
Measuring the Loss of Privacy from Statistics

Michael Carl Tschantz∗

Computer Science Department
Carnegie Mellon University
mtschant@cs.cmu.edu

Aditya V. Nori
Rigorous Software Engineering

Microsoft Research India
adityan@microsoft.com

Abstract

We present a specialization of quantitative information flow to programs that compute statistics. We
provide an approach for estimating the information flows present in such programs based on Monte Carlo
simulation and argue that it is more accurate than previous approaches in this domain.

1 Introduction

Organizations often collect sensitive information about survey respondents. To protect the privacy of the
respondents, they only publish aggregate statistics aboutthe responses rather than the responses themselves.
These statistics are designed to provide information aboutthe responses as a whole without providing a
detailed view of any one response. However, under some circumstances, these statistics may reveal sensitive
information about a particular respondent. We would like toquantify how much information about a single
respondent can be learned from a given statistic.

For example, a trivially unsafe program might just report the responses themselves including the name
of the person who provided each response. Likewise, a trivially safe program might always report “access
denied” providing no information.

For a less trivial example, consider a program that takes twonon-negative integer salaries and returns
their sum:

return (salary1 + salary2)

Such a program provides an upper bound on each respondent’s salary since neither can be greater than twice
the average. Furthermore, if the sum is zero, the sum also provides the exact salary of each respondent. If,
on the other hand, the sum is one, then two possibilities for each respondent’s salary remain: zero and one.
As the sum goes up, the number of possibilities goes up. Thus,unlike the trivial cases above in which the
program could be analyzed independently of the response it produces, in this case, the value of the produced
statistic influences the amount of privacy maintained.

Our goal is to provide an automated method for determining the amount of information that flows
through a program that computes a statistic. We further desire that our analysis is accurate enough to provide
reasonable results for common statistics. For example, Clark et al. provide an analysis for measuring the
mutual information flow from sensitive inputs to public outputs [1]. While their approach produces results
accurate enough for their problem domain, confidentiality,it is not accurate enough for use on statistics.

∗This work was primarily done while the first author was an intern at Microsoft Research India.

For example, it cannot distinguish between a program that simply lists the responses and a program that
provides the sum of all the responses.

To meet this goal, we use Monte Carlo simulation. This simpleapproach has many advantages. By
treating the program as a black box, it can work on any programwritten in any language and is fully
automated. We need not create any models or ensure that the program obeys a typing discipline. Running
the actual implementation rather than analyzing a specification of what a statistic should calculate catches
the effects of bugs. Despite not having a soundness guarantee, with enough samples, our approach will
approach the exact values, whereas sound analyses often provide very loose bounds.

Rather than simply provide one number that measures this loss, we provide both the probability distri-
bution over the sensitive attribute for a respondent beforeand after learning the value of the statistic. From
these distributions, many measures of information flow (privacy loss) used in other works can be easily
calculated including mutual information [1] and the changein distribution accuracy [2].

First, we present an formal model of programs that produce statistics from a list of survey responses.
Second, we formalize the problem and discuss a related problem that is more practical in many settings.
Third, we discuss our analysis. Fourth, evaluate our analysis on simple statistics. Lastly, we discuss related
work and conclude. While an intuitive understanding of probability suffices for understanding this work,
the appendix formalizes our models with measure theory.

2 Model

We model a program that computes a statistic as a functionf that accepts as input a finite list of survey
responses and produces as output the value of the statistic.Let each survey response be an element of
the countable setX and let the value of the statistic range over the countable set Y . Thus, the program
is treated as a functionf from X ∗ to Y . While the restriction to countable setsX andY might seem
unnatural given a survey of continuous values such as weights or heights, this is not a limitation in practice
since respondents only ever provide this information to a fixed accuracy (such as to the nearest kilogram for
weight). Also, we can model probabilistic programs by having f accept a second argument that determines
the probabilistic choices. In our implementation, it’s irrelevant since it treats programs as black boxes.

The program operates in an environment from which its input comes. Let the setΩ represent the set of
possible worlds andP be a probability measure over these worlds. The survey is conducted and program
ran in one of these worldsω, the actual world.

Let X be a random variable fromΩ to X ∗ that provides the inputs to the program. This models the
process of conducting the survey, which provides the program some information about the actual worldω.
We usex = 〈x

1
, . . . , xn〉 to denote the actual survey responses provided to the program: that is,x = X(ω).

The programf computes the value of a statistic of the provided survey responses. This defines a new
random variableY = f ◦ X from Ω to Y . We usey to denote the actual value of the statistic:y = f(x) =
f(X(ω)).

For example,Xi could be random variable that relates the weight of theith surveyed person. That
is, Xi(ω) represents the weight of theith surveyed person in the possible worldω. Sinceω is the actual
world, xi = Xi(ω) is the actual weight of theith surveyed person. The programf could accept a list of
such weights and compute their mean. ThenY would be a random variable that provides the mean of the
respondents given a possible world with the actual mean being y = f(x1, . . . , xn).

We model an adversary as attempting to determine the value taken by some random variableZ where
Z ranges overZ . That is, the adversary, would like to determinez = Z(ω). For example,Z might beThe
weight of Bob or Bob has AIDS. The surveyor must determine for which random variablesZ the adversary

should not be able to determine the value taken. These randomvariables will vary from survey to survey
depending on the information collected by the survey and privacy expectations of the respondents.

The adversary has some prior beliefs aboutz. We assume that the adversary knows what worlds are
possible, how the survey was conducted, and what statistic was computed (that is, he knowsΩ, X, andf).
However, we assume that the adversary does not know the actual world ω or the actual responsesx = X(ω).
Rather than knowing the actual probability measureP , which is impossible to know exactly in many realistic
environments, the adversary has beliefs about the world represented as a probability measureQ.

3 Problem Formalization

Before formalizing the problem, we provide some notation. Given a random variableZ and probability
measureQ, we useQZ to denote the distributionD overZ such thatD(z) = Q[Z = z] for all z in Z .
Similarly, (Q|Y = y)Z represents the distributionD such thatD(z) = Q[Z = z|Y = y] for y ∈ Y such
thatQ[Y = y] 6= 0.

Our goal is to provide an analysis that computes a comparisonof the adversary’s knowledge before and
after seeing the statisticy. That is, a comparison of the distribution ofQZ and the distribution(Q|Y = y)

Z
.

Since many such comparisons exist, our analysis will provide bothQZ and (Q|Y = y)
Z

and allow the
analysis user to perform any selected comparison upon them.

While a comparison ofQZ and (Q|Y = y)
Z

is ideal, it seems unreasonable that the surveyor would
know the adversary’s prior beliefsQ. Furthermore, the surveyor cannot do a worse case analysis over all
possible values forQZ since it could be arbitrarily bad as an adversary could be arbitrarily ignorant before
seeing the program output. Thus, we must make some assumptions about the adversary to produce a problem
that the surveyor can practically solve given reasonably accessible information.

First, we assume that the adversary bases his prior distribution QZ on the actual probability measureP .
That is, we assume thatQZ is PZ . This assumption, as pointed out by Clarkson et al. [2], is made implicitly
by most works on quantitative information flow (e.g., the work of Clark et al. [1]). This first assumption
might appear to not help us since we have traded one unknown,Q, for another unknown,P . However,
unlike QZ , the surveyor can estimatePZ using the next three assumptions.

Second, we assume thatZ is determined byX. That is, we assume that the surveyor can decomposeZ
using some functiong such thatZ = g ◦X. For example, ifZ is the response of the first respondent, theng
is a function that returns the first response from the sequence of actual responsesX(ω). This assumption is
reasonable since such random variables are the most vulnerable to attack. (IfZ is not completely determined
by X, then the surveyor would have to also provide an estimation of the other factors that determineZ. It
would still be possible to use our approach, but we wish to avoid this complication.)

Third, we assume that the adversary knows the number of responses in the actual responsesx =
〈x1, . . . , xn〉 = X(ω). That is, he knowsn. Since most surveys publish the number of responses ex-
amined, this assumption is not too limiting. Fixingn, we can treatX as consisting ofn random variables
X1 to Xn with eachXi producing one responsexi.

Fourth, we assume thatX1 to Xn are independent and identically distributed. Statistically accurate sur-
veys will meet this assumption by design. Under this assumption, x1 to xn aren samples from a single
distributionPX . Given then samplesx, the surveyor can approximatePX . Let P̂X be one such approxima-
tion selected by surveyor. This estimatesPX asP̂Xn (i.e., the distribution resulting fromn independent and
identically distributed copies ofX).

These assumptions combine to allow the surveyor to estimateQZ asP̂g◦Xn . The problem then becomes
to compute a comparison of̂Pg◦Xn and(P̂ |Y = y)

g◦Xn
from the following inputs:

• the programf whereY = f ◦ X,

• the actual value of the responsesx = X(ω),

• a functiong where adversary is attempting to learnZ(ω) = g(X(ω)), and

• an approximation̂PX of the distributionPX that generated the responses and determinesZ.

Note the problem depends not just on the statisticf , but also on the actual value of the statistic, the in-
formation that the adversary would like to learn, and the estimation of the distributionPX . This requires
that the survivor solve this problem each time the statisticis to be applied to different responses or with a
different adversary. However, as argued in the introduction, the amount of information flow is sensitive to
these changes.

4 Analysis

We now present a simple analysis for providing an approximate answer to the practical version of the prob-
lem above. We also discuss our implementation of this analysis.

We use Monte Carlo simulation to estimate(P̂ |Y = y)Z as follows. We repetitively usêPX to generate
a samplex′ from P̂Xn , we runf on x

′ to producey′, and we rung on x
′ to producez′. By keeping track

of the valuez′ takes on each timey′ is equal toy, we can construct estimations ofP̂Z and(P̂ |Y = y)Z in

the usual way: we estimatêPZ(z) as the number of samples that result inZ = z divided by the number of
samples and we estimate(P̂ |Y = y)Z(z) as the number of samples that resulted in bothZ = z andY = y
divided by the number of samples that resulted inY = y.

An advantage of this method is it works for anyf andg that are functions. (The method also works for
randomized functions provided that the surveyor can model their sources of randomness.) The method runs
on large, complex programs even without source code.

Since constructing(P̂ |Y = y)Z takes memory linear inZ (not counting any memory used byf or g),
this approach will not work for largeZ . However, one may choose to focus on a subset ofZ that indicate
sensitive outcomes to reduce memory usage to the size of thissubset. For example, one might focus only on
z, the actual value thatZ takes on, and calculatêP (Z = z|Y = y) for comparison toP̂ (Z = z).

Several factors can slow down gaining an accurate estimation. If f or g is a time intensive computation,
our dynamic analysis will be slow. A large size ofX or n, or a low value forP̂ (Y = y) can each result in

needing a large number of samples for constructing an accurate estimation of(P̂ |Y = y)Z . While surveys
that ask for exact answers can have a largeX , many only ask multiple choice questions yielding a more
manageableX .

In general a largen can be problematic, but in the following special case, we canoptimize our analysis
to not depend uponn. Some statistics strips sensitive information (such as name) from eachXi and lists the
sanitized form. Such statisticsf have the formf([X1,X2, . . . ,Xn]) = [f ′(X1), f

′(X2), . . . , f
′(Xn)] for

some functionf ′. If Z is independent of allXi except one of them, sayXi, then

P̂ (Z = z|Y = y) = P̂ [Z = z|f([X1, . . . ,Xi, . . . ,Xn]) = [y1, . . . , yi, . . . , yn]]

= P̂ [Z = z|f ′(X1) = y1, . . . , f
′(Xi) = yi, . . . , f

′(Xn) = yn]

= P̂ [Z = z|f ′(Xi) = yi]

where the last equality follows fromZ being independent of allXj other thanXi. Thus, we can ignore all
Xj other thanXi. This greatly speeds up the approximation.

5 Evaluation

To evaluate our approach, we fix a method of comparingP̂Z and(P̂ |Y = y)
Z

. The method we choose uses
entropy, an information theoretic measure of the amount of uncertainty associated with a distribution. The
entropy of the distribution̂PZ is

H(P̂Z) = −
∑

z∈Z

P̂ [Z = z] log2 P̂ [Z = z]

and the entropy of the distribution(P̂ |Y = y)
Z

is

H((P̂ |Y = y)
Z
) = −

∑

z∈Z

P̂ [Z = z|Y = y] log2 P̂ [Z = z|Y = y]

(One usually speaks of the entropy of a random variable with the underlying probability measureP being
understood. Since we are dealing with two probability measures,P̂ andP̂ |Y = y, we choose to make them
explicit.)

The comparison of the distributionŝPZ and (P̂ |Y = y)
Z

we use is the difference of their entropies:

H(P̂Z) −H((P̂ |Y = y)
Z
). Clark et al. [1] argues that this difference measures the amount of information

that flows fromY = y to the adversary aboutZ since it is the decrease in the uncertainty ofZ after learning
that Y is equal toy. Indeed, this difference is related to mutual information,an information theoretic
measure of how much information one random variable provides about another. Ignoring thatY = y is

a condition and not a random variable,H(P̂Z) − H((P̂ |Y = y)
Z
) may be seen as providing the mutual

informationI(Z;Y = y) betweenZ andY = y for a deterministic program.

Using entropy, we computed the difference betweenP̂Z and(P̂ |Y = y)
Z

for various statistics. In all
cases we used the uniform distribution over0 to 99 for eachXi. We selected the uniform distribution since
by having a high variance, we expected it to be a challenging distribution for the analysis in the sense of
requiring a large number of samples. ForZ, we used the value of the first inputX1.

The first statistic we consider is the parity ofX1. This is not a particularly interesting statistic, but we
can exactly calculateH(P̂Z) to be log2(100) andH((P̂ |Y = y)

Z
) to be log2(50) allowing us to see the

accuracy of our analysis. To study convergence and show thatour analysis can provide accurate estimations,
we show the estimations produced using various numbers of samples in Figure 1(a). The y-axis shows the
estimated values for the entropies and mutual information while the x-axis shows the number of samples
performed, which ranges from21 to 225. This table shows that the estimations of the values ofH(P̂Z) and
H((P̂ |Y = y)

Z
) approach their real values as the number of samples increases. Thus, the estimation of

H(P̂Z)−H((P̂ |Y = y)
Z
) approaches its real value as well. By225 samples, the mutual information is less

then0.0000003 bits away from the exact value of1.
Note that the estimations ofH(P̂Z) andH((P̂ |Y = y)

Z
) tend to approach from below. Indeed, our es-

timator is a biased one. While others have created less unbiased estimators ([5] provides a recent overview),
we simply opt to use more samples instead.

The results for more realistic statistics (mean, median, and mode) are shown in Figure 1(b). Note that
the value of the estimations for all three statistics stabilized by 223 samples. The raise and fall of the
estimations is due to both the estimations ofH(P̂Z) andH((P̂ |Y = y)

Z
) approaching their real values

from below withH(P̂Z) approaching it’s real value more quickly thanH((P̂ |Y = y)
Z
). This creates a

period whereH(P̂Z) is a reasonable estimation andH((P̂ |Y = y)
Z
) is a radical underestimation resulting

in H(P̂Z) −H((P̂ |Y = y)
Z
) being a radical overestimation.

 0

 1

 2

 3

 4

 5

 6

 7

 5 10 15 20 25

B
its

Exponent of the number of samples (log2 scale)

H(Z)
log2(100)
H(Z|Y=y)
log2(50)

H(Z) - H(Z|Y=y)
1

(a) Parity

 0

 1

 2

 3

 4

 5

 6

 7

 5 10 15 20 25

B
its

Exponent of the number of samples (log2 scale)

H(Z) - H(Z|Y=y) for mean
H(Z) - H(Z|Y=y) for median

H(Z) - H(Z|Y=y) for mode

(b) Mean, Median, and Mode

Figure 1: Estimations for Various Statistics

Statistic H(P̂Z) −H((P̂ |Y = y)
Z
) Run Time (secs)

Parity 0.999999797131 639
Mean 0.0125233560025 684
Median 0.00205987477602 1498
Mode 0.0376910036281 2444

Table 1: Summery of Analysis Results for Four Statistics

Table 1 summarizes the estimations for225 samples and shows the amount of time taken to com-
pute these results for running on a3.2 GHz, 64-bit processor. Note that the estimations ofH(P̂Z) −
H((P̂ |Y = y)

Z
) for the mean, median, and mode are all lower than for parity. This conforms our sus-

picion that aggregate statistics tend to reveal little about their respondents. The time for estimating these
values grow linearly with the number of samples as expected.The slowest was mode, which took41 minutes
for 225 samples. However, an estimation that differs by less than0.021 bits (0.32%) is available in under a
minute using219 samples.

To explore how the number samplesn affects the value ofH(P̂Z) − H((P̂ |Y = y)
Z
) and the rate of

convergence to it, Figure 2(a) shows the estimations ofH(P̂Z) −H((P̂ |Y = y)
Z
) for the mean for varying

sizesn. Using more respondents decreased the difference betweenH(P̂Z) andH((P̂ |Y = y)
Z
). However,

it increased the number of samples needed for convergence since convergence requires seeing many samples
such thatY = y, which becomes a less common event asn increases. Furthermore, it increased the amount
of time needed to compute the value of the statistic keeping the number of samples constant since calculating
the mean over more respondents takes longer. In the worse case, the mean over1024 respondents, it took
109 minutes for225 samples with convergence still not reached. Figure 2(b) plots these run times.

Our implementation may be downloaded fromhttp://www.cs.cmu.edu/∼mtschant/mcqif/

 0

 1

 2

 3

 4

 5

 6

 7

 5 10 15 20 25

B
its

Exponent of the number of samples (log2 scale)

n=4
n=16
n=64

n=256
n=1024

(a) Estimations ofH(P̂Z) −H((P̂ |Y = y)
Z
)

 1

 4

 16

 64

 256

 1024

 4096

 5 10 15 20 25

S
ec

on
ds

 (
lo

g 2
 s

ca
le

)

Exponent of the number of samples (log2 scale)

n=4
n=16
n=64

n=256
n=1024

(b) Run Times for Analysis

Figure 2: Results for Mean with Various Numbers of Respondents

6 Related Work

Quantitative Information Flow. Much work has been done on information flow analysis. We will only
discuss those works that deal with quantifying the flow of information. These works concern themselves
with either confidentiality or integrity. In both cases, thetool user partitions the inputs and outputs of the
program into high-level and low-level classes. Quantitative information flow for confidentiality measures
how much the high-level inputs affect the low-level outputs. Quantitative information flow for integrity, on
the other hand, measures how much the low-level inputs affect the high-level outputs. The two problems are
dual and an analysis for one will apply to the other. Since ourwork fits under the confidentiality problem,
we will discuss all related works from this angle even if theywere created with integrity in mind.

The work of Clark, Hunt, and Malacaria presents a formal model of programs for quantifying infor-
mation flows and a static analysis that provides lower and upper bounds on the amount of information
that flows [1]. They measure information flow as the mutual information between the high-level inputs
and low-level outputs given that the adversary has control over the low-level inputs. That is, they measure
I(Lout;H in|Lin) whereLout is a random variable representing the low-level outputs,H in is one represent-
ing the high-level inputs, andLin is one representing low-level inputs. Unlike our work that measures the
information flow in a program given a particular input, theiranalysis provides upper and lower bounds on
the size of the information flow in a given program regardlessof the actual inputs or the distributions that
generate them. Since the upper bound holds for all input distributions, it is an upper bound on the channel
capacity of the program.

Their analysis, if implemented, could be used for our problem by treating the inputsX asH in, usingY
asLout, and assuming thatZ = X. (Lin is unused since we do not allow the adversary to control any inputs
to the statistic.) However, their analysis produces boundsthat are too loose for our purposes. For example,
no matter how many independent and identically distributedsamples goes into a mean, their analysis will
state that all the information about the first sample is provided as output despite the fact that it would be
hidden amongst other samples.

McCamant and Ernst provide a dynamic analysis for quantitative information flow using the mutual
information formalization [6]. Their analysis provides anupper bound on the flow of information of a single

path of execution in a program. Their analysis converts a path of execution into a flow network. They then
find the max cut of the network to bound the information flow. Unlike us, they provide a sound upper bound
for that path of execution instead of an estimate. However, like the work of Clark et al., their analysis does
not account for information hiding in the calculations likea sum making the bound too loose to be useful
for our purposes.

Newsome and Song also provide a dynamic analysis for quantitative information flow using the mutual
information formalization [7]. Their analysis converts a single path of execution into a logical formula that
characterizes the path. Each solution to this formula corresponds to a value that the outputY can take
on while taking that path of execution. If all such solutionsare found, this provides the channel capacity
betweenX andY provided only the analyzed path of execution is ever used. Inpractice, a theorem prover
can rarely find all such solutions, and thus, their analysis only provides a lower bound on the channel
capacity. Whether or not this bound is tight enough for our uses depends on the theorem prover and the
formula.

Clarkson, Myers, and Schneider object to the mutual information formulation of quantitative information
flow [2]. Instead they proposed a formulation using the beliefs of the adversary. However, such a formulation
is often not practical since the surveyor often will not knowthe adversary’s beliefs. After adjusting their
definitions for our uses, information flow is defined to beD(QZ → ż) −D((Q|Y = y)

Z
→ ż) whereQ is

the adversary’s beliefs,z = Z(ω) is the actual value of the random variable the adversary is attempting to
learn,ż is a distribution overZ that assigns1 to z and0 to every other element ofZ , andD(QZ → PZ) is
the relative entropy:

D(QZ → PZ) =
∑

z∈Z

PZ(z) log
PZ(z)

QZ(z)

For deterministic programs, they prove thatD(QZ → ż) − D((Q|Y = y)Z → ż) reduces to− log QY (y).
We can calculate this given an approximation ofQY directly. We could also calculate this using our sampling
approach given an approximation ofQ or QX .

Preserving Privacy. Statistical disclosure limitation attempts to preserve privacy despite releasing statis-
tics. (For an overview see [4].) Most of the methods used in this line of work are specialized for a single
class of statistics. Most often this is the class of frequency tables, tables that record the number of re-
spondents with various combinations of attributes. Tablesof magnitudes and sanitized individual responses
(microdata) are also considered. While our approach is moreefficient for some statistics than others, it can
work on any statistic provided it is calculated by a computer.

Other works in statistical disclosure limitation use MonteCarlo simulation for purposes other than ours.
For example, Slavković uses it construct an estimation of probability distributions over outputs (̂PX in our
notation) [8].

Differential privacy is a formalization of what it means fora statistic to maintain the privacy of the
respondents about which it is calculated [3]. It requires that the output that the program produces is probably
no different from the output it would have produced if one respondent were dropped from or added to the
survey. In particular, for a statisticf to haveǫ-differential privacy, it must be the case that for all setsD1

andD2 of responses that differ on at most one response and all subsets S of the range off

Pr[f(D1) ∈ S] ≤ eǫ Pr[f(D2) ∈ S]

This ensures that the probability of the statistic’s outputfalling in some setS changes only by a factoreǫ as a
single respondent’s information is either added or removedfrom the survey. Intuitively, if the statistic prob-
ably looks the same regardless of if a person is surveyed or not, an adversary cannot learn much information

about the person. While we could considerǫ to be measure of information flow, it does not lend itself to
the analysis of many standard statistics since they do not have ǫ-differential privacy for any value ofǫ. For
example, the mean of respondent incomes would not satisfyǫ-differential privacy for anyǫ since it would
surely change by at least a small amount with a respondent removed. (A version of the mean statistic that
adds random noise to the result could be constructed to satisfy ǫ-differential privacy for anǫ that depends
upon the amount of noise added.)

7 Conclusions and Future Work

We have provided an analysis for determining the amount of information that an adversary learns from a
statistic given various assumptions. Future work could ease these assumptions. However, this work and all
works on quantitative information flow must make some assumption about the adversary. In most works,
including our own, they assume that the adversary’s beliefsQ are in line with the actual wordP and that
adversary has no additional background knowledge. Clarkson et al. instead assume they can model the
adversary. Both of these assumptions are troubling. This suggests that methods that do not depend on the
adversary, such as differential privacy [3], might providea better solution to protecting privacy. However, it
considers every standard statistic (mean, median, mode, etc.) equally and completely unprivate.

Other future work could combine our method with static approaches for information flow such as the
work of Clark et al. [1]. Such a hybrid approach, if possible,might scale to systems too large or slow for
our Monte Carlo approach while using our approach to closelyexamine key components of the program.

References

[1] CLARK , D., HUNT, S., AND MALACARIA , P. A static analysis for quantifying information flow in a
simple imperative language.Journal of Computer Security 15 (2007), 321–371.

[2] CLARKSON, M. R., MYERS, A. C., AND SCHNEIDER, F. B. Belief in information flow. InCSFW
’05: Proceedings of the 18th IEEE workshop on Computer Security Foundations (Washington, DC,
USA, 2005), IEEE Computer Society, pp. 31–45.

[3] DWORK, C. Differential privacy. In33rd International Colloquium on Automata, Languages and
Programming (ICALP 2006) (2006), vol. 2, pp. 1–12.

[4] FEDERAL COMMITTEE ON STATISTICAL METHODOLOGY. Statistical disclosure limitation method-
ology. Statistical Policy Working Paper 22, 2005.

[5] K ENNEL, M. B., SHLENS, J., ABARBANEL, H. D. I., AND CHICHILNISKY, E. J. Estimating entropy
rates with bayesian confidence intervals.Neural Computation 17, 7 (jul 2005), 1531–1576.

[6] M CCAMANT , S., AND ERNST, M. D. A simulation-based proof technique for dynamic information
flow. In PLAS ’07: Proceedings of the 2007 workshop on Programming languages and analysis for
security (New York, NY, USA, 2007), ACM, pp. 41–46.

[7] NEWSOME, J., AND SONG, D. Influence: A quantitative approach for data integrity. Tech. Rep.
CMU-CyLab-08-005, CyLab, Carnegie Mellon University, 2008.

[8] SLAVKOVI Ć, A. B. Statistical Disclosure Limitation Beyond the Margins: Characterization of Joint
Distributions for Contingency Tables. PhD thesis, Carnegie Mellon University, 2004.

A The Model More Formally

In this section, we provide definitions that are more formal then the ones found in Sections 2 and 3.
Formally, we model the environment from which program inputs come as a probability space〈Ω,F , P 〉

with the sample spaceΩ, eventsF , and probability measureP that models this environment.
Let X ∗ be the set of inputs that the modeled program can consume. We assume thatX is countable,

implying thatX ∗ is countable. This ensures that〈X ∗, 2X ∗

〉 a measurable space. The random variableX,
which models program inputs, is from the probability space〈Ω,F , P 〉 to the measurable space〈X ∗, 2X ∗

〉.
Let Y be the set of outputs that the modeled program can produce. Weassume thatY is countable, and

thus,〈Y , 2Y 〉 is a measurable space. Letf : X ∗ → Y be a function that models the program. LetY be
f ◦X, which models the output of the program.Y is from the probability space〈Ω,F , P 〉 to the measurable
space〈Y , 2Y 〉. Y is a well-defined random variable since for anyS ∈ 2Y , f−1(S) must be in2X ∗

and the
state space ofX is 〈X ∗, 2X ∗

〉 ensuring thatX−1(f−1(S)) = Y −1(S) is inF .
We model an adversary as attempting to determine the value took on by some random variableZ from

〈Ω,F , P 〉 to some measurable space〈Z , 2Z 〉, again, assuming thatZ is countable.
We model the adversary’s beliefs about the world as a probability measureQ on 〈Ω,F〉.
Given a random variableX from 〈Ω,F , P 〉 to 〈X ,Σ〉, thedistribution PX is the pushforward measure

of P by X. That is,PX(E) = P (X−1(E)) for E ∈ Σ.
Given a probability space〈Ω,F , P 〉 and random variableX from 〈Ω,F , P 〉 to 〈X ,Σ〉, we writeP |Y =

y for the probability measure such that(P |Y = y)(E) = P (E ∩ Y −1({y}))/P (Y −1({y})). Note that
〈Ω,F , P |Y = y〉 is a probability space with the same random variables as〈Ω,F , P 〉.

Thus, given probability space〈Ω,F , P 〉, random variableY from 〈Ω,F , P 〉 to 〈Y ,ΣY 〉, and random
variableZ from 〈Ω,F , P 〉 to 〈Z ,ΣZ〉, (P |Y = y)Z is the distributionD such thatD(z) = P (Z−1({z})∩
Y −1({y}))/P (Y −1({y})) for y ∈ Y such thatP (Y −1({y})) 6= 0.

