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ABSTRACT 

An important task in the genetic understanding of disease is determining whether there is a significant 

association between a phenotype and a set of markers.  This task is sometimes referred to as a group 

test in a genome-wide association study.  Examples of this task include determining whether a set of 

rare variants are associated with a phenotype, and whether a set of single nucleotide polymorphisms  

in a gene are associated with a phenotype.  Another important task is determining whether a 

phenotype is significantly heritable (in the narrow sense) relative to a given set of genetic markers.  

We show that the two tasks can be formulated as the same statistical test.  In addition, we show that 

the inclusion of extraneous markers in the set under consideration leads to substantial loss in power 

to detect heritability or association, a phenomenon we call dilution.   

 

MAIN TEXT 

An important task in the genetic understanding of disease is determining whether there is a significant 

association between a phenotype and a set of markers.  This task is sometimes referred to as a group 

test in a genome-wide association study (GWAS).  Examples of this task include determining whether 

a set of rare variants are associated with a phenotype, and whether a set of single nucleotide 

polymorphisms (SNPs) in a gene are associated with a phenotype.   

Another important task is determining whether a phenotype is significantly heritable (in the narrow 

sense) relative to a given set of genetic markers.  An example comes from (1) who investigated the 

role played by stretches of cis-DNA sequence in influencing human methylation data for four distinct 

brain regions, across 150 unrelated individuals. For each methylation locus, they considered sets of 

SNPs from increasingly larger windows centered on the methylation locus, including a whole 

chromosome and all SNPs on the chip set, asking whether the locus was heritable with respect to 

markers in the set.  Aggregating over all loci, they found that, as the window size is increased, the 

number of loci found to be significantly heritable first increased and then decreased, yielding an 

optimal window size. 

Here, we show that the two tasks, group tests in GWAS and heritability determination, can both be 

formulated as a variance component test in the same statistical model.  In addition, we show that the 



inclusion of extraneous markers in the set under consideration leads to substantial loss in power to 

detect heritability or association, a phenomenon we call dilution.  We relate this effect to the finding of 

an optimal window size in the analysis of the methylation data and to previous observations in GWAS. 

We formulate the two tasks as the same test of significance using linear mixed models (LMMs) (2).  

Let the vector y of length N represent the phenotype for N individuals.  Using LMMs, we can 

decompose the variance associated with y as the sum of a linear additive genetic (  
 ) and residual 

(  
 ) component, 

 ( )   (       
      

  )        

where   is the     matrix of   individual covariates (e.g., gender, age) and offset term,   is the 

    vector of covariate effects,    is the     identity matrix, and   is the appropriately scaled 

realized relationship matrix (RRM) (3) of size    . Note that   factors as      , where   

of dimension     contains the   markers in the given set, and that when    , parameter 

estimation and computation of the log likelihood becomes extremely efficient (4).  Assuming there are 

no covariates, a SNP-based estimate of narrow-sense heritability for phenotype   is given by (2) 
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To determine whether the phenotype is heritable with respect to this set of markers, we can compute 

a P value on the hypothesis that    is greater than zero.  To determine whether the phenotype is 

significantly associated with the SNPs, we can compute a P value for the hypothesis that   
  is 

greater than zero.  The latter formulation follows from the equivalence between the linear mixed 

model and linear regression with random covariates (5).  Finally, because    is greater than zero 

precisely when    
  is greater than zero, the two tests are identical. 

Given this formulation, consider a situation where both causal and extraneous SNPs are used to 

compute the RRM.  As the number of extraneous SNPs is increased, the variance of the estimate of 

   (and   
 ) will increase due to the randomness introduced by the extraneous SNPs.  As noted 

above, we call this phenomenon dilution. 

To illustrate this increase in variance, we generated mutually independent SNPs from binomial 

distributions with minor allele frequencies (MAFs) drawn from a uniform distribution on [0.05, 0.4].  We 

then generated the phenotype variable from an RRM built from a subset of 100 of these SNPs by 

sampling from a zero-mean Gaussian with covariance set to the RRM.  We refer to these generating 

SNPs as causal SNPs.  For each generated data set, rather than compute the variance of the 

estimate of   , we plotted the likelihood of the data as a function of   .  In other work, we have 

found such plots to provide a better picture of the variability of   , than a single number (in 



submission).  Holding the number of causal SNPs constant while increasing the number of 

extraneous SNPs, we see that the variability in the estimate for    increases with the number of 

extraneous SNPs (Figure 1).  Note that the increase in variance is more dramatic for smaller cohort 

size (N). 

As mentioned, dilution can be used to understand the observation in Quon et al. (2012).  Returning to 

this example, they centered a window symmetrically around each methylation locus, extending the 

size of this window through 10 kb, 50 kb, 100 kb, 500 kb, 1 Mb, and also tried the entire local 

chromosome, as well as the entire genome. They then deemed the optimum window to be the one 

yielding the largest number of heritable methylation loci among those loci which had at least one SNP 

for every window size.   As shown in Figure 2, a window size of 50 kb led to the highest number of 

heritable methylation loci.  While the number of heritable loci was similar for both the 50kb and 100kb 

windows, it is clear that using too large of a window (e.g. the entire genome), or too small of a window 

(e.g. 10kb or less), dramatically reduced the number of heritable loci. 

The effect can be seen as a bias-variance trade-off in the estimation of heritability. In particular, most 

SNPs influencing a methylation locus are expected to be physically near to the locus (i.e.,are cis-

acting), and can therefore be captured by a relatively small window such as the 50 kb. With a smaller 

window, many influential SNPs are likely to be missed, causing a downward bias in the estimate of 

      
  and therefore of heritability. With increasing window sizes, more and more extraneous SNPs are 

included in the RRM, causing an increase in the variance of the estimate of heritability due to dilution. 

Therefore, in our analysis, as we included more and more SNPs up to and including a window which 

contained most influential SNPs (i.e., the 50 kb window), the downward bias on heritability decreased 

(and the estimate of heritability increased). As we went beyond this optimal window size, an 

increasing proportion of extraneous SNPs were included in the RRM, up until the point where the 

variance of the estimate of heritability almost completely diminished our power to detect significantly 

heritable loci. This bias-variance trade-off is evident is plots of likelihood versus    (Figure 3). 

Finally, we note that a related phenomenon affects univariate GWAS analyses in the presence of 

confounding, wherein a P value for the association between a single SNP and the phenotype is 

computed using a linear mixed model with an RRM used to account for the confounding signal.   In 

this case, the addition of extraneous SNPs in the RRM leads to increased variance in the estimate of 

SNP effect sizes.  As a consequence, GWAS P values are inflated and power is lost [cite NG]. 

 

MATERIALS AND METHODS 

The methylation data were prepared as described in Quon et al (1).  Briefly, individual SNP data and 

chromosomal coordinates were downloaded from dbGAP Study Accession phs000249.v1.p1. 

Normalized methylation levels across four brain regions (cerebellum (CRBLM), frontal cortex (FCTX), 

caudal pons (PONS), and temporal cortex (TCTX)) from 150 individuals were obtained from GEO 



accession GSE15745.  This data profiled methylation levels of 27,578 CpG loci assayed using an 

Illumina HumanMethylation27 BeadChip.  Methylation locus chromosome coordinates were obtained 

from GEO (GPL8490).    All SNPs missing in more than 1% of the individuals, or those whose minor 

allele frequency was less than 0.01 were discarded. All individuals missing more than 5% of their SNP 

data were removed. Several methylation loci and individual samples were removed due to data 

quality concerns (see Supplementary Information of Gibbs et al. (6)).  Individual covariate data, 

including age, gender post mortem interval, region source, and methylation assay batch, was 

obtained from Supplementary Table S1 from Gibbs et al. (6), and converted to a 1-of-(M-1) encoding 

for discrete variables.  When scanning cis window sizes, they restricted their comparison to the 

15,179 methylation loci for which they could find at least one SNP within each of the window sizes 

considered.   

To compute a P value for whether a given phenotype y was heritable—that is, to compute the 

significance of the genetic variance component in the model—we set   
    to obtain the null model, 

and then used a likelihood ratio statistic, along with permutations tests to obtain P values.  The same 

420,000 permutations of the individuals were used for each methylation locus.  We used the method 

of Lippert et al. (4) to compute likelihoods. Note that have since developed more efficient methods for 

obtaining P values in this setting (in submission). 
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FIGURES 

 

 

Figure 1. Relative data likelihood as a function of    for synthetic data with ten causal SNPs and 

increasing numbers of extraneous SNPs, indicated adjacent to each curve.  Cohort size is N. 

  



Figure 2.  Number of heritable methylation loci in the four brain regions: TCTX, FCTX, CRBLM, and 

PONS, passing a Bonferroni-corrected P value threshold of 0.05, as a function of DNA sequence 

window size.  We used only methylation loci analyzed for all window sizes so as to make them 

comparable. 

  



 

Figure 3. Relative data likelihood as a function of    for varying window sizes in the methylation data, 

as used by Quon et al. (1).  

 

 


