
Alternation for Termination

William R. Harris1, Akash Lal2, Aditya V. Nori2, and Sriram K. Rajamani2

1 University of Wisconsin; Madison, WI, USA
2 Microsoft Research India; Bangalore, India

Abstract. Proving termination of sequential programs is an important problem,
both for establishing the total correctness of systems and as a component of prov-
ing more general termination and liveness properties. We present a new algo-
rithm, TREX, that determines if a sequential program terminates on all inputs.
The key characteristic of TREX is that it alternates between refining an over-
approximation and an under-approximation of each loop in a sequential program.
In order to prove termination, TREX maintains an over-approximation of the set
of states that can be reached at the head of the loop. In order to prove non-
termination, it maintains an under-approximation of the set of paths through the
body of the loop. The over-approximation and under-approximation are used to
refine each other iteratively, and help TREX to arrive quickly at a proof of either
termination or non-termination.

TREX refines the approximations in alternation by composing three different
program analyses: (1) local termination provers that can quickly handle intricate
loops, but not whole programs, (2) non-termination provers that analyze one cycle
through a loop, but not all paths, and (3) global safety provers that can check
safety properties of large programs, but cannot check liveness properties. This
structure allows TREX to be instantiated using any of the pre-existing techniques
for proving termination or non-termination of individual loops.

We evaluated TREX by applying it to prove termination or find bugs for a set
of real-world programs and termination analysis benchmarks. Our results demon-
strate that alternation allows TREX to prove termination or produce certified ter-
mination bugs more effectively than previous techniques.

1 Introduction

Proving termination of sequential programs is an important problem, both for establish-
ing total correctness of systems and as a component for proving other liveness prop-
erties [12]. However, proving termination efficiently for general programs remains an
open problem. For an illustration of the problem, consider the example program shown
in Fig. 1, and in particular the loop L2 on lines 8–16. This loop terminates on all inputs,
but for an analysis to prove this, it must derive two important facts: (1) the loop has
an invariant d > 0 and (2) under this invariant, the two paths through the loop cannot
execute together infinitely often. Existing analyses can discover one or the other of the
above facts, but not both.

Some analyses construct a proof of termination in the form of a lexicographic linear
ranking function (LLRF) [4]. These analyses can prove termination of L2 by construct-
ing a valid LLRF if they are given d > 0 as a loop invariant. However, LLRF-based

R. Cousot and M. Martel (Eds.): SAS 2010, LNCS 6337, pp. 304–319, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Alternation for Termination 305

1 void f(int d) {
2 int x, y, k, z := 1;
3 ...
4 L1:
5 while (z < k) { z := 2 * z; }
6 ...
7 L2:
8 while (x > 0 && y > 0) {
9 if (*) {

10 P1: x := x - d;
11 y := *;
12 z := z - 1;
13 } else {
14 y := y - d;
15 }
16 }
17 }

1 void main() {
2 if (*) {
3 f(1);
4 } else {
5 f(2);
6 }
7 }

Fig. 1. Example illustrating the effect of alternation

tools have been designed to analyze only loops with affine assignments and conditions,
and are unable to handle pointers, or perform inter-procedural, whole program analysis
(which is required to establish the desired invariant).

Techniques that construct a transition invariant (TI) as proofs, such as TERMINA-
TOR [10], can handle arbitrary programs with procedures and pointers, but are ham-
pered by the way they construct a proof of termination. To illustrate this, consider how
TERMINATOR analyzes loop L2. TERMINATOR first attempts to prove termination of
L2 by analyzing it in isolation from the rest of the program. However, TERMINATOR

fails, as it is not aware of the additional fact that whenever the loop is reached, the
invariant d > 0 holds. It thus generates a potential counterexample that may demon-
strate that the loop does not always terminate. A counterexample to termination is a
“lasso”, which consists of a “stem” sequence of statements that executes once followed
by a “cycle” sequence of statements that may then be executed infinitely often. For the
example, TERMINATOR may generate a lasso with the stem “ d := 1; z := 1”
that leads to L2, followed by the cycle “assume (x > 0); assume(y > 0);
x := x - d; y := *; z := z - 1” that executes infinitely often. If TERMI-
NATOR ignores the stem, it cannot prove that the cycle will not execute infinitely often.
Thus, it uses the state of the program after executing the stem, “d = 1, z = 1”, to
construct a new cycle “assume(d = 1); assume (z = 1); assume (x >
0); assume(y > 0); x := x - d; y := *; z := z - 1” whose be-
haviors under-approximate those of the original cycle. In the under-approximation, the
conditions d = 1 and z = 1 are assumed to hold at the beginning of every iteration of
the loop (see Section 3.4 of [10] for a discussion).

In this way, TERMINATOR constructs an under-approximation of the counterexam-
ple cycle in the hope that it can at least find a proof of termination for the under-
approximation. With the added assumptions at the head of the cycle, it can find multiple
proofs that the under-approximation eventually terminates. One such proof establishes
that the expression z−1 is both bounded from below by 0 and must decrease through ev-
ery iteration of the cycle. TERMINATOR then attempts to validate z−1 as a proof of ter-
mination of the entire loop by determining if there are any paths over which z−1 is not
bounded and decreasing. There are, as the value of z is not bounded over the executions

306 W.R. Harris et al.

of the loop. Thus TERMINATOR will find another counterexample to z − 1 as a proof
of termination. For instance, it may find a trace that executes loop L1 once, reaches
L2 with state d = 1, z = 2, and executes the same cycle as the previous counterex-
ample. Similarly to how TERMINATOR handled the last counterexample, it constructs
an under-approximate cycle “assume(d = 1); assume(z = 2); assume(x
> 0); assume(y > 0); x := x - d; y := *; z := z - 1;” and at-
tempts to prove its termination. Similar to the last counterexample, it determines that
z−2 is bounded from below by 0 and decreases each time through the loop. Again, this
fact does not hold for all paths through the loop, so TERMINATOR will iterate again on
another counterexample. In this way, TERMINATOR will converge on a proof of termi-
nation slowly, if at all.

To address these shortcomings in existing techniques, we propose TREX, a novel
approach to proving termination of whole programs. TREX addresses the shortcom-
ings of LLRF-based techniques and TERMINATOR with an algorithm that alternates
between refining an over and under-approximation of the program. TREX analyzes
loops in the program one at a time. For each loop L, it simultaneously maintains an
over-approximation as a loop invariant for L (which is a superset of the states that can
be reached at the loop-head) and an under-approximation as a subset of all the paths
through L.

TREX first applies a loop termination prover to try to prove that no set of paths in
the under-approximation can execute together infinitely often. If the loop termination
prover can prove this, then it produces a certificate of the proof. TREX then checks if the
certificate is a valid proof that no set of paths in the entire loop may execute infinitely
often. If so, then the certificate demonstrates that the loop terminates on all inputs.
If not, then TREX adds to the under-approximation paths that invalidate the certificate.
TREX then reanalyzes the program using the new, expanded under-approximation. This
technique is similar to those employed in TERMINATOR.

If TREX fails to prove that paths in the under-approximation do not execute infinitely
often, then it applies a non-termination prover to find a sufficient condition for non-
termination. This sufficient condition is a precondition under which the loop will not
terminate. TREX then queries a safety prover to search for a program input that reaches
the loop and satisfies this precondition. If the safety prover finds such an input, then the
input is a true counterexample to termination. If the safety prover determines that the
loop precondition is unreachable, then the negation of the precondition is an invariant
for the loop. TREX conjoins this predicate to its existing invariant and reanalyzes the
program using the new, strengthened over-approximation. This technique is novel to
TREX.

In this way, TREX composes three analyzes for three distinct problems: (1) efficient
local termination provers that can analyze a loop represented as a finite sets of paths,
(2) non-termination provers that analyze a single trace, and (3) safety provers that prove
global safety properties of programs. This composition allows each analysis to improve
the performance of the other. The composition allows TREX to apply a loop termination
prover that produces a lexicographic linear ranking functions (LLRF) as a certificate
of termination. Using LLRFs as certificates, as opposed to TIs, improves the perfor-
mance of the safety prover in validating certificates. The non-termination prover allows

Alternation for Termination 307

LLRF-based loop termination provers to reason about loops that cannot be proved ter-
minating when analyzed in isolation. Finally, the safety prover directs the search of the
non-termination prover in finding counterexamples to termination. Using this approach,
TREX is able to prove termination or non-termination of programs that are outside the
reach of existing techniques, including the example in Fig. 1. §2 gives an informal dis-
cussion as to how TREX handles this example.

The contributions of this paper are as follows:

1. We present TREX, a novel algorithm for proving termination of whole pro-
grams. TREX simultaneously maintains over and under-approximations of a loop
to quickly find proofs of termination or non-termination. This allows it to com-
pose several program analyses that until now were disparate: termination provers
for multi-path loops, non-termination provers for cycles, and global safety provers.

2. We present an empirical evaluation of TREX. We evaluated TREX by applying it
to a set of systems drivers and benchmarks for termination analysis, along with
versions both that we injected with faults. The results of our evaluation demon-
strate that TREX’s use of alternation allows it to quickly prove that programs either
always terminate or produce verified counterexamples to their termination.

The rest of this paper is organized as follows. In §2, we illustrate by example how
TREX proves termination or non-termination for an example program. In §3, we review
known results on which TREX builds. In §4, we give a formal presentation of the TREX

algorithm. In §5, we present an empirical evaluation of TREX. In §6 we discuss related
work, and in §7 we conclude.

2 Overview

We now informally present the TREX algorithm. We first describe the core algorithm
for deciding if a single loop in a single-procedure program terminates under all program
inputs, and then illustrate the algorithm using a set of examples. If the program contains
nested loops, function calls, and pointers, the algorithm can be extended. We present
such extensions in §4.2.

To analyze a loop L, TREX maintains two key pieces of information: (i) a loop in-
variant O of L, and (ii) U , which is a subset of the set of all paths that can execute in
the body of loop L. Note that paths in U can be obtained by concatenating arbitrarily
many paths through L. The overapproximation O is initialized to a weak invariant such
as true, and U is initialized to an empty set of paths. TREX analyzes each loop iter-
atively. In each iteration, it first attempts to find a certificate that proves that no set of
paths in U can execute together infinitely often, assuming the loop invariant O.

First, suppose that TREX cannot find a proof certificate. Then TREX finds a path τ
that is a concatenation of paths in U such that no proof of termination of τ exists. It
then uses a non-termination prover [14] to derive a loop precondition ϕ such that if the
program reaches L in a state σ ∈ ϕ, then it will then execute τ infinitely often. TREX

calls a safety prover to determine if some initial program state σI can reach such a σ
along an execution trace. If so, then the trace, combined with τ , is a witness that the
loop does not always terminate. If a safety prover determines that no such states σI and

308 W.R. Harris et al.

σ exist, then TREX strengthens the over-approximation of O with the knowledge that
ϕ can never hold at the head of the loop L.

Now, suppose that TREX does find a proof certificate for the under-approximation.
TREX then checks to see if the certificate is valid for all paths in L. If the certificate is
not valid, then TREX finds a path τ over the body of L that invalidates the certificate,
and expands U to include τ . TREX then performs another refinement step using the
strengthened over-approximation or expanded under-approximation. In this way, the
under-approximation U is used to find potentially non-terminating cycles, and if such
cycles are unreachable, this information is used to refine the over-approximation O.
Dually, if the certificate for U is not a valid certificate for all the paths through L with
the over-approximation O, this information is used to expand U . We now illustrate the
advantages of this approach using a set of examples.

Alternation Between Over and Under-approximations. Because TREX simultaneously
maintains over and under-approximations of a loop, it can often quickly find proofs that
the loop terminates, even when the proofs rely on program behavior that is not local to
the loop. For example, consider loop L2 from Fig. 1. Recall from §1 that existing termi-
nation provers may have difficulty proving termination of L2. A technique that relies on
a fixed over-approximation may not be able to discover automatically the needed loop
invariant d > 0, but a technique that relies solely on under-approximations may strug-
gle to find a proof of termination for the loop, as it is misled by information gathered
along a trace leading to the loop.

TREX handles this example by alternating between over and under-approximations.
It first tries to prove termination of the loop with an over-approximation that the loop
can be reached in any state, and is unable to find such a proof. TREX thus generates
a potential counterexample to termination in the form of a cycle through the loop:
assume(x > 0 && y > 0); y := y - d. It then applies a non-termination
prover to this cycle to find a sufficient condition ϕ such that if execution reaches the loop
in a state that satisfies ϕ, then the subsequent execution will not terminate. The non-
termination prover determines that such a sufficient condition is the predicate d ≤ 0.
TREX then queries a safety prover to decide if the condition d ≤ 0 at L2 is reachable,
but the safety prover determines that d ≤ 0 is in fact unreachable. Thus TREX refines
the over-approximation of the loop to record that all states reachable at line 4 are in
¬(d ≤ 0) ≡ d > 0. TREX then applies a loop termination prover to the loop un-
der this stronger over-approximation. Such a technique quickly proves that L2 always
terminates.

Using LLRFs as Certificates for Termination Proofs. Existing techniques for proving
termination of programs produce a transition invariant (TI) as a certificate of proof of
termination, while existing termination provers for loops produce lexicographic linear
ranking functions (LLRF). TREX is parametrized to use either TIs or LLRFs as cer-
tificates in proving termination of whole programs. This implies that it can construct a
set of LLRFs that serves as a proof of termination for a whole program. While TIs are
more expressive than LLRF’s in that they can be used to encode proofs of termination
for more loops than LLRFs, LLRFs can often be constructed faster, and the loss of ex-
pressiveness typically does not matter in practice. We find that in practice, using LLRFs

Alternation for Termination 309

as certificates instead of TIs results in an acceptable loss of expressiveness while allow-
ing significant gains in performance, both in finding the certificate and in validating
candidate certificates.

To gain an intuition for the advantage of using LLRFs, consider again in Fig. 1 the
loop L2. Recall that L2 is problematic for an analysis that constructs a TI using under-
approximations. However, suppose that an analysis based on constructing TIs was given
d > 0 as a loop invariant. The analysis could then analyze the loop in isolation and
would eventually find a TI that proves termination. However, the best known approach
to TI synthesis constructs proofs one at a time for single paths through potentially mul-
tiple iterations of the loop. For each path, the analysis then attempts to validate the
constructed proof using an expensive safety check. However, if an LLRF-based anal-
ysis is given the loop invariant d > 0, and both the paths “x := x - d; y :=

*; z := z - 1”, and “y := y - d” through the loop, it can prove termination
of the loop by solving a single linear constraint system. Furthermore, the validation of
resulting LLRF is considerably simpler.

1 int d = 1;
2 int x;
3

4 if(*) d := d - 1;
5 if(*) foo();
6 ...
7 //k such conditionals
8 //without decrements of d.
9 ...

10 if(*) foo();
11 if(*) d := d - 1;
12

13 while (x > 0) {
14 x := x - d;
15 }

Fig. 2. Example to illustrate detecting
non-termination

Proving Non-termination. Finally, TREX can
find non-terminating executions efficiently. For
the program in Fig. 2, suppose that the function
foo has p paths through its body. There are thus
O(2kpk) different lassos in the program that end
with the cycle at lines 13–15. Of these, only the
lassos with stems that include the decrements to
d at lines 4 and 11 lead to non-termination. The
current best known technique for finding termina-
tion bugs, TNT [14], searches the program for las-
sos in an arbitrary manner. Thus TNT may only
find such a bug by enumerating the entire space of
lassos.

TREX can provide TNT with a goal-directed search strategy for finding termination
bugs. For the program in Fig. 2, TREX first analyzes the loop at lines 13–15, and is
unable to prove termination of the loop. It next attempts to find an execution for which
the loop does not terminate. However, instead of applying TNT to one of the lassos in
the program to verify it as a complete witness to non-termination, TREX applies TNT
to the sole path through the loop to derive a sufficient condition for non-termination.
For the example, TNT determines that if the loop is reached in a state that satisfies
d < 0, then execution of the loop will not terminate. TREX then queries a safety prover
to determine if a state that satisfies d < 0 is reachable at the head of the loop. Suppose
that the function foo does not modify d. Modular safety checkers such as SMASH [11]
can use knowledge about the target set of states d < 0 to build a safety summary for
foo which states that d is not modified by foo. TREX uses such a prover to quickly
find a path that reaches the loop head in a state that satisfies d < 0. It is the path that
decrements d at lines 4 and 11.

310 W.R. Harris et al.

3 Preliminaries

TREX builds on existing work on proving termination and non-termination. We recall
some preliminaries and definitions from previous work.

3.1 Termination Certificates

TREX is parametrized by the certificates that it uses to prove termination of individual
loops. A certificate typically defines a measure μ that is bounded below by zero, (i.e.
μ ≥ 0) and decreases on every iteration of the loop. Previous work shows how to find
such measures automatically using lexicographic linear ranking functions and transition
invariants. The exact details of these certificates are not important for an understanding
of TREX, but for the sake of completeness, their definitions are given in [15].

3.2 Proving Non-termination

Recent work [14] addresses a dual problem to proving termination, that of proving non-
termination of a given path through a program. Let a pair of paths (τstem , τcycle) be a
lasso. The problem of proving non-termination is to determine if it is possible for τstem
to execute once followed by infinite consecutive executions of τcycle . [14] establishes
that (τstem , τcycle) is non-terminating if and only if there exists a recurrent set of states
defined as follows:

Defn 1. For a lasso (τstem , τcycle), a recurrent set ϕ is a set of states such that (i) ϕ
is reachable from the beginning of the program over τstem ; and (ii) For every state
σ ∈ ϕ, there is a state σ′ ∈ ϕ such that σ′ can be reached from σ by executing τcycle .

In this work, we introduce the notion of a partial recurrent set, which is a relaxation of
a recurrent set.

Defn 2. A set of states ϕ is a partial recurrent set for a sequence of statements τ if it
satisfies clause (ii) of Defn. 1, with τ in place of τcycle .

One can reduce the problem of finding a recurrent set for a given lasso to solving a non-
linear constraint system [14]. This is the approach implemented by TNT. The TNT
technique relies on a constraint template to guide the constraint solving, and gives a
heuristic for iteratively refining the template until a recurrent set is found. In practice,
if a recurrent set exists, then it typically can be found with a relatively small template.
TNT can be easily extended to find a partial recurrent set as well.

4 Algorithm

We now formally present the TREX algorithm, given in Fig. 3. We first describe TREX

for single-procedure programs without pointers, function calls, or nested loops. We
describe in §4.2 an enhancement of TREX that deals with pointers, function calls, and
nested loops. TREX attempts to prove termination or non-termination of each loop in
isolation. When TREX analyzes each loop L, it maintains an over-approximation O,

Alternation for Termination 311

TREX (P)
Input: Program P
Returns: Termination if P terminates on all inputs,

NonTermination(τstem , τcycle) if P may execute τstem

once, and then execute τcycle infinitely many times.

1: for each loop L in the program do
2: O := true // Initialize over-approximation.
3: U := { } // Initialize under-approximation.
4:
5: loop
6: result := GetCertificate(O, U)
7: if (result = Termination(C)) then
8: result ′ := CheckValidity(C,O, L)
9: if (result ′ = Valid) then

10: break // Analyze next program loop.
11: else if (result ′ = Invalid(τ)) then
12: U = U ∪ {τ}
13: continue
14: end if
15: else if (result = Cycle(τcycle)) then
16: ϕ = PRS(τcycle)
17: if Reachable(ϕ) then
18: τstem := SafetyTrace(ϕ)
19: return NonTermination(τstem , τcycle)
20: else
21: O := O \ ϕ
22: continue
23: end if
24: end if
25: end loop
26: end for

Fig. 3. The TREX algorithm

which is a superset of the set of states reachable at the loop head of L, and an under-
approximation U , which is a subset of the paths through the loop body. At lines 2 and
3, O is initialized to true (denoting all states), and U is initialized to the empty set
of program paths. We use LO to denote the loop L with each path prefixed with an
assumption that O holds, and similarly for UO.

The core of the TREX algorithm iterates through the loop in lines 5-25 of Fig. 3.
Inside this loop, TREX refines the over-approximation O to smaller sets of states, adds
more paths to the under-approximation U , and tries to prove either termination or non-
termination of the loop L. At line 6, TREX calls GetCertificate to find a certificate of
proof for the under-approximation U .

First, suppose that the call GetCertificate(O, U) returns Termination(C). In this
case, GetCertificate has found a proof C that no set of paths in U execute together

312 W.R. Harris et al.

infinitely often under invariant O. In this case, TREX checks if C is a valid certifi-
cate for the entire loop LO by calling the function CheckValidity in line 8. The call
CheckValidity(C, O, L) returns Valid if the certificate C is a valid proof of termina-
tion for the loop LO. In this case, TREX determines that L terminates, and analyzes the
next loop. Otherwise, CheckValidity returns Invalid(τ), where τ ∈ L+ \ U is a path
such that C does not prove that a cycle of τ will not execute infinitely often. In this
case, TREX adds the path τ to the under-approximation U and continues to iterate.

Now suppose that GetCertificate does not find a certificate for UO and returns
Cycle(τcycle). Here, τcycle ∈ U+ is a trace formed by concatenating some sequence
of paths through U . At line 16, TREX calls PRS , which computes for τcycle a partial
recurrent set ϕ. If σJ ∈ ϕ, then executing τcycle from σJ results in a state σF ∈ ϕ.
Thus if ϕ is reachable from a program input σI , then program P will not terminate on
σI . On line 17, TREX calls a safety prover to determine if such a σI exists. If so, then
the safety prover produces a trace τstem along with an initial state that reaches ϕ. TREX

then presents the lasso (τstem , τcycle) as a true counterexample to termination. Other-
wise, has determined that ϕ is unreachable. Note that although TREX derived ϕ using
an under-approximation of the set of paths through the loop, TREX checked if ϕ was
reachable in the original program and determined that it was not. Thus TREX refines
the over-approximation O by removing from O the set of states ϕ. TREX then performs
another iteration in search of a definite proof of or counterexample to termination.

4.1 Sub-procedures Called by TREX

1 //x is an input variable
2 int x;
3

4 int main() {
5 while (x > 0) {
6 if(*) foo();
7 else foo();
8 }
9 }

10

11 void foo() {
12 x--;
13 }

Fig. 4. Example illustrating interproce-
dural analysis

The TREX algorithm, as presented in Fig. 3,
depends on four procedures: Reachable ,
CheckValidity , GetCertificate , and PRS .
Definitions of Reachable and PRS are standard.
Reachable answers a safety query for a program,
and thus can be implemented using any static
analysis tool or model checker that provides
either a proof of safety or counterexample trace.
TREX assumes that if Reachable answers a
safety query, then the answer is definite, i.e., if it
returns true, then the target is indeed reachable in
the program, and if it returns false, then the target
cannot be reached under any input. SMASH [11]
is a safety prover that satisfies these requirements
and we use it in our implementation of TREX.

Because reachability in programs is undecidable, Reachable may not always terminate,
in which case TREX does not terminate. PRS constructs a partial recurrent set
for an execution trace. The implementation of such a procedure that is used in our
implementation of TREX is described in [14].

Procedures GetCertificate, and CheckValidity can be instantiated to compute and
validate any certificate of a termination proof, such as TIs or LLRFs. The work in [9]
gives instantiations of these procedures for TIs. If the procedures are instantiated to use
TIs, then the resulting version of TREX is similar to TERMINATOR, modulo the fact

Alternation for Termination 313

that TREX uses counterexamples to refine an over-approximation of each loop, while
TERMINATOR does not attempt to maintain an over-approximation.Furthermore, TREX

can be instantiated to use LLRFs to reason about programs, given suitable definitions
of GetCertificate and CheckValidity . In [15], we give novel implementations of such
functions.

4.2 Handling Nested Loops, Function Calls and Pointers

For TREX to reason about nested loops, function calls, and pointers, it is necessary
that its sub-procedures reason about these features. The procedures Reachable and
CheckValidity depend primarily on a safety prover. In the context of safety, handling
nested loops and function calls is a well-studied problem, and our safety checker sup-
ports such features. However, the procedures GetCertificate and PRS must be ex-
tended from their standard definitions to handle such features. Both procedures take
as input a finite set of paths. The current state-of-the-art techniques for implementing
GetCertificate and PRS can only reason about paths defined over a fixed set of vari-
ables and linear updates to those variables. They cannot reason about program state-
ments that manipulate pointers, because pointer dereferences introduce non-linear be-
havior. Thus to apply such techniques, an analysis must first rewrite program paths that
perform pointer manipulations to a semantically equivalent form expressed purely in
terms of linear updates.

TREX rewrites program paths to satisfy this condition by following a strategy used
in symbolic-execution tools, and also by TERMINATOR, which is to concretize the val-
ues of pointers. Note that all paths added to U are produced by CheckValidity , which
takes as input an entire program, as opposed to a single loop. Thus if CheckValidity
determines that a certificate is not valid for an entire loop L, then it produces a counter-
example in the form of a lasso (τstem , τcycle), where τcycle is a path through the loop
and τstem is a path up to the loop. In the absence of pointer dereferences, function
calls, or nested loops, τcycle is directly added to U . In the presence of pointer derefer-
ences, TREX rewrites the cycle before adding it to U as follows: for an instruction *p
= *q + 5 where p and q point to scalar variables x and y respectively during the
execution of τstem , TREX replaces the instruction with x = y + 5. This amounts to
under-approximating the behavior of paths through a loop by assuming that the aliasing
conditions of τstem hold in every iteration of the loop.

TREX reasons about function calls and nested loops by in-lining instructions along
the path τcycle before adding the path to U . For example, suppose that we apply
TREX to the program in Fig. 4. In the course of analysis, TREX expands an under-
approximation of the loop in lines 5–8 by adding a path through the loop, which goes
through the function foo. To find a certificate for a new proof of termination that in-
cludes this path, TREX applies GetCertificate to this path, which only looks at the
instructions in the path: assume(x > 0); x = x - 1. GetCertificate produces
an LLRF x. TREX then applies CheckValidity , which uses an interprocedural safety
analysis to verify that x is indeed a ranking function for the entire loop, i.e., in all
executions of the program, the value of x decreases on every iteration of the loop.

314 W.R. Harris et al.

4.3 Limitations of TREX

If TREX terminates, then it produces a proof of termination or a valid counterexample
that witnesses non-termination. However, TREX may not terminate for the following
reasons: (i) the underlying safety prover or non-termination prover may not terminate;
or (ii) the main loop in Fig. 3 lines 5–25 may not terminate. The main loop may not ter-
minate because finding the termination proof or non-termination witness may require
TREX to reason about program features beyond what are supported by the loop ter-
mination and non-termination provers used by TREX. Such program features include
non-linear arithmetic or manipulating recursive data-structures. Proving termination in
the latter case is addressed in [3]. It would be interesting to instantiate TREX with the
prover presented in [3], provided that a corresponding non-termination prover could be
derived.

5 Experiments

We empirically evaluated TREX over a set of experiments designed to determine if:

– TREX can prove termination and find bugs for programs explicitly designed to be
difficult to analyze for termination. To this end, we applied TREX to several hand-
crafted benchmarks.

– TREX can prove termination and find bugs for real-world programs. To this end,
we applied TREX to several drivers for the Windows Vista operating system.

To evaluate TREX, we implemented the algorithm described in §4, instantiated with
the LLRF-based termination prover described in [15] and the non-termination prover
described in §3.2. We also compared TREX with the current state of the art in proving
termination. The only other termination prover that we are aware of that can analyze
arbitrary C programs is TERMINATOR. We did not have access to the implementation of
TERMINATOR discussed in [10], so we reimplemented it using the description provided
in that work. We refer to this implementation as R-TERMINATOR. To allow for a fair
comparison, the implementations of both TREX and R-TERMINATOR use the same
safety prover, SMASH [11]. All experiments were performed on a machine with an
AMD Athlon 2.2 GHz processor and 2GB RAM.

5.1 Micro-benchmarks

We first evaluated if TREX could find difficult termination bugs in small program snip-
pets. To do so, we first applied R-TERMINATOR and TREX to the loop shown in Fig. 5,
based on the program in Fig. 1. R-TERMINATOR did not find the bug in this loop: as
described in §1, it successively tries as proofs of termination ranking functions ci−z for
different constants ci. TREX found this bug within 5 seconds, requiring 1 alternation.
This example thus indicates that for a non-terminating loop with variables spurious to
proving termination, z in Fig. 1, the spurious variables can cause R-TERMINATOR not
to find a proof of termination or non-termination.

Alternation for Termination 315

Table 1. Results of applying TREX to Windows drivers snippets. The timeout (T/O) limit was set
to 500 seconds.

Name Num Buggy TREX R-TERMINATOR TREX

Loops Loops #NT #TC Time (s) #TC Time (s) speedup

01 3 0 0 3 13.8 4 32.1 2.3
02 3 1 1 2 15.3 5 48.0 3.1
03 1 1 1 0 7.9 1 5.9 0.7
04 1 0 0 1 3.1 1 12.3 3.9
05 1 0 0 1 6.4 1 8.8 1.4
06 1 0 0 1 3.0 2 13.8 4.6
07 2 0 0 2 10.2 2 11.8 1.2
08 2 0 0 2 9.4 2 11.0 1.2
09 2 1 – – T/O – T/O –
10 1 0 0 1 2.5 2 10.3 4.1

int x,d,z;
d=0; z=0;

while(x > 0) {
z ++;
x = x - d;

}

Fig. 5. A non-
terminating loop

Next, we applied TREX and R-TERMINATOR on snippets of
code extracted from real Windows Vista drivers, the same used in
[2]. The results of the experiments are given in Tab. 1. For each
driver snippet, Tab. 1 reports the number of loops, the number of
buggy (non-terminating) loops, the number of times that TREX

called a non-termination prover during analysis (#NT), the number
of times TREX called a termination prover (#TC), the time taken
by TREX, and similarly for R-TERMINATOR. In general, TREX

was significantly faster than R-TERMINATOR. In most cases, the
speedup was caused directly by the fact that TREX uses LLRF’s as
termination certificates, whereas R-TERMINATOR uses TI’s. By us-

ing LLRF’s, TREX needs to construct fewer certificates during analysis, and thus needs
to query a safety prover fewer times in order to validate certificates.

For these programs, TREX called its non-termination prover at most once. In each
case, the call verified that the loop is indeed non-terminating. Program “02” highlights
the advantage of applying a non-termination prover in this way. When analyzing program
“02,” R-TERMINATOR constructed and failed to validate multiple candidate termination
certificates obtained by under-approximating the behavior of cycles. R-TERMINATOR

eventually could not construct a new candidate and reported a possible termination bug.
When applied to program “02,” TREX failed to find a proof of termination, but then
immediately alternated to apply a non-termination prover, which quickly found a verified
termination bug. Finally, note that program “09” has a complicated loop about which
neither TREX nor R-TERMINATOR can find a proof, and thus time out.

The original driver snippets contain relatively few termination bugs. Thus to fur-
ther measure TREX’s ability to find bugs, we modified each driver snippet that had no
termination bug as follows. We introduced variables “inc1, inc2, ...”, and code that non-
deterministically initializes them to 0 or 1. We then replaced increment or decrement
statements of the form “x = x ± 1”, with “x = x ± incn”, where a different “n” is used
for each increment statement. The results are given in Table 2. Note that our modifi-
cation did not always introduce a termination bug, as in some cases, the increment or
decrement was irrelevant to the termination argument for the loop.

In general, TREX and R-TERMINATOR analyze these loops in similar amounts of
time. In cases where TREX completed in less time than R-TERMINATOR, it was typ-
ically because R-TERMINATOR produced and then failed to validate more candidate

316 W.R. Harris et al.

Table 2. Results of experiments over driver snippets modified to contain termination bugs

Name Num Buggy TREX R-TERMINATOR

Loops Loops # NT # TCs Time (s) # TCs Time (s)
01 3 0 0 3 22.3 3 19.9
04 1 1 1 0 4.9 1 5.4
05 1 1 1 0 7.1 1 9.1
06 1 1 1 1 9.7 2 12.1
07 2 0 0 2 7.6 2 9.8
08 2 1 1 1 8.1 1 7.4
10 1 1 1 0 9.8 0 4.4

termination certificates. In such cases, R-TERMINATOR would typically choose as a
ranking function a variable “x”, where a statement such as “x = x - 1” had been mod-
ified to “x = x - inc” and “inc” was initialized to 1 on some but not all paths through
the loop. R-TERMINATOR would only discover later in its analysis, after an expensive
safety query, that “x” need not always decrease. In contrast, TREX did not choose “x”
as a ranking function in this case because it never considers the concrete values of the
“inc” variables while trying to find a ranking function. We believe that the difference in
performance between TREX and R-TERMINATOR would increase for when applied to
larger programs containing bugs as described above. This is because it typically takes
less time to answer a non-termination query than it does safety query, as the former is a
local property of a loop while the latter is a global property of a program.

int x1,x2, ..., xn;
int d1,d2, ..., dn;
d1 = d2 = ... = dn = 1;

while(x1 > 0 && x2 > 0
&& ... && xn > 0) {

if(*) x1 = x1 - d1;
else if(*) x2 = x2 - d2;
...
else xn = xn - dn;

}

n TREX #NT #TC Num.
Time (s) Alts.

1 9.9 1 1 2
2 11.9 2 2 4
3 27.7 3 3 6
4 97.4 4 4 8
5 396.6 5 5 10

(a) (b)

Fig. 6. (a) A family of loops requiring significant alternation to analyze. (b) TREX results.

A Micro-benchmark Forcing Alternation. We evaluated the performance of TREX

when analyzing loops for which multiple alternations are required to find a proof of
termination or a bug. Consider the class of loops defined in Fig. 6. Each value of n
defines a loop. To prove such a loop terminating, TREX must perform 2n alternations
between searching for an LLRF to prove the loop terminating and searching for a PRS
to prove the loop non-terminating. The results of applying TREX to the loops defined
by n ∈ [1, 5] are given in Fig. 6(b). TREX found a proof of termination in each case.
The results indicate that alternation between the LLRF search and PRS search scales
quite well for up to 6 alternations, but that performance begins to degrade rapidly when
the analysis requires more than 8 alternations. In practice, this is not an issue, as most
loops require less than 3 alternations to analyze.

Alternation for Termination 317

We also applied R-TERMINATOR to these programs, but R-TERMINATOR timed
out in each case. In its analysis, R-TERMINATOR under-approximates cycles in or-
der to produce the xi as candidates for proofs of termination. However, when R-
TERMINATOR applies a safety prover to validate these candidates, the safety prover
does not terminate. This is because the safety prover, based on predicate abstraction,
uses a weakest precondition operator to find predicates relevant to its analysis. In the
safety queries made by R-TERMINATOR, these predicates are not sufficient: the safety
prover needs an additional predicate di > 0 to establish that some xi decreases each
time through the loop. In contrast, TREX uses a non-termination prover to find that
di ≤ 0, and thus establishes that di > 0 as a loop invariant. Thus when TREX makes a
subsequent call to the safety prover, the call terminates.

We evaluated TREX’s ability to find bugs for such a loop. For the loop defined by
n = 5, we injected a fault that initialized d3 = 0. For this loop, TREX found the
resulting termination bug using 5 alternations in 22.2 seconds.

Table 3. Results of experiments over Windows Drivers. Time out was set to 1 hour.

Name LOC #Loops TREX Time (s) R-TERMINATOR Time (s)
Driver-1 0.8K 2 80 85
Driver-2 2.3K 4 1128 2400
Driver-3 3.0K 10 54 120
Driver-4 5.3K 17 945 T/O
Driver-5 6.0K 24 24 T/O
Driver-6 6.5K 16 68 62

5.2 Windows Drivers

We applied TREX to complete Windows Drivers to evaluate its ability to analyze pro-
grams of moderate size that manipulate pointers and contain multiple procedures. The
drivers were chosen randomly from the Microsoft’s Static Driver Verifier regression
suite. We could not directly compare TREX to R-TERMINATOR over the drivers used
in [10], as these were not available. The results of the evaluation are given in Table 3.
The drivers used are well-tested, and thus we did not find any bugs in them. However,
the results show that TREX is faster than R-TERMINATOR in most cases. Similar to the
micro-benchmarks presented in §5.1, this is because R-TERMINATOR produced many
more termination certificates, resulting in more safety queries.

6 Related Work

TREX brings together threads of work in proving termination that were disparate up
to now. Our work shares the most in common with TERMINATOR [10]. TERMINATOR

iteratively reasons about under-approximations of a program to construct a proof of ter-
mination. TREX simultaneously refines under and over-approximations of a program.

TREX relies on an analysis that proves termination of loops represented as a set of
guarded linear transformations of program variables. Many existing techniques prove
termination of such loops by constructing linear ranking functions [2,4,5,6,7,16]. Such
techniques are efficient, but can only be applied to a restricted class of loops and cannot

318 W.R. Harris et al.

reason about the contexts in which loops execute. In this work, we show how all such
techniques can be brought be bear in analyzing general programs, provided they can be
extended to generate counterexample traces on failure. In [15], we describe how to do
this based on the technique of [4].

The technique of [4], while constructing a termination proof, uses constraint solving
to find a loop invariant that is used to prove termination. It would be interesting to see
how this can be used inside TREX that additionally uses a safety prover to generate
invariants. We leave this as future work.

TREX also relies on techniques that prove that a given lasso does not terminate [14].
TREX applies such a technique to simultaneously search for counterexamples to termi-
nation and to guide the search for a proof of termination. TREX can also be used as a
search strategy for finding non-termination bugs. The search strategy proposed in [14]
simply enumerates potential cycles using symbolic execution. [8] gives a method for
deriving a sufficient precondition for a loop to terminate. However, this approach does
not lend well to refinement if the computed precondition is not met. TREX applies [14]
iteratively to derive a sufficient precondition for termination that is guaranteed to be a
true precondition of a loop.

Multiple safety provers [1,11,13] demonstrate that alternating between over and un-
der approximations is more effective for proving safety properties than an analysis
based exclusively on one or the other. For these provers, an over-approximation of the
program is an abstraction of its transition relation, and the under-approximation is a
set of tests through the program. The abstraction directs test generation, while the tests
guide which parts of the abstraction are refined. TREX demonstrates that the insight of
maintaining over and under approximations can be applied to prove termination prop-
erties of programs as well. However, for TREX, the over-approximation maintained is
an invariant for a loop under analysis, and the under-approximation is a set of con-
crete paths through the loop. The invariant directs what new paths through the loop are
considered, and the concrete paths guide the refinement of the loop invariant.

7 Conclusion

Safety provers that simultaneously refine under and over-approximations of a program
can often prove safety properties of programs effectively. In this work, we have shown
that the same refinement scheme can be applied to prove termination properties of pro-
grams. We derived an analysis based on this principle, implemented it, and applied it
to a set of termination analysis benchmarks and real-world systems code. Our results
demonstrate that alternation between approximations significantly improves the effec-
tiveness and performance of termination analysis.

References

1. Beckman, N.E., Nori, A.V., Rajamani, S.K., Simmons, R.J.: Proofs from tests. In: ISSTA,
pp. 3–14 (2008)

2. Berdine, J., Chawdhary, A., Cook, B., Distefano, D., O’Hearn, P.: Variance analyses from
invariance analyses. In: POPL, pp. 211–224. ACM, New York (2007)

Alternation for Termination 319

3. Berdine, J., Cook, B., Distefano, D., O’Hearn, P.W.: Automatic termination proofs for pro-
grams with shape-shifting heaps. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144,
pp. 386–400. Springer, Heidelberg (2006)

4. Bradley, A.R., Manna, Z., Sipma, H.B.: Linear ranking with reachability. In: Etessami, K.,
Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 491–504. Springer, Heidelberg
(2005)

5. Bradley, A.R., Manna, Z., Sipma, H.B.: The polyranking principle. In: Caires, L., Italiano,
G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp.
1349–1361. Springer, Heidelberg (2005)

6. Bradley, A.R., Manna, Z., Sipma, H.B.: Termination analysis of integer linear loops. In:
Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 488–502. Springer,
Heidelberg (2005)

7. Chawdhary, A., Cook, B., Gulwani, S., Sagiv, M., Yang, H.: Ranking abstractions. In:
Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 148–162. Springer, Heidelberg
(2008)

8. Cook, B., Gulwani, S., Lev-Ami, T., Rybalchenko, A., Sagiv, M.: Proving conditional termi-
nation. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 328–340. Springer,
Heidelberg (2008)

9. Cook, B., Podelski, A., Rybalchenko, A.: Abstraction refinement for termination. In: Hankin,
C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 87–101. Springer, Heidelberg (2005)

10. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In: PLDI, pp.
415–426 (2006)

11. Godefroid, P., Nori, A.V., Rajamani, S.K., Tetali, S.D.: Compositional must program analy-
sis: Unleashing the power of alternation. In: POPL, pp. 43–56 (2010)

12. Gotsman, A., Cook, B., Parkinson, M., Vafeiadis, V.: Proving that non-blocking algorithms
don’t block. In: POPL, pp. 16–28 (2009)

13. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: SYNERGY: a new
algorithm for property checking. In: FSE, pp. 117–127 (2006)

14. Gupta, A., Henzinger, T.A., Majumdar, R., Rybalchenko, A., Xu, R.-G.: Proving non-
termination. In: POPL, pp. 147–158 (2008)

15. Harris, W.R., Lal, A., Nori, A.V., Rajamani, S.K.: Alternation for Termination. Technical
Report MSR-TR-2010-61, Microsoft Research India (May 2010)

16. Tiwari, A.: Termination of linear programs. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS,
vol. 3114, pp. 70–82. Springer, Heidelberg (2004)

	Alternation for Termination
	Introduction
	Overview
	Preliminaries
	Termination Certificates
	Proving Non-termination

	Algorithm
	Sub-procedures Called by TRex
	Handling Nested Loops, Function Calls and Pointers
	Limitations of TRex

	Experiments
	Micro-benchmarks
	Windows Drivers

	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

