
Setting 2 variables at a time yields a new
lower bound for random 3-SAT

Dimitris Achlioptas†

Microsoft Research

December 16, 1999

Technical Report
MSR-TR-99-96

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

Setting 2 variables at a time yields a new lower bound for random

3-SAT

Dimitris Achlioptas†

Microsoft Research

December 16, 1999

Abstract

Let X be a set of n Boolean variables and denote by C(X) be the set of all 3-clauses over X,
i.e. the set of all 8

(
n
3

)
possible disjunctions of three distinct, non-complementary literals of vari-

ables in X. Let F (n,m) be a random 3-SAT formula formed by selecting, with replacement, m
clauses uniformly at random from C(X) and taking their conjunction. Finally, let us say that a
sequence of events En occurs with high probability (w.h.p.) if limn→∞ Pr[En] = 1. The satisfia-
bility threshold conjecture asserts that there exists a constant r3 such that F (n, rn) is w.h.p. sat-
isfiable for r < r3 and w.h.p. unsatisfiable for r > r3. Experimental evidence suggests r3 ≈ 4.2.

We prove r3 > 3.145 improving over the previous best lower bound r3 > 3.003 due to Frieze
and Suen. For this, we introduce a new satisfiability heuristic and analyze its performance. The
framework we develop for the analysis of our heuristic allows us to recover most of the previous
lower bounds along with our new bound in a uniform manner and with little additional effort.

1 Introduction

The question which originally motivated the study of random(ly chosen) satisfiability (instances)
can be put roughly as “Are typical instances of satisfiability hard?” While “hard” here is vis-à-vis
the problem’s NP-completeness, quantifying “typical” is a difficult problem in itself. Considering
random formulas allows one to sidestep this thorny issue.

Some early results on the performance of the Davis-Putnam (DP) algorithm [10, 9] on ran-
dom formulas, the one most often quoted being due to Goldberg [20], suggested that SAT is
easy on average. Franco and Paull [16], though, pointed out that the distribution of instances
used in [20] is so greatly dominated by easily satisfiable instances that, if one tries truth assign-
ments completely at random, the expected number of trials until finding a satisfying one is O(1).
Moreover, they considered the performance of the DP algorithm on random instances of k-SAT.
More precisely, let Fk(n,m) denote a random formula in Conjunctive Normal Form (CNF) with
m clauses over n Boolean variables, where the clauses are chosen uniformly, independently and
with replacement among all 2k

(
n
k

)
non-trivial clauses of length k, i.e. among k-clauses with distinct

non-complementary literals. Franco and Paull [16] showed that for all k ≥ 3 and every constant
r > 0, with probability 1− o(1), the DP algorithm takes an exponential number of steps to report
the satisfying truth assignments of Fk(n, rn), i.e. either to report all (“cylinders” of) solutions, or
that no solutions exist.
†Research supported in part by an NSERC Postdoctoral Fellowship. Address: Microsoft Research, One Microsoft

Way, Redmond WA 98052, U.S.A. Email: optas@microsoft.com

1

In a seminal paper, extending the ground-breaking result of Haken [21] on the worst-case com-
plexity of resolution, Chvátal and Szemerédi [5] used Fk(n, rn) to provide examples of formulas
that are hard to prove unsatisfiable for any resolution-type strategy (such as the DP algorithm).
In particular, they showed that for all k ≥ 3, if r2−k > 0.7 then there exists ε = ε(k, r) > 0 such that
with probability 1− o(1), Fk(n, rn) is unsatisfiable but every resolution proof of its unsatisfiability
must generate at least (1 + ε)n clauses.

In [35], Selman, Mitchell and Levesque gave extensive experimental evidence suggesting that for
k ≥ 3 there is a range of the clauses-to-variables ratio, r, within which it seems hard even to decide
if a randomly chosen k-SAT instance is satisfiable or not (as opposed to finding all satisfying truth
assignments or giving a proof of unsatisfiability). For example, for k = 3 their experiments draw
the following remarkable picture. For r < 4, a satisfying truth assignment can be easily found for
almost all formulas; for r > 4.5, almost all formulas are unsatisfiable; for r ≈ 4.2, a satisfying truth
assignment can be found for roughly half the formulas and around this point the computational
effort to find a satisfying truth assignment, whenever one exists, is maximized. Let

Sk(n, r) = Pr[Fk(n, rn) is satisfiable] .

In [6], the following possibility was put forward and has since become a folklore conjecture.

Satisfiability Threshold Conjecture For each k ≥ 2, there exists a constant rk such that for
any ε > 0,

lim
n→∞

Sk(n, rk − ε) = 1, and lim
n→∞

Sk(n, rk + ε) = 0 .

This conjecture, which motivates our work, has attracted a lot of attention in computer science,
mathematics and, more recently, in mathematical physics [29, 30, 32, 31]. We introduce a new
algorithmic approach to this problem and use it to prove

Theorem 1 For all r ≤ 3.145, F3(n, rn) is satisfiable with probability 1− o(1).

For the connections of random formulas to proof-complexity and computational-hardness we refer
the interested reader to the excellent surveys by Beame and Pitassi [1] and Cook and Mitchell [8],
respectively. The rest of the paper is organized as follows. In Section 2 we summarize most known
results regarding the conjecture. In Section 3 we give a more detailed account of our contribution
and its relationship to past work. In Section 4 we give the preliminaries for the analysis and present
the main tools that we use. Finally, in Section 5 we prove our main result.

2 Known results for random k-SAT

We will say that a sequence of events En occurs with high probability (w.h.p.) if limn→∞ Pr[En] = 1.
If lim infn→∞ Pr[En] > 0 we will say that En holds with positive probability . Finally, throughout the
paper we will omit floors and ceilings when this does not cause confusion.

2.1 Random 2-SAT

For k = 2, Chvátal and Reed [6], Goerdt [19] and Fernandez de la Vega [14] independently proved
the conjecture, in fact determining r2 = 1. It is important to note that 2-SAT being solvable in
polynomial time [7] means that we have a simple characterization of unsatisfiable 2-SAT formulas.
Indeed, both [6] and [19] make full use of this characterization as they proceed by focusing on the

2

emergence of the “most likely” unsatisfiable subformulas in F2(n, rn). Also using this characteri-
zation, Bollobás et al. [2] recently completely determined the “scaling window” for random 2-SAT,
showing that the transition from satisfiability to unsatisfiability occurs for m = n+λn2/3 as λ goes
from −∞ to +∞. A useful lemma that follows immediately from their results is the following (with
a bit of work Lemma 1 also follows from [19]).

Lemma 1 Let F be a random formula formed by taking the conjunction of F2(n, rn) and F1(n, q)
(over the same n variables). If q = polylog(n), then for any constant r < 1, F is satisfiable w.h.p.

2.2 Random 3-SAT

For k ≥ 3, much less progress has been made. Neither the value, nor even the existence of rk has
been established. A big step towards the latter was made by Friedgut [17].

Theorem 2 ([17]) For every k ≥ 2, there exists a sequence rk(n) such that for any ε > 0,

lim
n→∞

Sk(n, rk(n)− ε) = 1, and lim
n→∞

Sk(n, rk(n) + ε) = 0 .

The following immediate corollary of Theorem 2 is very useful, as it allows one to establish rk ≥ r∗
only by showing that Fk(n, r∗n) is satisfiable with positive probability.

Corollary 1 If for a given r, lim infn→∞ Sk(n, r) > 0 then for any ε > 0, limn→∞ Sk(n, r− ε) = 1.

The first upper bound for r3 was given by Franco and Paull [16] who observed that the expected
number of satisfying truth assignments of F3(n, rn), (2(7/8)r)n, is o(1) when r > r∗ = 5.191... Since
then, and especially in recent years, there has steady progress in terms of improving this bound.
In [3], Broder, Frieze and Upfal were the first to point out that this bound is not tight and showed
r3 < r∗ − 10−7. Indeed, shortly afterwards, El-Maftouhi and Fernandez de la Vega [13] proved
r3 < 5.08 and, independently, Kamath et al. [23] proved r3 < 4.758. Later, Kirousis et al. [25]
improved the bound even further to r3 < 4.601, by using a much more direct and simple approach
than [13, 23]. Independently, Dubois and Boufkhad [11], using a method similar to [25], obtained
r3 < 4.64. By improving upon an estimate in [25], Janson, Stamatiou and Vamvakari [22] showed
r3 < 4.596. Very recently, Dubois, Boufkhad and Mandler [12] proved r3 < 4.506.

Unlike upper bounds, that come from probabilistic counting arguments, all lower bounds for r3

are algorithmic. Also unlike upper bounds, there has been no progress in terms of bounding r3 from
below since 1994. The first analysis of an algorithm on F3(n, rn) was given by Chao and Franco [4]
who showed that the Unit Clause (uc) algorithm has positive probability of finding a satisfying
truth assignment for r < 8/3 = 2.66.. and, when combined with a “majority” rule, for r < 2.9.
Since, though, these algorithms succeed only with positive probability this did not imply r3 ≥ 2.9.

The first lower bound for r3 comes from a result of Franco [15], who considered the pure literal
heuristic on F3(n, rn). This heuristic satisfies a literal iff its complement does not appear in the
formula, thus only making “safe” steps. Franco showed that for r < 1, w.h.p. the pure literal
heuristic eventually sets all the variables, implying r3 ≥ 1 (although the notion of rk did not exist
at the time). After r2 = 1 was established, making r3 ≥ 1 trivial, the next lower bound, r3 ≥ 1.63,
was given by Broder, Frieze and Upfal [3] who proved that the pure literal heuristic w.h.p. sets all
the variables for r ≤ 1.63 (they, also, proved that it fails for r > 1.7). The last lower bound for
r3 was given by Frieze and Suen [18]. They considered two generalizations of uc, called sc and
guc respectively, and determined their exact probability of success on F3(n, rn). In particular,
they showed that for r < 3.003.., both heuristics succeed with positive probability. Moreover,
they proved that a modified version of guc, which performs a very limited form of backtracking,
succeeds w.h.p. for such r, thus yielding the best known lower bound for r3 prior to this work.

3

3 A new approach

In this paper we improve the lower bound for random 3-SAT to r3 > 3.145. For this, we introduce
a new satisfiability heuristic and a framework to analyze its performance. The main novelty of our
heuristic is that, unlike all algorithms analyzed thus far, it often sets two variables “at a time”.
In particular, with the exception of the pure literal heuristic, all the algorithms discussed in the
previous section proceed in rounds of the following type: at the beginning of each round precisely
one literal ` is set to 1; the clauses containing ` are removed; each i-clause c containing ¯̀ “shrinks”
and becomes an (i − 1)-clause; literals corresponding to unit-clauses always have highest priority
(unit-clause propagation); failure occurs iff a 0-clause is ever generated. Schematically, we can
describe all these algorithms as follows:

While there exist unset variables
If there exist unit-clauses

then pick a unit-clause ` uniformly at random and satisfy it
else select a literal ` and satisfy it

Let us write u.a.r. for uniformly at random. The different algorithms implement select as follows:

• uc: Pick ` u.a.r. among all literals corresponding to unset variables.

• uc with majority: Pick an unset variable v u.a.r. Pick the literal ` ∈ {v, v̄} which appears in
the fewest remaining 3-clauses (break ties u.a.r.).

• sc: If no 2-clauses remain, pick ` u.a.r. among all literals corresponding to unset variables.
Else, pick a remaining 2-clause c = (`1 ∨ `2) u.a.r. and pick ` ∈ {`1, `2} u.a.r.

• guc: Among all remaining clauses of shortest length, pick u.a.r. a clause c = (`1 ∨ · · · ∨ `j).
Pick ` ∈ {`1, . . . , `j} u.a.r.

In this schema our heuristic, called tt for “Two at a Time”, becomes

While there exist unset variables
If there exist unit-clauses

then pick a unit-clause ` u.a.r. and satisfy it
else If there exists a 2-clause c = (`1 ∨ `2)

then gently-satisfy(`1, `2)
else pick u.a.r. an unset variable and assign it 0/1 u.a.r.

gently-satisfy(`1, `2): Let v1 6= v2 be the two variables underlying `1, `2. Among all three
assignments to v1, v2 satisfying c = (`1 ∨ `2), pick the one which causes the fewest number of
3-clauses to become 2-clauses.

The framework that we develop for the analysis of our heuristic allows us to recover the new
bound and the bounds corresponding to uc, uc with majority, and sc, guc in a uniform and
rather simple manner (note that by Corollary 1, the results in [4] for uc and uc with majority
immediately give lower bounds for r3, weaker though than the bound from [18]). This uniformity
and simplicity is the result of employing a number of powerful tools developed by others. For
example, Corollary 1 lets us boost our positive probability of finding a satisfying truth assignment
to a high (1− o(1)) probability of satisfiability. This allows us to avoid the backtracking necessary

4

in [18]. Also, Lemma 1 allows us to run the algorithms not until all variables are set but until the
remaining clauses form an “easy-to-satisfy” formula. This way we avoid dealing with the, rather
messy, last phases of the algorithms’ execution. The central tool of our analysis is a powerful
theorem of Wormald [36] which will let us approximate the number of remaining 2- and 3-clauses
at the end of each round. The applicability of this theorem, in turn, is based on a lazy-server
lemma that we prove which is of independent interest.

In this extended abstract we only show how to recover our main result r3 > 3.145. The
derivation of the other bounds follows along similar, if simpler, lines.

4 Preliminaries

There are several natural ways to implement tt into a specific procedure to be analyzed. Unfor-
tunately, most of them lead to some subtle but nasty technical complications (which we will not
discuss here). The most easily analyzed implementation is described below. At first glance, it may
appear to differ significantly from tt, but in fact the differences are superficial and are only aimed
at simplifying the analysis.

The algorithm runs for rounds t = 0, 1, . . . and precisely two variables are assigned a permanent
value in each round. After t rounds, Ci(t) denotes the set of remaining i-clauses, V(t) the set of
unset variables, and L(t) the set of literals corresponding to unset variables. Denote Ci(t) = |Ci(t)|.
Note that |L(t)| = 2|V(t)| = 2(n − 2t). For a literal `, let v(`) denote its underlying variable. For
technical reasons, it will be useful to occasionally perform just-satisfy instead of gently-satisfy.

just-satisfy(`1, `2): Pick u.a.r one of the three value assignments satisfying (`1∨ `2) and assign
it to v(`1), v(`2).

The random variables W (0),W (1), . . . and E(0), E(1), . . . appearing in the description of mtt

are Bernoulli random variables with densities w(t) and e(t), respectively. For now it will suffice
to say that w(t) = φ(t/n, C2(t)/n,C3(t)/n) and e(t) = ψ(t/n, C2(t)/n,C3(t)/n) for some functions
φ, ψ to be specified in the course of the analysis. Note that mtt keeps running even after a contra-
diction (0-clause) has been generated and that if for some tb, C0(tb) 6= ∅ then C0(t) 6= ∅ for all t ≥ tb.

mtt

Determine W (t) and E(t);
if (W (t) = 0 ∧ C2(t) 6= ∅)

then {
pick (`1 ∨ `2) ∈ C2(t) u.a.r.;
if E(t) = 0

then gently-satisfy(`1, `2)
else just-satisfy (`1, `2)

}
else repeat twice {

if there exist unit-clauses
then pick a unit-clause ` u.a.r. and satisfy it
else pick u.a.r. an unset variable and assign it 0/1 u.a.r.

}

Two key points to keep in mind are: i) we will pick e(t) so small that we almost never perform
just-satisfy, and ii) we will pick w(t) to “match” the rate at which 1-clauses are generated.

5

For a set of Boolean variables V and an integer k let Vk denote the set of all 2k
(|V |
k

)
k-clauses

on the variables of V (whose literals are non-complementary and distinct). For integers k,m let
Dk(V,m) denote the random set of k-clauses formed by selecting uniformly, independently and
with replacement m members of Vk. A key property that mtt shares with tt and the other four
algorithms discussed in Section 3 is that it maintains uniform randomness.

Claim 1 (Uniform randomness) Assume that for some set V and every i, Ci(0) D= Di(V,mi) .
Then, for every i and every t ≥ 0, conditional on V(t) = X and Ci(t) = q,

Ci(t)
D= Di(X, q) .

A formal proof of Claim 1, using the method of deferred decisions, is standard but tedious and
we omit it in this extended abstract. The intuition behind the claim can be easily attained by
imagining the following setting. Consider representing the input formula by using a row of i cards
for each i-clause, each card bearing the name of one literal. Assume that originally all the cards
are “face-down”, i.e. the literal on each card is concealed and we never had an opportunity to see
it. At the same time, assume that an intermediary knows precisely which literal is on each card.
To interact with the intermediary we are allowed to either point at a card, or say the name of
a variable. In response, if the card we point at carries literal `, the intermediary reveals (flips)
all the cards carrying `, ¯̀. Similarly, if we announce variable v, the intermediary reveals all the
cards carrying v, v̄. Now, the claim follows from observing that to run mtt or any of the other
algorithms, it suffices for us to keep track of V(t) and to flip coins. Whenever we set a variable,
we remove all the cards corresponding to dissatisfied literals and all the cards (some of them still
concealed) corresponding to satisfied clauses. Thus, at the end of each round only “face-down”
cards remain, containing only literals from L(t).

As we mentioned earlier, our main tool for the analysis of mtt will be the main theorem of [36],
stated as Theorem 3 in Appendix A for completeness. While the statement of the theorem is rather
technical, the spirit of the theorem is that if a random process evolves “smoothly” in time, then
w.h.p. it will remain very close to its “mean path” throughout its evolution. In particular, this
mean path can be expressed as the solution of a system of differential equations associated with the
process and thus it can either be recovered analytically, or bounded numerically. The idea of using
differential equations to approximate discrete random processes goes back at least to Kurtz [26, 27].
It was first applied in the analysis of algorithms by Karp and Sipser [24].

The key idea which allows us to use Wormald’s theorem, is that one can afford to take care of
the 1-clauses in a “relaxed” way. That is, at the beginning of each round the algorithm flips a coin
to decide if it will attempt to take care of 1-clauses or not in this round. This makes the expected
change of C2, C3 in round t, independent of whether C1(t) = ∅ or not. Our “lazy-server” lemma then
asserts that: if the rate at which the coin flips suggest taking care of 1-clauses is greater than the
rate at which 1-clauses are generated, C1 remains appropriately small throughout the algorithm’s
execution. As we will see, the rate at which 1-clauses are generated is 2C2(t)/(n − 2t) + o(1). As
a result, taking w(t) slightly greater than this rate will keep the algorithm safe without sacrificing
its efficiency (we will define w(t) precisely later). The proof of Lemma 2 appears in Appendix B.

Lemma 2 (Lazy-server) Let F (0), F (1), . . . be a sequence of random variables and denote f(t) =
E(F (t)). Let W (0),W (1), . . . be a sequence of independent Bernoulli random variables with den-
sity w(t), i.e. W (t) = 1 with probability w(t), and 0 otherwise. For a given integer s > 0,
let Q(0), Q(1), . . . be the sequence of random variables defined by Q(0) = 0 and Q(t + 1) =
max (Q(t)− s ·W (t), 0) + F (t).

6

Assume that there exist constants a, b, c > 0 such that for any fixed j ≥ i ≥ 0 and any δ > 0,

Pr

[
j∑
t=i

F (t) > (1 + δ)
j∑
t=i

f(t)

]
< exp

(
−aδb

(
j∑
t=i

f(t)

)c)
.

Then, if for some ε, λ > 0 and all t ≥ 0, we have

s(1− ε)w(t) > f(t) > λ , (1)

there exists constants C and k depending on a, b, c, s, ε, λ such that for every m ≥ 1,

Pr

[
m−1∑
t=0

Q(t) > Cm

]
= O(m−2) and Pr

[
max

0≤t<m
Q(t) > logkm

]
= O(m−2) . (2)

5 The proof

Let ε = 10−6, ζ = 10−1 and te = b0.4nc. Let r∗ = 3.1456. To prove r3 > 3.145 we will prove

Lemma 3 Let F be a random formula resulting by taking the conjunction of F3(n, r∗n) and
F2(n, εn). There exists a choice of φ, ψ and constants k,M such that if we run mtt on F for
te rounds, then each of the following holds w.h.p.

C1(te) < logk n , (3)
te∑
t=0

C1(t) < Mn , (4)

C2(te) + C3(te) < (1− ζ)(n− 2te) . (5)

Before proving Lemma 3 let us see how it implies Theorem 1.
Proof of Theorem 1. We will prove that F is satisfiable with positive probability which, clearly,
implies that F3(n, r∗n) is satisfiable with positive probability. By Corollary 1, this suffices.

Let Fe be the random formula derived by: i) running mtt on F for te rounds, ii) removing any
0-clauses that might have been generated, and iii) randomly removing precisely one literal from
any remaining 3-clause. By uniform randomness, Fe is a conjunction of F2(n−2te, C2(te) +C3(te))
and F1(n−2te, C1(te)), where n−2te = Ω(n). Thus, combining Lemmata 1 and (3), (5) yields that
Fe is satisfiable w.h.p. Therefore, to prove that F is satisfiable with positive probability it suffices
to prove that C0(te) = ∅ with positive probability. (Here, and elsewhere we use the fact that if an
event A holds w.h.p. then for any event B, Pr[A ∩B] ≥ Pr[B]− o(1).)

To bound Pr[C0(te) = ∅] from below we first observe that the probability of a 0-clause being
generated in a given round t is completely determined by C2(t), C1(t) since each clause shrinks by
at most one literal for each variable set. In particular, let x, y be the two variables set in round
t. Then, for a 0-clause to be generated in that round either there must be a 2-clause in C2(t)
containing both x and y or at least one of x, y must be the underlying variable for a literal in C1(t).
Therefore, by uniform randomness, if C2(t) = q and C1(t) = s the probability that a 0-clause is
not generated in round t is at least(

1− 1
4
(
n−2t

2

))q (1− 1
(n− 2t)

)s
>

(
1− 6

n

)s+20

,

7

where for the last inequality we use the fact n− 2t ≥ 0.2n. As a result, conditional on

te∑
t=0

C1(t) < Mn , (6)

the probability of C0(te) = ∅ is at least(
1− 6

n

)(M+20)n

≥ e−6(M+20) + o(1) > ρ(M) > 0 .

Since, by Lemma 3, (6) holds w.h.p., the lemma follows. 2

To prove Lemma 3 we will trace the evolution of the random variables Ci(t), i = 2, 3, for
0 ≤ t ≤ te. In particular, the lemma will follow from Lemma 4 below (this last proof appears in
Appendix B). Let δ = 10−7, and recall the definition of ζ, te and F from Lemma 3. Also, recall
that φ, ψ are the functions determining the density of W (t), E(t) respectively.

Lemma 4 There exists a choice of φ, ψ such that if we run mtt on F for te rounds, then each of
the following holds w.h.p.

C2(t)
n− 2t

< 2(1− δ)w(t) , for all 0 ≤ t ≤ te, (7)

C2(te) + C3(te) < (1− ζ)(n− 2te) . (8)

Proof of Lemma 4. We will apply Theorem 3 for random variables C2, C3 taking m = n and
noting that clearly Ci(t) ≤ r∗n for all t. With foresight, let us take the domain D to be

D = {(y1, y2, y3) : 0 ≤ y1 ≤ 0.41, y2 ≥ ε/2, y3 ≥ ε/2} .

We will first determine the differential equation for C3 and then for C2.

• A clause leaves C3(t) during round t iff it contains at least one of the variables set in round t.
Thus, by uniform randomness, we see that conditional on H(t), C3(t + 1) = C3(t) − X, where
X

D= Bin(C3(t), p3(t)) and

p3(t) ≡
2× 8

(
n−2t−2

2

)
+ 8
(
n−2t−2

1

)
8
(
n−2t

3

) =
6

n− 2t
+ o(1/n) .

Thus, E(C3(t + 1) − C3(t) | H(t)) = −6C3(t)/(n − 2t) + o(1/n). Applying the Chernoff bound to
X implies that condition (ii) of Theorem 3 is satisfied immediately for C3. Also, if f3(y1, y2, y3) =
−6y3/(1− 2y1), then E(C3(t+ 1)−C3(t) | H(t)) = f3(t/n, C2(t)/n,C3(t)/n) + o(1). It is clear that
f3 is continuous and satisfies a Lipschitz condition on D (i.e. since y1 = t/n ≤ 0.41). Thus, the
differential equation and initial condition corresponding to C3 is

dz3

ds
= − 6z3

1− 2s
, z3(0) = r∗ . (9)

Solving (9), we get z3(s) = r∗(1− 2s)3.

• The expected change of C2 in round t clearly depends on the values of W (t), E(t).

8

(∗) If W (t) = 1 then, analogously to C3, each clause leaves C2(t) during round t iff it contains
at least one of the variables set in that round. Moreover, by uniform randomness, each clause in
C3(t) containing precisely one of the two variables set in round t, is in C2(t + 1) with probability
1/2. Therefore, letting

p2(t) ≡
2× 4

(
n−2t−2

1

)
+ 4
(
n−2t−2

0

)
4
(
n−2t

2

) =
4

n− 2t
+ o(1/n) , and

p32(t) ≡
8
(
n−2t−2

2

)
8
(
n−2t

3

) =
3

n− 2t
+ o(1/n) ,

we see that conditional on H(t) and W (t) = 1, we have C2(t + 1) = C2(t) − X + Y , where
X

D= Bin(C2(t), p2(t)) and Y
D= Bin(C3(t), p32(t)).

(∗) If W (t) = 0 then we first note that (t/n, C2(t)/n,C3(t)/n) ∈ D implies C2(t)/n > ε/3 > 0
and therefore that there exists c = (`1 ∨ `2) ∈ C2(t) to pick and either gently-satisfy or just-satisfy∗.
Moreover, every other clause in C2(t) leaves C2(t) during round t iff it contains at least one of
v(`1), v(`2). Therefore, we see that if W (t) = 0, the number of 2-clauses leaving C2(t) during round
t is T + 1, where T D= Bin(C2(t) − 1, p2(t)). Before we proceed to analyze the distribution of the
number of 3-clauses leaving C3(t) and entering C2(t + 1) when W (t) = 0, let us observe that this
number is bounded by the number, Z, of 3-clauses in C3(t) containing precisely one of v(`1), v(`2).
Since Z D= Bin(C3(t), 2p32(t)), by applying the Chernoff bound for each of X,Y, T, Z, we see that
condition (ii) of Theorem 3 is satisfied for C2.

Let U denote the random variable equal to the number of 3-clauses leaving C3(t) to enter C2(t+1)
during round t. If W (t) = 0 and E(t) = 1 then U behaves identically to the case W (t) = 1. To see
this, note that in order to just-satisfy(`1 ∨ `2) the algorithm does not consider any clauses in C3(t)
and, therefore, the claim follows by the uniform randomness of c.

To determine the distribution of U when W (t) = E(t) = 0 let E(t, `1, `2) be the set of all clauses
in C3(t) containing exactly one of `1, ¯̀

1, `2, ¯̀
2. Moreover, let X1, X2, X3, X4 be the random variables

corresponding to the number of clauses in E(t, `1, `2) containing `1, ¯̀
1, `2, ¯̀

2, respectively. Finally,
let us define the function sb : R4 → R, by

sb(w1, w2, w3, w4) = min(min(w1, w2) + max(w3, w4),max(w1, w2) + min(w3, w4)) .

As is easy to see, sb(X1, X2, X3, X4) is the number of 3-clauses that will leave C3(t) to enter C2(t+1)
if we need to assign the “second best” value assignment to v(`1), v(`2) in executing gently-satisfy.
Note now that the probability of this last event is precisely 1/4 independently of everything else.
This is because the “best possible” value assignment for v(`1), v(`2) is a function only of clauses
in C3(t) and therefore, by uniform randomness, that assignment fails to satisfy c with probability
precisely 1/4. Hence, conditional on H(t) and W (t) = E(t) = 0, the expected value of U is

3
4
×E(min(X1, X2) + min(X3, X4)) +

1
4
×E(sb(X1, X2, X3, X4)) . (10)

To determine the expectations in (10) we first note that while the random variablesXi are identically
distributed, they are not independent; e.g. if X1 = C3(t) then X2 = 0. Since, though, each variable
∗This is precisely the reason for which we add εn 2-clauses to the input formula: while, from t = 0 and for a

long time the rate at which 2-clauses are generated is substantially greater than the rate at which they disappear, if
C2(0) = 0 then it is possible that in the first polylog(n) rounds, C2(t) = ∅ occurs a number of times; the extra Ω(n)
2-clauses provide a “cushion” guaranteeing that w.h.p. this does not happen.

9

appears on average in a constant number of clauses it is intuitively clear that as long as both t and
C3(t) are Ω(n), the dependence between the Xi is minuscule. In particular, let p∗ = 3

2(n−2t) denote
the probability that a clause in C3(t) contains a given literal. Now, let X ′1, . . . , X

′
4 be i.i.d. random

variables with X ′i
D= Bin(C3(t), p∗). It is not hard to prove that for (t/n, C2(t)/n,C3(t)/n) ∈ D,

the quantity in (10), i.e. the expected value of U conditional on H(t) and W (t) = E(t) = 0, is

3
4
× 2 E(min(X ′1, X

′
2)) +

1
4
×E(sb(X ′1, X

′
2, X

′
3, X

′
4)) + o(1) . (11)

To handle the expectations in (11) we use the following lemma; its proof appears in Appendix C.

Lemma 5 Let S1, . . . , S4 be i.i.d. random variables with Si
D= Bin(N, p), where Np = λ(1 + o(1))

for some constant λ > 0 (asymptotically in N). Let Y = min(S1, S2), and Z = sb(S1, S2, S3, S4).

(a) There exist functions g, h : R→ R such that E(Y) = g(λ) + o(1) and E(Z) = h(λ) + o(1).
(b) Let functions γ, χ be as defined in Appendix C. Then γ, χ are continuous, satisfy a Lipschitz
condition in [0,∞), and for all λ > 0,

g(λ) < γ(λ) ≤ λ and h(λ) < χ(λ) ≤ 2λ .

Recall now that E(X ′i) = 3C3(t)/(2(n − 2t)). Therefore, using part (a) of Lemma 5 we get
E(U | H(t) ∩W (t) = 0 ∩ E(t) = 0) = fU (t/n, C2(t)/n,C3(t)/n) + o(1), where

fU (y1, y2, y3) =
3
2
g

(
3y3

2(1− 2y1)

)
+

1
4
h

(
3y3

2(1− 2y1)

)
and g, h are as in Lemma 5.

Therefore, combining our estimates for the different cases we get E(C2(t+ 1)−C2(t) | H(t)) =
α(t/n, C2(t)/n,C3(t)/n) + o(1), where [writing φ(y1, y2, y3) as φ and ψ(y1, y2, y3) as ψ, for clarity]

α(y1, y2, y3) = (1− φ)
(
ψ

3y3

1− 2y1
+ (1− ψ)fU (y1, y2, y3)− 1

)
+ φ

3y3

1− 2y1
− 4y2

1− 2y1
.

Now, for γ, χ as in Lemma 5, we define the function ψ to be

ψ(y1, y2, y3) =
3
2γ
(

3y3

2(1−2y1)

)
+ 1

4χ
(

3y3

2(1−2y1)

)
− fU (y1, y2, y3)

3y3

2(1−2y1) − fU (y1, y2, y3)
(12)

so that [again writing φ(y1, y2, y3) as φ for clarity] the function α becomes

α(y1, y2, y3) = (1− φ)
(

3
2
γ

(
3y3

2(1− 2y1)

)
+

1
4
χ

(
3y3

2(1− 2y1)

)
− 1
)

+ φ
3y3

1− 2y1
− 4y2

1− 2y1
.

It is important to note that our choice of ψ is valid since, by Lemma 5, both enumerator and
denominator in (12) are strictly positive, and the former is no greater than the latter.

It is not hard to see that the rate at which 1-clauses are generated is 2C2(t)/(n− 2t) + o(1) for
all t (we show this in the proof of Lemma 3). Thus, as one might guess, the best choice for φ is to
define it so that for some arbitrarily small θ > 0, (and as long as C2(t)/(n− 2t) < 1)

2 · φ(t/n, C2(t)/n,C3(t)/n) = (1 + θ)
2C2(t)
n− 2t

.

10

Therefore, for some (small) θ to be specified, we define

φ(y1, y2, y3) = min
(

(1 + θ)y2

1− 2y1
, 1
)

.

With this choice of φ and using z3(s) = r∗(1− 2s)3, the differential equation and initial condition
corresponding to C2 is

dz2

ds
= I0 + I1 − I3 , z2(0) = ε , (13)

where,

I0 ≡
(

1−min
(

(1 + θ)z2

1− 2s
, 1
))(

3
2
γ

(
3r∗(1− 2s)2

2

)
+

1
4
χ

(
3r∗(1− 2s)2

2

)
− 1
)

,

I1 ≡ min
(

(1 + θ)z2

1− 2s
, 1
)

3r∗(1− 2s)2 ,

O ≡ 4z2

1− 2s
.

It is straightforward to verify that the expression I0 + I1−O is continuous and satisfies a Lipschitz
condition for s ∈ [0, 1) and z2 ∈ [0,∞) (therefore satisfying the condition of Theorem 3 on D).

Taking θ = 10−5, we solved the above differential equation numerically, using two different
methods. The first one, easy to use but without guaranteed results, was by employing the numerical
option in the dsolve function in Maple [34]. The second method was by using the interval arithmetic
differential equation solver in [33]. The latter, partitions the domain of s in intervals and returns
guaranteed , i.e. provable, upper and lower bounds for the value of z2 in each interval. (Maple
remained inside those bounds out to six decimal digits.)

The lower bounds calculated using interval arithmetic give that indeed for all s ∈ [0, 0.41],
z2(s) > 0.9ε and thus that z2 does not leave the domain for s ≤ 0.41. (For z3 this follows
immediately from the fact that z3 is decreasing and z3(0.41) = 0.018.. > ε.) The upper bounds
calculated for z2 yield that indeed for all s ∈ [0, 0.41], z2(s)/(1−2s) < (1− δ)/(1 + θ) and therefore
that indeed there exists a choice of φ, ψ such that w.h.p.

C2(t)
n− 2t

< 2(1− δ)w(t) , for all 0 ≤ t ≤ te .

Finally, the upper bound z2(0.4) < 0.13 along with z3(0.4) = 0.025.. imply that w.h.p.

C2(te) + C3(te) < (1− ζ)(n− 2te) .

2

Acknowledgements

I want to thank Luc Devroye, Jeong Han Kim, Lefteris Kirousis, Heikki Mannila, Michael Molloy,
Ned Nedialkov and Boris Pittel for their help and encouragement.

11

A Appendix

In the statement of Theorem 3, below, asymptotics denoted by o and O, are for n→∞ but uniform
over all other variables. In particular, “uniformly” refers to the convergence implicit in the o()
terms. For a random variable X, we say X = o(f(n)) always if max{x | Pr[X = x] 6= 0} = o(f(n)).
We say that a function f satisfies a Lipschitz condition on D ⊆ Rj if there exists a constant L > 0
such that |f(u1, . . . , uj)−f(v1, . . . , vj)| ≤ L

∑j
i=1 |ui−vi|, for all (u1, . . . , uj) and (v1, . . . , vj) in D.

Theorem 3 ([36]) Let Yi(t) be a sequence of real-valued random variables, 1 ≤ i ≤ k for some
fixed k, such that for all i, all t and all n, |Yi(t)| ≤ Cn for some constant C. Let H(t) be the history
of the sequence, i.e. the matrix 〈~Y (0), . . . , ~Y (t)〉, where ~Y (t) = (Y1(t), . . . , Yk(t)).

Let I = {(y1, . . . , yk) : Pr[~Y (0) = (y1n, . . . , ykn)] 6= 0 for some n}. Let D be some bounded
connected open set containing the intersection of {(s, y1, . . . , yk) : s ≥ 0} with a neighborhood of
{(0, y1, . . . , yk) : (y1, . . . , yk) ∈ I}.†

Let fi : Rk+1 → R, 1 ≤ i ≤ k, and suppose that for some m = m(n),

(i) for all i and uniformly over all t < m,

E (Yi(t+ 1)− Yi(t)|H(t)) = fi(t/n, Y0(t)/n, . . . , Yk(t)/n) + o(1) , always;

(ii) for all i and uniformly over all t < m,

Pr
[
|Yi(t+ 1)− Yi(t)| > n1/5

∣∣∣H(t)
]

= o(n−3) , always;

(iii) for each i, the function fi is continuous and satisfies a Lipschitz condition on D.

Then
(a) for (0, ẑ(0), . . . , ẑ(k)) ∈ D the system of differential equations

dzi
ds

= fi(s, z0, . . . , zk), 1 ≤ i ≤ k

has a unique solution in D for zi : R → R passing through zi(0) = ẑ(i), 1 ≤ i ≤ k, and which
extends to points arbitrarily close to the boundary of D;

(b) almost surely
Yi(t) = zi(t/n) · n+ o(n) ,

uniformly for 0 ≤ t ≤ min{σn,m} and for each i, where zi(s) is the solution in (a) with ẑ(i) =
Yi(0)/n, and σ = σ(n) is the supremum of those s to which the solution can be extended.

Note: The theorem remains valid if the reference to “always” in (i),(ii) is replaced by the restriction
to the event (t/n, Y0(t)/n, . . . , Yk(t)/n) ∈ D.

†That is, after taking a ball around the set I, we require D to contain the part of the ball in the halfspace
corresponding to s = t/n ≥ 0.

12

B Appendix

Proof of Lemma 2. Let us say that Q returns at step t, if Q(t) < s and Q(t− 1) ≥ s; let us say
that Q departs at step t, if Q(t) ≥ s and Q(t− 1) < s. For j ≥ 0, let Bj = trj − tdj , where trj , t

d
j > 0

are the steps corresponding to the jth return and the jth departure, respectively. For t ≥ 0, let
hr(t) = min{j : trj ≥ t}, i.e. the index of the first return occurring no earlier than t.

We first observe that for any values (realizations) b0, b1, . . . of the random variables Bj ,

m−1∑
t=0

Q(t) ≤
hr(m−1)∑
j=0

1
2
bj(s(bj + 1)− 2) ≤ s ·

hr(m−1)∑
j=0

b2j ,

since Q decreases by at most s in each step and, therefore, cannot exceed s(bj + 1)− 2 between tdj
and trj (the “worst case” occurs when Q “shoots up” from below s and then continually drops).

For each i = 0, . . . , s − 1 and t = 0, 1, . . . , let us define two sequences of random variables
W i
t (z), F

i
t (z), z ≥ 0, by W i

t (z)
D= W (t + z) and F it (z)

D= F (t + z). Now, for each i = 0, . . . , s − 1
and t = 0, 1, . . . , we define the sequence of ransom variables Di

t(z), as follows: Di
t(0) = i and

Di
t(z + 1) = max

(
Di
t(z)− s ·W i

t (z), 0
)

+ F it (z). Finally, let bit = min{z > t : Di
t(z) < s}. If we

now consider for each sequence Di
t its subsequence from z = 0 to z = bit we see that Q is realized

by some concatenation of these subsequences. Therefore,

m−1∑
t=0

Q(t) ≤ s ·
s−1∑
i=0

m−1∑
t=0

(bit)
2 ≡ s · Z .

To get a handle on the distribution of Z we will bound Pr[bit ≥ x] for each i, t and integer x ≥ 0.
For this, we first observe that if for some l > 0,

l∑
z=0

F it (z) < s ·
l∑

z=0

W i
t (z) (14)

then there exists 0 < z ≤ l such that Di
t(z) < s. So, for a fixed l, the probability that (14) does

not hold is bounded by

Pr

[
l∑

z=0

F it (z) > (1 + ε/3)
l∑

z=0

f(t+ z)

]
+ Pr

[
l∑

z=0

W i
t (z) < (1− ε/3)

l∑
z=0

w(t+ z)

]
, (15)

for if neither of the events in (15) occurs (1) implies that (14) holds.
Now, using the fact that both w(t), f(t) are bounded away from 0 for all t, along with the

given tail bound for
∑
F (t), and the Chernoff bound for

∑
W (t), we get that there exist η, ζ > 0

depending on a, b, c, s, ε, λ such that for all i, t

Pr[bit ≥ x] < exp(−ηxζ) . (16)

Thus, Z is the sum of sm independent random variables R0, . . . , Rsm−1 (where Rst+i = (bit)
2) such

that for every integer x ≥ 0, Pr[Rj ≥ x2] ≤ exp(−ηxζ). Hence, E[Rj] is bounded by a constant as

E[Rj] =
∞∑
y=0

Pr[Rj > y] ≤
∞∑
y=0

exp(−η(b√yc)ζ) < K(η, s, ζ) ≡ K .

13

Let dk = 3/ζe. To conclude the proof we let

R′j =
{
Rj , if Rj ≤ logkm
0 , if Rj > logkm

and

Z ′ =
sm−1∑
j=0

R′j .

We first observe that Pr[Z 6= Z ′] ≤ smPr[Rj 6= R′j] = O(m−2) (we take O(m−2) as it is sufficient
for our purposes). This immediately proves our claim regarding the probability of Q exceeding
logkm. Moreover, E[Z ′] ≤ E[Z] ≤ Km. Thus, for L = L(a, b, c, s, ε, λ) = 2K we get

Pr[Z > Lm] ≤ Pr[Z ′ > 2Km] + O(m−2)
≤ Pr[Z ′ −E(Z ′) > Km] + O(m−2) . (17)

To bound the probability in (17) we consider the martingale sequence formed by the random
variables T0, T1, T2, . . . , Tsm−1 where T0 = E(Z ′)/ logkm and Tj+1 is 1/ logkm times the conditional
expectation of Z ′ given the values of R′0, . . . , R

′
j . Applying Azuma’s inequality, yields

Pr[Z ′ −E(Z ′) > Km] < 2 exp

(
− K2m

2(logm)
3
ζ

)
= O(m−2) .

Thus, taking C = sL yields the desired bound on
∑m−1

t=0 Q(t). 2

Proof of Lemma 3. Since, by Lemma 4, (5) holds w.h.p. it will suffice to prove that each of (3)
and (4) hold w.h.p. Let flow1(t) be the random variable equal to the number of clauses that shrink
to length 1 during round t. Then, C1(0) = 0 and it is easy to see that for all t ≥ 0,

C1(t+ 1) ≤ max(C1(t)− 2 ·W (t), 0) + flow1(t) . (18)

Let G(t) be defined by G(0) = 0 and G(t+ 1) = max(G(t)− 2 ·W (t), 0) + flow1(t), for t ≥ 0. An
easy induction shows that G(t) ≥ C1(t) for all t. Now, let

p21(t) =
4
(
n−2t−2

1

)
4
(
n−2t

2

) =
2

n− 2t
+ o(1) and p31(t) =

2
(
n−2t−2

1

)
8
(
n−2t

3

) =
3

2(n− 2t)2
+ o(1) .

By uniform randomness it follows that flow1(t) = flow21(t) + flow31(t), where

flow21(t) D= Bin(X(t), p21(t)) ,

flow31(t) D= Bin(C3(t), p31(t)) ,

and X2(t) is either C2(t) or C2(t)− 1.
Using the above facts and Lemma 4 it is straightforward to construct, via a simple coupling, a

random variable Q(t) which i) satisfies the conditions of Lemma 2 by construction, and such that
ii) w.h.p. C1(t) ≤ Q(t) for all 0 ≤ t ≤ te. The lemma then follows by applying Lemma 2 for Q and
using the fact that if events A and B each hold w.h.p. then so does the event A ∩B. 2

14

C Appendix

Definition of function γ: γ is the piecewise linear function defined by γ(0) = 0, γ(1) = 0.476223
γ(3/2) = 0.840260, γ(2) = 1.228495, γ(5/2) = 1.631218, γ(3) = 2.043874, γ(7/2) = 2.463906,
γ(4) = 2.889703, γ(9/2) = 3.320170, γ(5) = 3.754520, γ(6) = 6; γ(λ) = λ, for λ ≥ 6.

Definition of function χ: to define χ let z(λ) = 1
100(2λ2 + 174λ − 22). Then, for λ ∈ [0, 1/2],

χ(λ) = 2λ; for λ ∈ [1/2, 1], χ(λ) = 2(z(1)− 1)λ+ 2− z(1); for λ ∈ [1, 5], χ(λ) = z(λ); for λ ∈ [5, 6],
χ(λ) = (12− z(5))λ+ 6z(5)− 60; χ(λ) = 2λ, for λ ≥ 6.
Proof of Lemma 5.
a) Let Po(λ) denote the Poisson random variable with mean λ. Let Pr[Po(λ) = i] ≡ P (λ; i).
Using the standard approximation of the Binomial random variable with the corresponding Poisson
random variable it is easy to show that

E(Y) =
∞∑
i=0

∞∑
j=0

P (λ; i)P (λ; j) min(i, j) + o(1) ≡ g(λ) + o(1) , and (19)

E(Z) =
∞∑
i=0

∞∑
j=0

∞∑
k=0

∞∑
l=0

P (λ; i)P (λ; j)P (λ; k)P (λ; l) sb(i, j, k, l) + o(1) ≡ h(λ) + o(1) . (20)

b) The fact that γ, χ are continuous and satisfy a Lipschitz condition on [0,∞) is trivial to
verify by inspection. Similarly, for the facts γ(λ) ≤ λ and χ(λ) ≤ 2λ, for all λ ≥ 0.

From the fact that the inequalities min(i, j) ≤ (i+j)/2 and sb(i, j, k, l) ≤ (i+j+k+l)/2 are strict
for certain i, j we get that for all λ > 0, g(λ) < λ and h(λ) < 2λ. This yields that for λ > 6, g(λ) <
γ(λ) and h(λ) < χ(λ). Therefore, we are left to prove g(λ) < γ(λ) and h(λ) < χ(λ), for λ ∈ (0, 6].

To show that γ strictly bounds g from above we will use the following fact (due to Diaconis, see
p. 293 in [28]): if W1, . . . ,Wk are i.i.d. Poisson random variables with mean λ and φ : Rk → R is a
convex function, then E(φ(W1, . . . ,Wk)) is a convex function of λ. Since min is convex, it follows
that g is bounded from above by any piecewise linear function defined by upper bounds for values
of g. To get such bounds, we use that for any u ≥ 0,

g(λ) ≤ λ−
u∑
i=0

u∑
j=0

P (λ; i)P (λ; j)
(
i+ j

2
−min(i, j)

)
≡ λ− qu(λ) . (21)

Now, qu can be bounded numerically with guaranteed accuracy using interval arithmetic. For this,
we used the function shake of Maple [34]. The values defining γ were derived by substituting the re-
turned lower bound for q40 at each respective point to (21), dividing by 1− 10−8, and rounding up.

For h matters are complicated by the fact that sb is not a convex function. Analogously to g,
though, we note that for any u ≥ 0, h is bounded by

2λ−
u∑
i=0

u∑
j=0

u∑
k=0

u∑
l=0

P (λ; i)P (λ; j)P (λ; k)P (λ; l)
(
i+ j + k + l

2
− sb(i, j, k, l)

)
≡ 2λ− hu(λ) .

By inspection, i.e. plotting, we observed that z(λ) strictly bounds 2λ−h15(λ) from above in [1/2, 6].
To prove this we used interval arithmetic to bound the range of z(λ)− 2λ+ h15(λ) from below for
λ ∈ [1/2, 6]; we got a lower bound of 8.32603× 10−7. For (0, 1/2] the fact h(λ) < χ(λ) follows from
the fact h(λ) < 2λ for all λ > 0 and the definition of χ. 2

15

References

[1] Paul Beame and Toniann Pitassi, Propositional proof complexity: past, present, and future,
Bull. Eur. Assoc. Theor. Comput. Sci. EATCS (1998), no. 65, 66–89.

[2] Béla Bollobás, Christian Borgs, Jennifer Chayes, Jeong Han Kim, and David B. Wilson, The
scaling window of the 2-SAT transition, (1999), manuscript.

[3] Andrei Z. Broder, Alan M. Frieze, and Eli Upfal, On the satisfiability and maximum satisfia-
bility of random 3-CNF formulas, 4th Annual ACM-SIAM Symposium on Discrete Algorithms
(Austin, TX, 1993), ACM, New York, 1993, pp. 322–330.

[4] Ming-Te Chao and John Franco, Probabilistic analysis of two heuristics for the 3-satisfiability
problem, SIAM J. Comput. 15 (1986), no. 4, 1106–1118.

[5] Vašek Chvátal and Endre Szemerédi, Many hard examples for resolution, J. Assoc. Comput.
Mach. 35 (1988), no. 4, 759–768.

[6] Vasěk Chvátal and Bruce Reed, Mick gets some (the odds are on his side), 33th Annual
Symposium on Foundations of Computer Science (Pittsburgh, PA, 1992), IEEE Comput. Soc.
Press, Los Alamitos, CA, 1992, pp. 620–627.

[7] Stephen A. Cook, The complexity of theorem-proving procedures, 3rd Annual ACM Symposium
on Theory of Computing (Shaker Heights, OH, 1971), ACM, New York, 1971, pp. 151–158.

[8] Stephen A. Cook and David G. Mitchell, Finding hard instances of the satisfiability problem:
a survey, Satisfiability problem: theory and applications (Piscataway, NJ, 1996), Amer. Math.
Soc., Providence, RI, 1997, pp. 1–17.

[9] Martin Davis, George Logemann, and Donald Loveland, A machine program for theorem-
proving, Comm. ACM 5 (1962), 394–397.

[10] Martin Davis and Hilary Putnam, A computing procedure for quantification theory, J. Assoc.
Comput. Mach. 7 (1960), 201–215.

[11] Olivier Dubois and Yacine Boufkhad, A general upper bound for the satisfiability threshold of
random r-SAT formulae, J. Algorithms 24 (1997), no. 2, 395–420.

[12] Olivier Dubois, Yacine Boufkhad, and Jacques Mandler, Typical random 3-SAT formulae and
the satisfiability threshold, To appear in SODA 2000.

[13] Abdelhakim El Maftouhi and Wenceslas Fernandez de la Vega, On random 3-sat, Combin.
Probab. Comput. 4 (1995), no. 3, 189–195.

[14] Wenceslas Fernandez de la Vega, On random 2-sat, (1992), manuscript.

[15] John Franco, Probabilistic analysis of the pure literal heuristic for the satisfiability problem,
Ann. Oper. Res. 1 (1984), 273–289.

[16] John Franco and Marvin Paull, Probabilistic analysis of the Davis–Putnam procedure for solv-
ing the satisfiability problem, Discrete Appl. Math. 5 (1983), no. 1, 77–87.

[17] Ehud Friedgut, Necessary and sufficient conditions for sharp thresholds of graph properties,
and the k-SAT problem, J. Amer. Math. Soc. 12 (1999), 1017–1054.

16

[18] Alan M. Frieze and Stephen Suen, Analysis of two simple heuristics on a random instance of
k-SAT, J. Algorithms 20 (1996), no. 2, 312–355.

[19] Andreas Goerdt, A threshold for unsatisfiability, J. Comput. System Sci. 53 (1996), no. 3,
469–486.

[20] Allen Goldberg, On the complexity of the satisfiability problem, 4th Workshop on Automated
Deduction (Austin, TX, 1979), 1979, pp. 1–6.

[21] Armin Haken, The intractability of resolution, Theoret. Comput. Sci. 39 (1985), no. 2-3, 297–
308.

[22] Svante Janson, Yiannis C. Stamatiou, and Malvina Vamvakari, Bounding the unsatisfiability
threshold of random 3-SAT, (1999), submitted to Random Structures & Algorithms.

[23] Anil Kamath, Rajeev Motwani, Krishna Palem, and Paul Spirakis, Tail bounds for occupancy
and the satisfiability threshold conjecture, Random Structures Algorithms 7 (1995), no. 1,
59–80.

[24] Richard Karp and Michael Sipser, Maximum matchings in sparse random graphs, 22nd Annual
Symposium on Foundations of Computer Science, IEEE Comput. Soc. Press, Los Alamitos,
CA, 1981, pp. 364–375.

[25] Lefteris M. Kirousis, Evangelos Kranakis, Danny Krizanc, and Yiannis Stamatiou, Approxi-
mating the unsatisfiability threshold of random formulas, Random Structures Algorithms 12
(1998), no. 3, 253–269.

[26] Thomas G. Kurtz, Solutions of ordinary differential equations as limits of pure jump Markov
processes, J. Appl. Probability 7 (1970), 49–58.

[27] , Approximation of population processes, Society for Industrial and Applied Mathemat-
ics (SIAM), Philadelphia, Pa., 1981.

[28] Albert W. Marshall and Ingram Olkin, Inequalities: theory of majorization and its applications,
Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1979.

[29] Rémi Monasson and Riccardo Zecchina, Entropy of the K-satisfiability problem, Phys. Rev.
Lett. 76 (1996), no. 21, 3881–3885.

[30] , Statistical mechanics of the random K-satisfiability model, Phys. Rev. E (3) 56 (1997),
no. 2, 1357–1370.

[31] , Tricritical points in random combinatorics: the (2 + p)-SAT case, J. Phys. A (1998),
submitted.

[32] Rémi Monasson, Riccardo Zecchina, Scott Kirkpatrick, Bart Selman, and Lidror Troyansky,
Phase transition and search cost in the (2 + p)-SAT problem, 4th Workshop on Physics and
Computation, (Boston, MA, 1996), to appear in Interjournal.

[33] Nedialko Nedialkov, Computing rigorous bounds on the solution of an initial value problem for
an ordinary differential equation, Ph.D. Thesis, University of Toronto, 1999.

17

[34] Darren Redfern, The Maple Handbook: Maple V Release 3, third ed., Springer Verlag, New
York, 1994.

[35] Bart Selman, David G. Mitchell, and Hector J. Levesque, Generating hard satisfiability prob-
lems, Artificial Intelligence 81 (1996), no. 1-2, 17–29.

[36] Nicholas C. Wormald, Differential equations for random processes and random graphs, Ann.
Appl. Probab. 5 (1995), no. 4, 1217–1235.

18

