
Constructing Optimal IP Routing Tables

Richard P. Draves Christopher King
Srinivasan Venkatachary Brian N. Zill

November 1998

Technical Report
MSR-TR-98-59

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052

To appear in Proceedings of INFOCOM ’99, New York, March 1999.

c©1999 IEEE. Personal use of this material is permitted. However, per-
mission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution to
servers or lists, or to reuse any copyrighted component of this work in other
works must be obtained from the IEEE.

Constructing Optimal IP Routing Tables

Richard P. Draves1, Christopher King2,
Srinivasan Venkatachary1 and Brian N. Zill1

1Microsoft Research, One Microsoft Way, Redmond, WA 98052
2Department of Mathematics, Northeastern University, Boston, MA 02115

Abstract

The Border Gateway Protocol (BGP) populates Internet backbone
routers with routes or prefixes. We present an algorithm to locally
compute (without any modification to BGP) equivalent forwarding ta-
bles that provably contain the minimal number of prefixes. For large
backbone routers, the Optimal Routing Table Constructor (ORTC)
algorithm that we present produces routing tables with roughly 60%
of the original number of prefixes. The publicly available MaeEast
database with 41315 prefixes reduces to 23007 prefixes when ORTC
is applied. We present performance measurements on four publicly
available databases and a formal proof that ORTC does produce the
optimal set of routes.

1 Introduction

As the Internet grows to fill every corner of the world, the demands on the
Internet backbone routers keep increasing. One of the major problems facing
the backbone routers today is the increasing number of routing entries or
prefixes that they have to handle. The number of routes in the Internet
backbone has been growing by 10,000 per year for the last several years [11].

In this paper we present an algorithm for constructing a routing ta-
ble that has the least possible number of entries, while still providing the
same routing information. More precisely, given a routing table that pro-
vides forwarding information for IP addresses using longest prefix match,
the algorithm produces a new routing table that a) has the same forwarding
behavior and b) has the least possible number of entries. The table is con-
structed by applying subnetting and supernetting to the original table. We
call our algorithm ORTC (Optimal Routing Table Constructor). ORTC can
be easily and efficiently implemented, and reduces the number of prefixes in

1

a large backbone router by around 40%. While for our experiments we use
IPv4 prefixes, ORTC is applicable to any longest-matching-prefix database.

Routers acquire these routes using a distributed algorithm, the Border
Gateway Protocol (BGP) [13]. Because of the way BGP operates, routers
can get redundant routes. Modifying BGP and other routing protocols to
produce optimal routing tables at each router is a daunting task. In contrast,
ORTC is a simple mechanism by which each router can locally compute an
optimal set of routes.

This reduction in the number of prefixes while retaining equivalent for-
warding information helps improve performance. Having fewer prefixes re-
duces the size of the forwarding data structure. If one uses customized
hardware for forwarding, it might have a limited amount of memory and it
would be worthwhile to increase the effective size of the routing tables that
it could hold. If one uses a general purpose processor with cache memory to
do forwarding, a reduced forwarding structure size means a larger fraction
of the structure can fit into the cache, improving average case performance.

The paper is organized as follows. We discuss related work in section 2.
In section 3 we describe ORTC and provide an example using a small routing
table. We also discuss the intuition behind ORTC and state the optimal
compression result. In section 4 we evaluate the performance of ORTC on
publicly available backbone routing tables. Section 5 contains discussion and
conclusions. An appendix presents a mathematical formulation of ORTC
and a formal optimality proof.

2 Background

Initial work on routing for large networks [1] established that hierarchical
routing produces routing tables logarithmic in the number of network hosts
with negligible increase in message path lengths. This is important for
achieving scalability as network sizes increase. Internet routing today takes
advantage of this principle.

Internet address lookup would be simple if we could lookup a 32-bit IP
destination address in a table that lists the output link for each assigned
Internet address. However, each router would have to keep an entry for ev-
ery Internet host—millions of entries. To reduce database size and routing
update traffic, an Internet router database consists of a much smaller set
of prefixes. This reduces database size, but at the cost of requiring a more
complex lookup called longest matching prefix. Each prefix P has an associ-
ated next hop or output link information, which specifies where a packet is

2

to be forwarded if its longest matching prefix is P.
We will write prefixes as bit strings of up to 32 bits followed by a ‘*’. For

example, the prefix 01* matches any address that begins with the bits 01.
The prefix * matches every address. Thus if the destination address begins
with 01000 and we had only two prefix entries (01* → 1; 0100* → 2), the
longest-matching-prefix would be 0100* and so the packet would be directed
to next-hop 2.

The Internet initially used a simple hierarchy in which 32-bit addresses
were divided into a network prefix and a host number, so that routers would
only store entries for networks. For flexible address allocation, the network
prefixes came in three sizes: Class A (8 bits), Class B (16 bits), and Class
C (24 bits). Organizations that required more than 256 hosts were given
class A or B addresses; these organizations could further structure their
addresses for internal routing with subnetting [3]. For example, if P1=00*
is a network, then P2=0011* is a subnet under P1. However, the Class
A and B spaces did not scale to handle the Internet’s growth. This led
to the invention of Classless Inter-Domain Routing (CIDR) [6]. CIDR can
give organizations multiple contiguous network prefixes that can still be
aggregated by a common prefix, which reduces backbone router table size.
Supernetting denotes the aggregation of adjacent prefixes that have the same
next-hop information. For example, supernetting can replace P1=00* → 1
and P2=01* → 1 with one prefix, P=0* → 1.

In the past year, there have been several new algorithms that provide
very fast IP lookups in software [9, 8, 10, 12]. Note that the work presented
in this paper can be used to improve the memory requirements of any of
these schemes. In particular, section 4 presents the reduction in size that
we achieved using ORTC in conjunction with the data structure described
in [9].

There is some prior work in the area of reducing routing table sizes
while preserving equivalent forwarding behavior. Most notably, [7] defines
Binary Tree Collapse (BTC). BTC consists of three transformations, each of
which recognizes a common opportunity for eliminating redundant routing
table entries. The BTC algorithm performs a single post-order traversal of a
binary tree built from the routing table, looking for opportunities to apply
its three transformations. BTC does not handle multiple next hops per
prefix. In contrast, an ORTC implementation uses two passes but produces
provably minimal table sizes. ORTC can either preserve multiple next-hop
information, or take advantage of it to improve compression. On an actual
Internet backbone routing table, ORTC produces an optimized routing table
that is 43% smaller while BTC produces a routing table that is 35% smaller.

3

1

22 3

0 1

0 0 1

* => 1
00* => 2
10* => 2
11* => 3

Figure 1: Binary tree representation of a routing table.

3 Constructing Optimal Routing Tables

Our algorithm for reducing the number of entries in a routing table gener-
alizes the subnetting and supernetting techniques. In this section we first
give an intuitive explanation of the algorithm’s operation. We then provide
a detailed description, in terms of operations on a tree representation of the
routing table. To simplify the explanation, the initial description relies on
having a single next hop for a prefix and having a default route for the null
prefix. We remove these restrictions in the final subsection.

To graphically depict a set of prefixes, we use a binary tree representa-
tion. Each successive bit in a prefix corresponds to a link to a child node
in the tree, with a 0 corresponding to the left child and a 1 corresponding
to the right child. Note that the binary tree generally contains more nodes
than there are prefixes, since every successive bit in the prefix produces a
node. We label nodes with next-hop information, typically a small integer
or a set of small integers. Figure 1 shows an example with four routes. For
instance, the root node in the tree represents the null prefix, with a default
route to next-hop 1. The lower left tree node represents the prefix 00*, and
the next hop associated with this prefix is 2.

Figure 2 shows the output of our algorithm on this example. By changing
the default route at the root of the tree from 1 to 2, ORTC reduces the
number of routes from four to three. Note that the optimized routing table
encodes forwarding behavior equivalent to the original routing table. Using
the longest-matching-prefix algorithm, both routing tables forward 00 to
next-hop 2, 01 to next-hop 1, 10 to next-hop 2, and 11 to next-hop 3.

4

2

1 3

0 1

1 1

* => 2
01* => 1
11* => 3

Figure 2: Example routing table after ORTC.

3.1 Intuition

Several key observations let ORTC gain maximal advantage from super-
netting and subnetting and produce an optimally compressed routing table
equivalent to the original routing table. The first observation, a generaliza-
tion of supernetting, is that the shorter prefixes, close to the root of the tree,
should route to the most popular or prevalent next hops. Longer prefixes,
near the leaves of the tree, should route to less prevalent next hops. Then
subnetting will prune the maximal number of routes from the tree. Finally,
these ideas should be applied recursively, within every sub-tree.

In Figures 1 and 2, note that next-hop 2 is most prevalent in the original
routing table: it accounts for half of the possible destinations. Hence ORTC
produces a smaller routing table by moving it to the root of the tree and
using longer prefixes to represent routes to next-hops 1 and 3.

3.2 Description of the Algorithm

In its simplest form, ORTC optimizes a routing table using three passes over
the binary tree representation. (The next subsection describes optimizations
to the basic algorithm, including combining the first two passes.) The first
pass propagates routing information down to the tree’s leaves. The second
pass finds the most prevalent next hops, by percolating information (sets of
next hops) from the leaves back up towards the root. Finally, a third pass
moves down the tree, choosing a next hop from the set of possibilities for a
prefix and eliminating redundant routes.

This description of the algorithm makes two simplifying assumptions
about routing tables, which do not hold for real backbone routing tables.
First, we assume that every routing table has a default route, or equivalently,
that the null prefix at the root of the tree has a next hop. Second, we assume

5

{2}{2} {3}

0 1

0 0 1

{1}

1

Figure 3: Example routing table after pass 1.

that every prefix in the routing table has only a single next hop. The next
subsection shows how these assumptions can be relaxed so that ORTC can
be applied to real routing tables.

We use the routing table from Figure 1 as an example throughout this
section, to demonstrate the operation of the algorithm. Section 3.3 restates
this section’s informal description in a more precise form using pseudo-code.

3.2.1 Pass One

The first pass “normalizes” the binary tree representation of the routing
table, in preparation for the second and third passes. It enlarges the tree so
that every node has either zero or two children. It does this by creating new
leaf nodes and initializing the next hop for a new node with the next hop
that the new node inherits from its nearest ancestor that has a next hop.
Once the tree is fully populated with leaf nodes, the next-hop information
for interior nodes is no longer needed and may be discarded. In preparation
for the second pass, which uses sets of next hops, the first pass converts the
next hop for each prefix to a singleton set. Figure 3 shows the result of
pass 1 processing on the example routing table.

An implementation of the first pass might use a pre-order traversal of
the binary tree or a traversal by levels from the root down. In either case,
the traversal pushes next-hop information down to child nodes that do not
have a next hop, creating new child nodes when a parent node has only one
child.

3.2.2 Pass Two

The second pass calculates the most prevalent next hops at every level of
the routing table by percolating sets of next hops up the tree. An imple-

6

A # B

BA

0 1

A#B =
{

A ∩B if A ∩B 6= ∅
A ∪B if A ∩B = ∅

Figure 4: Percolating sets of next hops up the tree.

{2}

{2,3}{1,2}

{2}{2} {3}

0 1

0 0 1

{1}

1

Figure 5: Example routing table after pass 2.

mentation of the second pass could use a post-order traversal of the tree or
a traversal by levels from the bottom up towards the root. At each par-
ent node visited in the traversal, a set of next hops is calculated as shown
in Figure 4. If there are any next hops in common between the two child
nodes, then they are the next hops that are most prevalent at the level of
the parent node. Otherwise all the next hops from the children’s level are
carried up to the parent node.

When the second pass is complete, every node in the tree is labeled with
a set of potential next hops. Figure 5 shows the result of pass 2 processing
on the example routing table.

3.2.3 Pass Three

The third pass moves down the tree selecting next hops for prefixes and
eliminating redundant routes via subnetting. An implementation could use
either a pre-order traversal of the tree or a traversal by levels from the root
down. Each node visited will have a set of possible next hops, computed
in the second pass. Except for the root node, the node will inherit a next

7

2

{2}{2} {3}

0 1

0 0 1

{1}

1

Figure 6: Example routing table during pass 3.

2

3

0 1

1

1

1

Figure 7: Example routing table after pass 3.

hop from the closest ancestor node that has a next hop. If this inherited
next hop is a member of the node’s set of potential next hops, then the node
does not need a next hop of its own: it is inheriting an appropriate next
hop. However, if the inherited next hop is not a member of the node’s set of
potential next hops, then the node does need a next hop. Any member of
the node’s set of potential next hops may be chosen as the node’s next hop.

Figure 6 and Figure 7 demonstrate this phase of ORTC on the example
routing table, using a traversal by levels. After the second pass, the root
node is labeled with a singleton next-hop set {2}, so the third pass selects
the next hop 2 for the root. Because next-hop 2 is a member of the sets
labeling the two children of the root, the root’s children have their next hops
removed. Figure 6 depicts this intermediate point in the third pass. Figure 7
depicts the final output of the algorithm, after the traversal visits the four
nodes at the bottom of the tree. Two of those nodes do not need next-hop
information because they inherit an appropriate next hop from the root.

8

3.3 ORTC Definition

Our definition of ORTC uses pseudo-code to render more precisely the pre-
vious section’s informal description.

The pseudo-code algorithm operates on a binary tree. The symbol N
denotes a node in the tree. nexthops(N) denotes a set of next hops as-
sociated with the node N. If the routing table does not assign next hops
to N, then nexthops(N) is defined to be the empty set ∅. We assume
nexthops(root) 6= ∅. For nodes with children, left(N) and right(N) de-
note the left and right child nodes. Similarly, we define parent(N) for all
nodes except the root. The operation choose(A) picks an element from the
non-empty set A.

As in Figure 4, we define the operation A#B on two sets of next hops:

A#B =
{

A ∩B if A ∩B 6= ∅
A ∪B if A ∩B = ∅

We define the function inherited(N) on nodes other than the root:

inherited(N) =
{

nexthops(parent(N)) if 6= ∅
inherited(parent(N)) otherwise

The first and third passes perform a traversal from the tree’s root down
to its leaves. This can be either a pre-order traversal or a traversal by levels.
Similarly, the second pass performs a traversal from the leaves up to the
root, using either a post-order traversal or a traversal by levels.

Pass One.

for each node N (root to leaves) {
if N has exactly one child node,

create the missing child node
if nexthops(N) = ∅,

nexthops(N)← inherited(N)
}

Pass Two.

for each node N (leaves to root) {
if N is a parent node,

nexthops(N)←
nexthops(left(N))#nexthops(right(N))

}

9

Pass Three.

for each node N (root to leaves) {
if N is not the root and

inherited(N) ∈ nexthops(N)
nexthops(N)← ∅

else
nexthops(N)← choose(nexthops(N))

}

3.4 Optimality Theorem

Although ORTC is very simple in operation, it always yields a routing table
that is optimal, in the sense that the output routing table has the smallest
number of prefixes possible while still maintaining the same forwarding be-
havior. In the third pass of the algorithm, the algorithm may choose a next
hop from a set of potential next hops. This means that the algorithm may
produce many different output routing tables for a given input table. ORTC
guarantees that all of these possible output routing tables are optimal, and
hence they are all the same size.

The appendix contains a mathematical formulation of ORTC and a com-
plete proof of its optimality. The proof proceeds via induction on the levels
of the tree corresponding to the routing table.

3.5 Improvements

The basic ORTC algorithm just presented neglects several factors important
in the real world. These include performance and stability, as well as the
two assumptions that the input routing table contains a default route (a
next hop for the null prefix) and that the input table contains a single next
hop for its prefixes. This subsection discusses these issues and presents
enhancements to the basic algorithm.

3.5.1 Improving Performance

There are several ways to reduce the number of steps in ORTC and hence
improve performance.

It’s possible to skip the first pass. When the second pass (now being
done first) comes across a parent node with only one child node, then at
that time it can create the new child node and assign an inherited next hop

10

to the new child. This is an example of lazy evaluation; the work of the first
pass is delayed until it is really necessary.

Another performance improvement saves some work in the third pass
by anticipating it in the second pass. In the second pass, when a parent
node is assigned the intersection of its child nodes’ sets of potential next
hops, then the next-hop information for the two child nodes can be deleted.
This immediately prunes those prefixes from the routing table. This is a
safe optimization because a member of the intersection of two sets is by
definition a member of both sets. In the third pass, that parent node will
be assigned a next hop from the intersection (or it will inherit such a next
hop). If the third pass processed the child nodes, it would see that they
inherit a next hop that is a member of their potential set, and prune them
at that time.

The complexity of the algorithm is linear in the number of nodes in
the tree. The number of tree nodes is O(wN) where w is the maximum
number of bits in the prefixes and N is the number of prefixes in the input
routing table. For IPv4, w <= 32 and for IPv6, w <= 128. Implementing
the algorithm using path-compressed tries [14] would reduce the number of
tree nodes to O(N), speeding up the algorithm’s operation. ORTC’s space
complexity is the same as its time complexity.

3.5.2 Improving Stability

In some situations it may be advantageous to compress a routing table
without changing it “unnecessarily.” In particular, if a routing table is
already optimally compressed, one might like the compression algorithm to
produce an output table identical to the input table.

ORTC as given above does not have this property. For example, con-
sider the routing table with two entries: 0* → 1 and 1* → 2. (Ignore for
a moment the fact that this routing table has no default route; the next
subsection removes that restriction.) ORTC will produce as output a differ-
ent table with two entries, either * → 1 and 1* → 2 or * → 2 and 0* → 1
depending on the choice made at the root node in the third pass.

Two small modifications to the selection of next hops in the third pass
improve ORTC’s stability. We conjecture that these modifications guarantee
that ORTC will not change an already-optimal routing table.

During the third pass, suppose that ORTC must choose a next hop for
a parent node from a set X of potential next hops. If this nodes’ prefix had
a next hop in the input routing table, and that next hop is a member of
X, then it is the logical choice. This improves stability because this prefix’s

11

next hop will be preserved.
If ORTC must choose a next hop for a parent node but its prefix did

not have a next hop in the input routing table, then to improve stability
one would like to remove the prefix from the optimized routing table instead
of assigning it a next hop. This is a safe modification to the algorithm if
the parent node’s set of potential next hops was formed by union of its two
child nodes’ sets. Using the original description of the third pass would
result in the parent node and one of its two child nodes generating routes
in the output routing table. With this modification, the parent node does
not generate a route but instead both child nodes generate routes in the
output routing table. Either way, the output routing table contains the
same number of routes.

3.5.3 Removing the Default Route Assumption

As formulated above, ORTC assumes that the input routing table assigns
a next hop to the null prefix (a default route). The algorithm’s first pass
creates new leaf nodes and assigns them inherited next hops, and the pres-
ence of the default route ensures that every new child node inherits a next
hop. However, in the real world one often encounters “default-free” routing
tables. In particular, the backbone routers in the Internet use default-free
routing tables.

There are two ways to remove this restriction in ORTC. First, with
a more complex definition for the three passes it is possible to cope with
the absence of a default route. However, this reduces the effectiveness of
supernetting. For example, then it is not possible to optimize the routing
table with 00* → 1, 010* → 1, 1* → 1.

A better approach is to introduce a default route to a dummy next hop 0,
at the beginning of the first pass. At the end of the third pass, if the dummy
route at the root is present in the output table it may be removed. Note
that the output table may contain routes to next hop 0. Forwarding to
next-hop 0 should be taken as an error, just as if no matching prefix were
found. With this improvement, the above routing table with three entries
optimizes to yield a routing table with two entries: * → 1, 011* → 0.

3.5.4 Removing the Single Next Hop Assumption

Our presentation of ORTC assumed that each prefix in the initial routing
table has a single next hop, while in real routing tables multiple next hops
are common. There are several ways to overcome this limitation in ORTC.

12

First, it is possible to choose the best next hop for each prefix, by some
metric, before applying ORTC to optimize the resulting routing table. This
is an appropriate method if the metric can pick a single best next hop from
the set of next hops for a prefix.

If several next hops tie for best, then ORTC can use the flexibility it
gets by having multiple next hops from which to choose to achieve better
compression. In this technique, we allow the input table to ORTC to contain
multiple next hops. This requires a small modification to the first pass—
a new child node may inherit multiple next hops from its ancestor. The
operation of the second and third passes is not affected. This approach allows
ORTC to achieve greater compression because it has a better chance of
finding prevalent next hops at higher levels of the tree. We call this variation
ORTC-1. ORTC-1 does not preserve the multiple next-hop information that
existed in the input routing table, so one can not for example round-robin
among different next hops when forwarding.

If it is important to preserve the sets of next hops in the input routing
table, then it is still possible to apply ORTC. The only modification required
is to create “virtual” next hops, where each virtual next hop represents a
different set of next hops found in the input routing table. ORTC then
optimizes using the virtual next hops, so instead of manipulating sets of
next hops it is really manipulating sets of sets of next hops. We call this
variation ORTC-m.

4 Performance

We analyze the performance of ORTC using publicly available routing table
databases [11]. We first compare our results with the Binary Tree Collapse
scheme [7], showing that ORTC achieves significantly better compression.
We then examine ORTC’s performance on four large Internet backbone rout-
ing tables. For the two largest routing tables, ORTC reduces the routing
tables to roughly 60% of their original size. If ORTC is constrained to pre-
serve multiple next hops in the output routing table, then the compressed
tables are roughly 70% of their original size. We also examine ORTC’s im-
pact on the size of fast forwarding data structures built from the routing
tables and look at the ORTC’s stability, or how much it changes real routing
tables while optimizing them.

Table 1 compares Binary Tree Collapse (BTC) [7] and ORTC using the
same input routing table, the MaeEast table of January 16, 1998. The
data here for BTC is taken from [7]. The routing table is segmented into

13

Table 1: Comparison of Binary Tree Collapse (BTC) and Optimal Routing
Table Constructor (ORTC).

Class A Class B Class C Swamp TOTAL
Initial 145 4232 28694 5474 38545
BTC 105 3636 17157 4593 25068 (65%)
ORTC-1 104 2945 14533 4213 21795 (57%)

Table 2: ORTC performance on Internet backbone routing tables.
Initial ORTC-1 Time (ms)

MaeEast 41315 23007 (56%) 400
AADS 24418 14964 (61%) 259
MaeWest 18968 13750 (73%) 227
Paix 3020 2593 (85%) 51

four sections, corresponding to the old IP address classes. For this routing
table, optimizing the four sections separately achieves the same result as
optimizing them together as one routing table. Overall, BTC reduces the
routing table to 65% of its original size and ORTC reduces it to 57% of its
original size. In the MaeEast database, each route maps to a set of next
hops. ORTC-1 refers to the case where we want to keep only one of these
next hops in the optimized routing table and we allow ORTC to pick the one
that achieves the best compression. When multiple next hops for a prefix
are available, BTC just uses the first one and ignores the others.

In Table 2 we present the reduction in the number of prefixes in four
Internet backbone routing tables [11] from July 7, 1998. Entries in these
routing tables often have multiple next hops. ORTC compresses the two
largest routing tables to roughly 60% of their original size.

In addition, Table 2 presents ORTC’s runtime performance on this data.
The running times shown here were measured with a preliminary, non-
optimized implementation of ORTC. For the largest routing table, our
implementation of ORTC took less than 0.5 seconds.

We also examined ORTC’s performance when it is constrained to pre-
serve all the multiple next-hop information in the input routing tables.
ORTC-m refers to the case where each different set of next hops is treated
as a unique virtual next hop. Table 3 lists the results obtained with ORTC-
m. To our surprise, we found that ORTC-m achieves good compression. It
reduces the two largest routing tables to roughly 70% of their original size.

14

Table 3: ORTC performance on Internet backbone routing tables, when
preserving multiple next-hop information.

Initial ORTC-m Distinct Virtual Max Mean
MaeEast 41315 29995 (72%) 76 842 10 1.7
AADS 24418 16764 (68%) 32 143 4 1.15
MaeWest 18968 15146 (80%) 68 470 8 1.84
Paix 3020 2616 (86%) 16 30 3 1.04

Table 4: Reduction in size of the multibit trie based IP lookup structure.
Before ORTC After ORTC

Prefixes 41315 23007
2 level trie 1028 KB 670 KB
3 level trie 496 KB 334 KB
4 level trie 402 KB 275 KB
5 level trie 379 KB 260 KB

ORTC-m is nearly as effective as ORTC-1 because in practice there are not
very many unique sets of next hops in use, although the potential number
of different sets is enormous. For each routing table, Table 3 also shows
the number of distinct next hops, the number of different sets of next hops,
and the maximum and mean number of next hops assigned to routing table
entries.

In Table 4, we present the reduction in forwarding structure size for
the MaeEast database, using the fast IP forwarding structure presented
in [9]. Because ORTC reduces the size of the forwarding structure, a greater
fraction of the forwarding structure can fit in cache memory, improving
average case forwarding performance. The structure defined in [9] uses
multi-level tries, and allows the number of levels used to be varied. Using
more levels decreases the data structure’s memory requirement. Ignoring
cache effects, the worst-case lookup time is proportional to the number of
levels. For example, using a router configured with 384 KB of fast memory
available for forwarding, ORTC allows a 3-level trie to be used instead of a
5-level trie, improving performance.

Finally, we measured how much of the original routing table ORTC
preserves in the output compressed table. For the 41315-prefix MaeEast
database, which compresses to 23007 prefixes, 15174 (66%) of the prefixes
were the same as those in the original database. After improving ORTC’s

15

stability as described in section 3.5.2, 15772 (69%) of the output prefixes
were the same as those in the original database.

5 Conclusions

We have presented an algorithm (ORTC) for constructing optimal routing
tables. We have shown that in typical backbone routers, equivalent forward-
ing behavior can be obtained with routing tables containing roughly 40%
fewer prefixes than the routing tables in use today. We find that a large
41315-prefix table (from MaeEast) can be reduced to an equivalent table
with only 23007 prefixes.

We find reductions of up to 30% in the size of multibit trie-based for-
warding structures built from the optimized routing tables. In future work,
we are considering changing the optimality criteria to be the size of the
forwarding structure instead of the number of prefixes.

In practice routers see and generate many incremental routing updates.
While we can batch updates and rerun ORTC periodically, in future work
we hope to find more efficient ways of handling incremental updates.

Finally, we would like to note that this is a step in the direction of self-
configuring networks, which automatically assign network prefixes. When
each router has optimized its routing table, the only way to reduce the
number of routing table entries further is to renumber the prefixes assigned
to networks. From the optimal routing tables, we might be able to get
information as to what kind of renumbering will help in further reduction.
We plan to pursue this in future work.

Acknowledgment

C. K. thanks C. Borgs, J. T. Chayes and the Microsoft Theory Group for
their support and hospitality. We thank Qiyong Bian and Jonathan Turner
for giving us the MAE-East data that they used in their study. We thank
Allison Mankin and Bill Bolosky for their comments.

References

[1] L. Kleinrock, F. Kamoun. Hierarchical Routing for Large Networks.
Computer Networks 1:155-174, 1977.

[2] J. Postel, editor. Internet Protocol. Internet RFC 791, September 1981.

16

[3] J. Mogul, J. Postel. Internet Standard Subnetting Procedure. Internet
RFC 950, August 1985.

[4] V. Fuller, T. Li, J. Yu, K. Varadhan. Supernetting: an Address Assign-
ment and Aggregation Strategy. Internet RFC 1338, June 1992.

[5] Y. Rekhter, T. Li. An Architecture for IP Address Allocation with
CIDR. Internet RFC 1518, September 1993.

[6] V. Fuller, T. Li, J. Yu, and K. Varadhan. Classless Inter-Domain Rout-
ing (CIDR): an Address Assignment and Aggregation Strategy. Internet
RFC 1519, September 1993.

[7] J. Turner, Q. Bian and M. Waldvogel. Routing Table Compression Us-
ing Binary Tree Collapse. Technical Report WUCS-98-13, Washington
University in St. Louis, May 1998.

[8] M. Waldvogel, G. Varghese, J. Turner and B. Plattner. Scalable High
Speed IP Routing Lookups. Computer Communications Review, Octo-
ber 1997.

[9] S. Venkatachary and G. Varghese. Faster IP Lookups using Controlled
Prefix Expansion. Proceedings of ACM Sigmetrics, June 1998.

[10] M. Degermark, A. Brodnik, S. Carlsson and S. Pink. Small Forwarding
Tables for Fast Routing Lookups. Computer Communications Review,
October 1997.

[11] Merit Inc. Routing table snapshots. www.merit.edu.

[12] S. Nilsson and G. Karlsson. Fast Address Look-up for Internet Routers.
Proceedings of IEEE Broadband Communications, April 1998.

[13] Y. Rechter and T. Li. A Border Gateway Protocol 4 (BGP-4). Internet
RFC 1771, March 1995.

[14] D. Knuth. Fundamental Algorithms vol 3: Sorting and Searching.
Addison-Wesley, 1973.

Translation, notation and definitions.
We will prove a result, stated in the Theorem below, that implies the

optimality of ORTC. In order to state the theorem and prove it, we must
formulate a mathematical description of the IP forwarding protocol. We do
this next, and then define the algorithm using this notation. Then we state

17

the Theorem and provide the proof. For generality we consider N -bit IP
addresses for any integer N . It is convenient to work in a unified setting
for all N -bit routing tables, so we embed all routing tables in the full N -bit
binary tree with root. This means that we consider a routing table as a map
from the full N -bit binary tree into sets of next hops, where the map assigns
the empty set to any node on the tree that does not appear in the routing
table.

The theorem is proved by induction on N , that is we assume its validity
for all k-bit routing tables with k ≤ N , and then establish the result for
any N + 1-bit routing table. For N = 1 the result is proved explicitly. The
statement of our Theorem is the induction hypothesis, and this has two
parts. The first part says that every routing table has at least as many
entries as the compressed tables produced by the algorithm. The second
part says that unless the root entry of a routing table (if it is non-empty) is
in a certain subset of the set of next hops, then that routing table is strictly
larger than the minimal size. This stronger hypothesis is necessary for the
proof of the induction step.

The information in a routing table is equivalent to a forwarding map,
which we define now. Let H be the set of all possible next hops for the
router. We write 2H for the set of subsets of H. Let AN be the set of all
binary numbers of length N , so AN has 2N elements. Then a forwarding
map is any map

F : AN → 2H \ ∅ (1)

That is, F assigns a non-empty subset of H to every N -bit IP address. The
routing table contains this information in condensed form. Let BN be the
full binary tree whose vertices are all prefix/mask pairs with mask lengths
from 0 up to N , and edges between every parent and child. So BN contains
2N+1 − 1 vertices, including the root which we denote rN . A routing table
assigns a non-empty subset of 2H to some vertices of BN . We extend this
by assigning the empty set to all remaining vertices. So we define a routing
map to be any map

R : BN → 2H (2)

For convenience we drop the ‘mask’ notation for vertices in BN . So a vertex
x/k in BN will be denoted by the k-bit binary x, and we write |x| = k to
denote its level or length. We call R(x) the state of x, and say that x is
occupied if R(x) 6= ∅. Also |R| denotes the number of occupied vertices in
the tree.

Given a routing map R we can try to define a forwarding map FR, via
the longest prefix match, as follows. Note that there is a unique path from

18

the root rN to every vertex x in BN . On this path, either a) there is a
unique occupied vertex which is closest to x, but not equal to x, call it
Anc(x) (short for ancestor of x), or b) there are no occupied vertices. We
define the inherited state of x to be

Inh[x;R] =
{

R(Anc(x)) in case (a)
∅ in case (b)

(3)

If Inh[x;R] 6= ∅ for all x ∈ AN , that is all inherited states at the N -bit
level are non-empty, then we say that the routing map R is complete. For a
complete routing map R we define the forwarding map FR for every x ∈ AN

by

FR(x) =
{

R(x) if R(x) 6= ∅
Inh[x;R] if R(x) = ∅ (4)

Given a complete routing table R and a forwarding map F , we say that
R covers F if

FR(x) ⊂ F (x) all x ∈ AN (5)

In other words, for every IP address the routing table R provides forwarding
information that is a subset of the forwarding information provided by F .

Finally, we introduce the two following (non-standard) operations on
sets.
a). For a set A, we denote by Ran[A] a randomly chosen element of A.
b). For any two subsets A and B, define

A#B =
{

A ∩B if A ∩B 6= ∅
A ∪B if A ∩B = ∅ (6)

The algorithm.
The algorithm presented below is equivalent to ORTC. The input is a

forwarding map F . In practice this will come from a complete routing map
obtained from a routing table, by pulling the routing information all the way
down to the 2N leaves of the full binary tree. However it is not necessary to
assume that F arises in this way. The output is a collection of compressed
routing tables {RF ;i} (i ∈ I), where I is some finite index set whose size
depends on F . As we prove later, these are the optimal compressed tables.

The algorithm proceeds in two steps. In the first step the routing infor-
mation in the leaves is pushed up the tree level by level, until all nodes in the
binary tree (including the root) are occupied. In the second step the nodes
are successively pruned until only the minimal number of entries remains.
Given a vertex x we write x0 and x1 for the two children vertices.

19

The input.
Let F be any forwarding map on AN .

Step 1.
Define inductively a sequence of routing maps

(R(N), R(N−1), . . . , R(1), R(0)) by

R(N)(x) =
{ ∅ if x /∈ AN

F (x) if x ∈ AN ,
(7)

and for 1 ≤ k ≤ N

R(k−1)(x) =
{

R(k)(x) if x /∈ Ak−1
R(k)(x0)#R(k)(x1) if x ∈ Ak−1

(8)

Step 2.
Construct inductively a sequence of routing maps

(T (0), T (1), . . . , T (N)) by

T (0)(x) =
{

R(0)(x) if x 6= rN

Ran[R(0)(rN)] if x = rN ,
(9)

and for 1 ≤ k ≤ N

T (k)(x) =

T (k−1)(x) if x /∈ Ak

∅
{

if x ∈ Ak and
Inh[x;T (k−1)] ∈ T (k−1)(x)

Ran[T (k−1)(x)] otherwise

(10)

The output.
The output of the algorithm is the routing map T (N) constructed at the

end of Step 2. Since many choices are made in Step 2, there are many possi-
ble results. We denote them by RF ;i, where i is an index that distinguishes
between them. The collection of all indices is a finite set I, so the possible
results of the algorithm are the routing maps {RF ;i} (i ∈ I).

Comments.
a) For every k, R(k)(x) is the empty set if |x| < k, and is non-empty if
|x| ≥ k. So for example the routing map R(0) has an entry for every vertex
in BN , including the root rN .
b) It is easy to see that the output T (N) covers the input F . Indeed, if
x ∈ AN , then T (N−1)(x) = F (x), so either T (N)(x) = Ran[T (N−1)(x)] ∈

20

F (x), or else T (N)(x) = ∅, in which case Inh[x;T (N)] = Inh[x;T (N−1)] ∈
T (N−1)(x) = F (x).

The theorem
Recall that, given a forwarding map F , at the end of Step 1 the algorithm

assigns a non-empty set to the root in the routing map R0. We will denote
this set by MF , that is

MF = R(0)(rN) (11)

Theorem
Let F be a forwarding map on AN . Let R′ be any routing map that

covers F . Then
a) |R′| ≥ |RF ;i| for all i ∈ I.
b) If in addition R′(rN) is not a subset of MF , then
|R′| ≥ 1 + |RF ;i| for all i ∈ I.

Comments
a) The Theorem implies that |RF ;i| = |RF ;j | for all i, j ∈ I, that is all
the routing tables constructed by the algorithm have the same size. The
Theorem also implies that |RF ;i| is the smallest possible size for a routing
table that covers F . That is, these tables achieve the optimal compression.
So the Theorem implies the optimality of ORTC.
b) The algorithm described above is wildly inefficient, since at the end of
Step 1 it constructs a routing table with 2N+1 − 1 entries. The implemen-
tation presented in section 3 does not have this deficiency; see section 3.5.1.
c) In order to retain all multiple next-hop information in the original table,
define Ω = 2H \∅. If the algorithm is run with H replaced everywhere by Ω,
then the result will be a family of maximally compressed tables that retain
all multiple next-hop information. One could imagine retaining partial next-
hop information by using another set in place of Ω, but we do not pursue
this question here.

Merging and splitting
The proof of the theorem relies on two operations that we call merging

and splitting of routing tables. For the merging operation we take two rout-
ing tables R0, R1 on the N -bit tree and join them to form a routing table
R0 ∗R1 on the (N + 1)-bit tree. Note that the root node of the (N + 1)-bit
tree is not occupied in R0 ∗R1. For the splitting operation we take a routing
table R on the N -bit tree and produce a new routing table Push[R] on the
N -bit tree that can be written (uniquely) in the form Push[R] = R0 ∗ R1
for some (N − 1)-bit trees R0 and R1. The notation “Push[R]” is used to

21

indicate that we push down the routing information from the root to its
two children – this is a necessary step before we can split the table into two
parts. After doing this, the root entry is irrelevant and can be discarded.

First we define the merging operation. A word on notation: if x, y are
k, n-bit binary numbers respectively, we denote by xy the (k +n)-bit binary
obtained by appending y to x. Let R0, R1 be routing maps on BN . Define
the routing map R0 ∗R1 on BN+1 by

R0 ∗R1(x) =

∅ if x = rN+1
R0(y) if x = 0y
R1(y) if x = 1y

(12)

where as usual rN+1 is the root of BN+1.
It will be convenient to define a similar operation for forwarding maps.

Let F0, F1 be forwarding maps on AN . We define the forwarding map F0∗F1
on AN+1 by

F0 ∗ F1(x) =
{

F0(y) if x = 0y
F1(y) if x = 1y

(13)

Every forwarding map F on AN+1 can be written uniquely in the form
F = F0 ∗ F1 for some F0, F1.

Next we define the splitting operation. Let R be a routing map on BN .
Define a new routing map Push[R] on BN as follows:

Push[R](rN) = ∅
Push[R](0) =

{
R(rN) if R(0) = ∅
R(0) otherwise

Push[R](1) =
{

R(rN) if R(1) = ∅
R(1) otherwise

Push[R](x) = R(x) if |x| ≥ 2
(14)

Note that Push[R] has no routing information at the root of the N -bit tree.
Hence there are unique routing maps R0, R1 on BN−1 such that Push[R] =
R0 ∗R1.

Next we list some facts concerning Push[R]: these all follow easily from
the definitions.
1). If R is complete, then Push[R] is also complete, and FR = FPush[R].
2). For all R, |R| − |Push[R]| ∈ {−1, 0, 1}. That is, the splitting operation
changes the number of entries in R by at most one.

22

3). For a routing table RF ;i produced by the algorithm, |RF ;i|−|Push[RF ;i]| ∈
{−1, 0}. This is because the algorithm cannot produce a table with entries
at the root and at both of its child nodes, and this is the only situation
where Push[R] has fewer entries than R.
4). Let F be a forwarding map on AN , and define forwarding maps F0, F1 on
AN−1 by F = F0 ∗ F1. Let R be a routing map on BN that covers F . Then
there are unique routing maps R0, R1 on BN−1 such that Push[R] = R0∗R1,
and such that R0 covers F0 and R1 covers F1.
5). Again let F = F0 ∗ F1 be a forwarding map on AN , and let IF , IF0 , IF1

be the index sets listing routing maps produced by the algorithm for the
forwarding maps F, F0, F1 respectively. Then MF = MF0#MF1 . Further-
more, for every i ∈ IF , there exist unique j ∈ IF0 and l ∈ IF1 such that
Push[RF ;i] = RF0;j ∗ RF1;l. This is the key property of our algorithm –
every compressed table constructed on the N -bit tree is equivalent to two
compressed tables on the N − 1-bit sub-trees, and these can be recovered
using the splitting operation.

The proof
The proof of the Theorem is by induction on N , the number of levels

in the tree. First we prove the result for N = 1. In this case the tree B1
has three vertices, namely the root r1 and its two children 0 and 1. Let
F (0) = A and F (1) = B. Then MF = A#B. Let R′ be any routing table
that covers F , and let R′(r1) = G (the set G may be empty). Let RF ;i be
any routing table produced by the algorithm and let

∆ = |R′| − |RF ;i|

We must prove that ∆ ≥ 0, and that if G is not a subset of MF , then ∆ ≥ 1.
Write

∆ = |R′| − |Push[R′]|+ |Push[RF ;i]| − |RF ;i|
(we have used |Push[R′]| = |Push[RF ;i]| = 2 since both cover the forwarding
map F). There are three cases to consider:
Case 1. |R′| − |Push[R′]| = 1.

Recall that |Push[RF ;i]| = 2 ≥ |RF ;i|, hence ∆ ≥ 1, so we are done.
Case 2. |R′| − |Push[R′]| = 0.

Hence ∆ = |Push[RF ;i]| − |RF ;i| ≥ 0. If |RF ;i| = 1 then ∆ ≥ 1 so we are
done. So assume that |RF ;i| = 2, in which case by Step 2 of the algorithm
A ∩ B = ∅. Also since |R′| = 2, then either G = ∅, in which case G ⊂ MF

and we are done, or else Push[R′] assigns the state G to at least one of
the vertices 0, 1. Since R′ covers F , and hence G ⊂ F (0) or G ⊂ F (1), so

23

G ⊂ F (0) ∪ F (1) = A ∪ B. But since A ∩ B = ∅, so MF = A ∪ B, hence
G ⊂MF and we are done.
Case 3. |R′| − |Push[R′]| = −1.

Hence |R′| = 1, so G is non-empty. Also Push[R′] assigns the state G to
both vertices 0 and 1, so G ⊂ F (0) and G ⊂ F (1). Hence G ⊂ F (0)∩F (1) =
A ∩B, so MF = A ∩B. Hence G ⊂MF , and |RF ;i| = 1, so ∆ = 0.

Now we prove the induction step, namely we assume the result for all
integers less than or equal to N , and prove it for N +1. So F is a forwarding
map on AN+1, and so can be written as F = F0 ∗ F1 for unique forwarding
maps F0, F1 on AN . Let R′ be any routing map on BN+1 that covers F .
Define G = R′(rN+1). Let RF ;i be any routing map constructed from the
algorithm. Define

∆ = |R′| − |RF ;i|
= |R′| − |Push[R′]|+ |Push[R′]|

−|Push[RF ;i]|+ |Push[RF ;i]| − |RF ;i|
(15)

We must prove that ∆ ≥ 0, and that ∆ ≥ 1 unless G ⊂MF . As observed
before, there are unique routing maps R′

0, R
′
1, and unique indices j, l such

that

Push[R′] = R′
0 ∗R′

1

Push[RF ;i] = RF0;j ∗RF1;l

(16)

Define

ρ0 = |R′
0| − |RF0;j |

ρ1 = |R′
1| − |RF1;l|

(17)

Since R′
0 covers F0, by the induction hypothesis ρ0 ≥ 0, and if R′

0(rN) is
not a subset of MF0 then also ρ0 ≥ 1. Similarly for ρ1. Furthermore since
|R ∗ S| = |R|+ |S| for any maps R, S, we get

∆ = |R′| − |Push[R′]|+ ρ0 + ρ1 + |Push[RF ;i]| − |RF ;i|

Again there are three cases.

24

Case 1. |R′| − |Push[R′]| = 1.
Since |Push[RF ;i]| ≥ |RF ;i| we deduce that ∆ ≥ 1, so we are done.

Case 2. |R′| − |Push[R′]| = 0.
Hence ∆ ≥ 0. If |Push[RF ;i]| = 1 + |RF ;i| then ∆ ≥ 1 and we are

done. So assume that |Push[RF ;i]| = |RF ;i|. By the construction of the map
T (1) in Step 2 of the algorithm, it follows that MF0 ∩MF1 = ∅, and hence
MF = MF0 ∪MF1 . Also since |R′| = |Push[R′]|, either G = ∅, in which
case G ⊂ MF and we are done, or else G = R′

0(rN) or G = R′
1(rN), and

hence G ⊂ R′
0(rN) ∪ R′

1(rN). Now with these assumptions ∆ ≥ ρ0 + ρ1. If
ρ0 + ρ1 ≥ 1 then we are done, so assume that ρ0 = ρ1 = 0. Then by the
induction hypothesis, R′

0(rN) ⊂MF0 and R′
1(rN) ⊂MF1 . Hence

G ⊂ R′
0(rN) ∪R′

1(rN) ⊂MF0 ∪MF1 = MF

Case 3. |R′| − |Push[R′]| = −1.
Hence

∆ ≥ −1 + ρ0 + ρ1 + |Push[RF ;i]| − |RF ;i|
Also G must be non-empty, and G = R′

0(rN) = R′
1(rN). If moreover ρ0 +

ρ1 ≥ 1 and also |Push[RF ;i]| − |RF ;i| ≥ 1 then ∆ ≥ 1 and we are done. So
consider the two remaining subcases.
Subcase 3.1 ρ0 = ρ1 = 0.

Then R′
0(rN) ⊂MF0 , and R′

1(rN) ⊂MF1 , hence G ⊂MF0 ∩MF1 . Since
G is non-empty, this implies that MF = MF0 ∩MF1 , that G ⊂MF and that
∆ ≥ 0, so we are done.
Subcase 3.2 |Push[RF ;i]| = |RF ;i|.

Then MF0 ∩MF1 = ∅. Hence if G = R′
0(rN) ⊂ MF0 , then G = R′

1(rN)
is not a subset of MF1 , and vice versa. Hence ρ0 + ρ1 ≥ 1, so ∆ ≥ 0. Also
in this case MF = MF0 ∪MF1 , so if G is not a subset of MF then R′

0(rN) is
not a subset of MF0 and R′

1(rN) is not a subset of MF1 , hence ρ0 + ρ1 ≥ 2
and ∆ ≥ 1.
QED

25

