource allocation policy decisions
between activities (on behalf of the user); this allows
for a clean separation between mechanism and policy.

• Preferences: Input from the user to the resource
planner as to the desired behavior of the system and
of particular applications. Preferences may be either
retrieved from a database, or in extraordinary cases,
obtained by directly querying the user. Example
preferences include statements that a video-phone call
should pause a movie unless it's being recorded and
that video should be degraded before audio when all
desired resources are not available.
These abstractions are designed to make it possible to

reason about application and overall system behavior.

Activity

Scsi Disk

IResource

IScsiDisk I/O Bus

IResource

IIOBus ATM Adapter

IResource

IAtmCard

File Sys

IResource

IFileSys Network

IResource

INetwork

Resource
PlannerThreads

Resource Providers

Abstractions

IPlanner

Figure 3-1: Resource Management Scenario

Figure 3-1 shows an activity that uses a set of abstract
resources (file system, network) which themselves use
other physical resources (SCSI Disk, I/O Bus, ATM
Adapter). Exported interfaces are depicted as labeled
circles. Note that software modules export both their
usual functional interfaces, as well as resource manager
interfaces. Also shown is the resource planner service.
This scenario will be used to illustrate several aspects of
resource management in later figures.

3.2 Modules and Resource Interfaces
Within our resource management framework,

software components (classes, modules, libraries, etc.)

that have real-time resource requirements provide
interfaces exposing those requirements to clients of those
components. This allows clients to query the module
about the resources needed to perform the operations they
will use, so that the client modules can, in turn, make their
resource needs known to their clients.

For example, consider a module M which implements
a network read operation. As well as exporting the
network read operation, M would also export an operation
for determining the resources needed to perform the
network read on an ongoing basis. In particular, it would
allow client modules C to ask M questions of the form:
“What resources are needed to read N bytes every T time
units” with the response being a resource set S
enumerating the needed resources. In this instance, S
might indicate an amount of CPU time, an amount of
network bandwidth, an amount of bus bandwidth, and an
amount of memory.

Note that resource queries are in terms of operations
exported by the modules, and may contain whatever
qualifications are necessary to sufficiently specify the
operations being asked about. For instance, to accurately
quantify the resources needed for a series of network
reads, M might also need to know the source address from
which the data would be read and might need to know
acceptable jitter bounds. If so, the corresponding resource
query operation would accept this qualifying information
as parameters.

Also, note that C, in general, does not (and need not)
understand the contents of the resource set S. To
determine their own resource requirements, client modules
just add together the resources required by each of the
modules (such as M) that they use, and add in any
resources required for operations directly implemented in
the client. Indeed, it is the fact that clients do not need to
understand what resources are in a set returned from a
resource query that makes the resource management
scheme modular. Implementations may change to use
different resources without requiring changes in clients.

This gives us a modular algebra for reasoning within
a program about the program’s resource requirements. As
a starting point, resource providers are aware of and
understand the resources needed to do their jobs. Client
modules subsequently determine their own resource
requirements in terms of those of the modules they use.
Finally, this permits a program to determine its own
resource requirements for the various modes of behavior
which the program might choose to exhibit.

This ability for a program to reason about its own
resource requirements forms a basis for it to negotiate for
the these resources.

Scsi Disk

IResource

IScsiDisk I/O Bus

IResource

IIOBus ATM Adapter

IResource

IAtmCard

File Sys

IResource

IFileSys Network

IResource

INetwork

Translating Application Requirements to Resource Sets

(Bandwidth, ...) (Bandwidth, ...)

Activity
Resource
Planner

IPlanner

Figure 3-2: Resource Queries

Figure 3-2 shows resource queries being made by the
program to its resource providers. Note that some of the
providers themselves make queries to other resource
providers as part of this process. Resource sets are
returned in response to these queries.

3.3 Resource Negotiation
Once an application has determined what resources it

will need (either through resource queries, as described
above, or by consulting a database of cached resource
requirements taken from past runs) it negotiates for those
resources with the local resource planner. If the requested
resource reservation is granted by the planner, the planner
in turn contacts the resource providers on behalf of the
program’s activity and makes the actual resource
reservations. At this point, the application is free to use at
least the reserved amounts of the requested resources until
such point as it is notified to the contrary by the resource
planner.

If, however, the requested resource reservation cannot
be granted, either due to conflicts with other programs or
because of insufficient capacity, the planner will notify the
application of this fact, telling it what quantities of the
requested resources the program could successfully
acquire. Then, the program either makes a modified
resource request (probably based on reasoning about its
own resource requirements for running in a different mode
than originally negotiated for) or it may decide that there
are insufficient resources to function in any mode, and
will shut itself down.

Activity

Scsi Disk

IResource

IScsiDisk I/O Bus

IResource

IIOBus ATM Adapter

IResource

IAtmCard

File Sys

IResource

IFileSys Network

IResource

INetwork

Resource
Planner

IPlanner
(IResource, 0.4)
(IResource, 0.3)
(IResource, 0.6)
...

(Activity, 0.6)
(Activity, 0.3)

(Activity, 0.4)

Figure 3-3: Resource Reservation

Figure 3-3 shows a program requesting a resource
reservation from the resource planner and the planner in
turn contacting the individual resources to make the actual
resource reservations.

Unlike simple first-come first-served admission
control schemes, our scheme does not have the property
that once a resource is reserved for an application that the
application is guaranteed at least that resource amount
until it explicitly relinquishes it. We view this as an
application-centric policy. Instead, we have opted for a
user-centric policy – ideally the resource planner allocates
resources among the competing applications in the way
that provides the most perceived value to the user. (Of
course, the planner can implement irrevocable reservation
for some resources or some applications if it is deemed
appropriate, but this is merely a special case of more
flexible policies.) Design and implementation of these
policies is an important area of future work.

Under our scheme, there are several different
scenarios where resource re-negotiation may occur. First,
a program may modify its own behavior or enter a new
mode, causing its resource needs to change. In this case,
the program contacts the resource planner to request that
its resource reservations be revised.

Second, another program may have been started, may
have exited, or may have changed its resource usage
pattern. In this case, the planner may contact running
programs, requesting that they modify their resource usage
in specific ways (or notifying them that they may request
more resources if they choose to do so).

Third, a resource provider may detect a persistent
overload condition, at which point the resource provider
would contact the resource planner making it aware of the
activities that are exceeding their reservations.

Activity

Scsi Disk

IResource

IScsiDisk I/O Bus

IResource

IIOBus ATM Adapter

IResource

IAtmCard

File Sys

IResource

IFileSys Network

IResource

INetwork

Resource
Planner

IPlannerNegotiate

Persistent
Overload!

Another
Activity

Reserve!

Figure 3-4: Resource Negotiation

Figure 3-4 depicts several scenarios under which
resource re-negotiation may occur. First, a program may
modify its own behavior or enter a new mode, causing its
resource needs to change. Second, another program may
have been started, at which point resources may be

reallocated by the planner among existing activities.
Third, a resource provider may detect a persistent
overload condition, at which point it would contact the
resource planner making it aware of the activities that are
exceeding their reservations.

3.4 Distributed Resource Management
In our scheme, each resource is represented by a

resource object that is registered with a resource planner
that is (typically) running on the machine where the
resource resides. Resource queries for locally
implemented objects return references to local resource
objects and resource reservation is done via the local
resource planner. Thus, most resource management
decisions require only local object invocations.

However, resource queries to remotely implemented
objects will cause remote object invocations and will
consequently return references to the remote resource
objects needed to implement the requested service.
Applications in general are not aware of which resources
are local or remote, but the local resource planner is. If a
reservation request is made to the local planner for remote
resources, the planner forwards this portion of the request
to the remote planner. Because the planners cooperate to
transparently manage remote resource reservations,
application resource management code is resource-
location-independent.

3.5 Simplifying Assumptions
A number of simplifying assumptions underlie our

resource management model. This section describes and
motivates these assumptions.

• Linearity of resource amounts – For most resources
this should be a reasonable approximation to reality
when not close to overload. This assumption permits
the resource planner to manage resource allocations
without deep understanding of individual resources.

• Independence of resources – Like linearity, we
believe this to be reasonably true for many resources.
Where not true (for instance, reading from disk
causes DMA, which can reduce effective processor
speed) we may need to handle this at the resource
provider level by explicitly modeling
interdependencies (for instance, by also reserving
some “CPU” time for DMA transfers). This
assumption permits the resource planner to manage
allocations of different resource independently (even
though resource providers and consumers may be
aware of the interdependencies).

• Application resource self-awareness – We believe
that cost in complexity of having applications be
aware of their own resource requirements and usage
is reasonable in comparison to the benefits gained.
This self-awareness permits applications to reason
about their own behavior in the presence of different

resource allocations. Note also that an incremental
approach can be taken, adding refinements of
resource awareness to a program on an as-needed
basis.
One of the research goals of this work is identifying

which simplifying assumptions yield reasonable results,
and under what circumstances they hold.

4. Related Work
This section examines the relationships between this

work and other related work.
Mercer [Mercer et al. 94] has advocated a “temporal

protection” scheme in which enforcement of CPU and
possibly other resource reservations is provided between
competing programs. Our resource management strategy
is largely independent of whether hard enforcement of
resource usage is provided, but is compatible with it.
Indeed, if both are present, resource amounts derived from
resource negotiation would be used to choose the values
used for resource enforcement.

Unlike Mercer, Compton and Tennenhouse believe
that resource protection is inappropriate and that
applications should dynamically and cooperatively shed
load when necessary [Compton & Tennenhouse 93], but
they bemoan the crude measures available for deciding
when to shed load. Rather than shedding load reactively,
our work provides a means for programs to cooperatively
reason about their resources in advance, proactively
avoiding most dynamic load shedding situations.

A number of mechanisms are currently being
proposed for reserving network bandwidth and related
resources such as RSVP [Zhang et al. 93] and a number of
ATM-specific schemes. This work is complementary to
such mechanisms. Indeed, one result of distributed
resource negotiation can be using these mechanisms to
allocate any network resources needed by the activity.

Anderson described a system for trading off buffer
space and variabilities in network latency when delivering
continuous media streams [Anderson 93]. The application
resource self-awareness needed to analyze these tradeoffs
is an example of the kind of self-awareness needed to be
able to negotiate for and make tradeoffs among resources
in our more general setting.

One important aspect of this work is that it provides a
more flexible admission control scheme than the first-
come first-served or priority schemes that are common
today. Admission policy is controlled by the resource
planner, which is able to redistribute resources among
both existing applications and new applications in a user-
centric rather than application-centric manner.

Finally, it should be stated that this work is intended
to be complimentary to, and not a replacement for,
algorithms which provide fine-grained CPU scheduling,
whether classical priority-based schemes or more flexible
schemes, such as those employed by Northcutt [Northcutt

et al. 90, Wall et al. 92]. Even given sufficient resources,
fine-grained scheduling decisions still must be made
correctly to ensure that application deadlines are met.

5. Status
The Rialto operating system kernel, including its real-

time constraint-based scheduler, has been implemented
and is in use as a research testbed for a number of kinds of
real-time applications. The implementation of resource
management is under way. We expect to report initial
results at the workshop.

6. Conclusions
This paper presents a design for modular resource

management within and between applications. The set of
resources managed is dynamically extensible and may
include remote resources in distributed environments.
The design carefully separates mechanisms and policies,
allowing varied or dynamic resource management policies
to be used without modifying applications. We intend to
use this flexibility to implement user-centric, rather than
application-centric, resource management policies.

While ambitious, we believe that the goals of this
research are both attainable and practical. We believe that
dynamic resource management will allow combinations of
independently authored real-time applications to
nonetheless coexist and be concurrently executed on the
same platform. Resource management can be an enabling
technology for a free market in independently authored
real-time components and applications for widely
available home multi-media information platforms.

References

[Anderson 93] D. P. Anderson. Metascheduling for
Continuous Media. In ACM Transactions
on Computer Systems, 11(3):226-252,
August, 1993.

[Compton & Tennenhouse 93] Charles L. Compton and
David L. Tennenhouse. Collaborative Load
Shedding. In Proceedings of the Workshop
on the Role of Real-Time in
Multimedia/Interactive Computing Systems.
IEEE Computer Society, Raleigh-Durham,
NC, November 1993.

[Druschel & Peterson 93] Peter Druschel and Larry L.
Peterson. Fbufs: A High-Bandwidth Cross-
Domain Transfer Facility. In Proceedings of
the 14th ACM Symposium on Operating
Systems Principles. December, 1993.

[Jones 93] Michael B. Jones. Adaptive Real-Time
Resource Management Supporting
Composition of Independently Authored
Time-Critical Services. In Proceedings of
the Fourth Workshop on Workstation

Operating Systems, pages 135-139. IEEE
Computer Society, Napa, CA, October,
1993.

[Mercer et al. 94] Clifford W. Mercer, Stefan Savage,
Hideyuki Tokuda. Processor Capacity
Reserves: Operating System Support for
Multimedia Applications. In Proceedings of
the IEEE International Conference on
Multimedia Computing and Systems
(ICMCS), May 1994.

[Microsoft 94] OLE2 Programmer’s Reference, Volume
One. Microsoft Press, 1994.

[Northcutt et al. 90] J. D. Northcutt, R. K. Clark, D. P.
Maynard, and J. E. Trull. Decentralized
Real-Time Scheduling. Final Technical
Report to RADC, RADC-TR-90-182,
School of Computer Science, Carnegie-
Mellon University, August, 1990.

[Wall et al. 92] Gerald A. Wall, James G. Hanko, and J.
Duane Northcutt. Bus Bandwidth
Management in a High Resolution Video
Workstation. In Proceedings of the Third
International Workshop on Network and
Operating System Support for Digital Audio
and Video, pages 236-250. IEEE Computer
Society, San Diego, CA, November, 1992.

[Zhang et al. 93] Lixia Zhang, Steve Deering, Deborah
Estrin, Scott Shenker, and Daniel Zappala.
RSVP: A New Resource ReSerVation
Protocol. IEEE Network 7(5), Sept., 1993.

