
Summarizing Personal Web Browsing Sessions

Mira Dontcheva1 Steven M. Drucker3 Geraldine Wade4 David Salesin1,2 Michael F. Cohen3
1Computer Science & Engineering

University of Washington
Seattle, WA 98105-4615

{mirad, salesin}@cs.washington.edu

2Adobe Systems
801 N. 34th Street
Seattle, WA 98103
salesin@adobe.com

3Microsoft Research,4Microsoft
One Microsoft Way

Redmond, WA 98052-6399
{sdrucker, gwade,

mcohen}@microsoft.com

ABSTRACT
We describe a system, implemented as a browser extension,
that enables users to quickly and easily collect, view, and
share personal Web content. Our system employs a novel in-
teraction model, which allows a user to specify webpage ex-
traction patterns by interactively selecting webpage elements
and applying these patterns to automatically collect similar
content. Further, we present a technique for creating visual
summaries of the collected information by combining user
labeling with predefined layout templates. These summaries
are interactive in nature: depending on the behaviors encoded
in their templates, they may respond to mouse events, in ad-
dition to providing a visual summary. Finally, the summaries
can be saved or sent to others to continue the research at an-
other place or time. Informal evaluation shows that our ap-
proach works well for popular websites, and that users can
quickly learn this interaction model for collecting content
from the Web.

ACM Classification H5.2 [Information interfaces and pre-
sentation]: User Interfaces. - Graphical user interfaces.

General TermsDesign, Human Factors, Algorithms

Keywords: Information management, webpage extraction
patterns, template-based summarization

INTRODUCTION
The proliferation of Web content and the advances in search
technology have fundamentally changed our lives. Today, to
plan a vacation, you no longer go to a travel agent; when
making purchases, you no longer go to your neighborhood
specialty store; and when learning about a new topic, you no
longer go to the library. Instead, you search the Web. While
finding information is becoming easier and easier, collecting
and organizing Web research and coming back to it remains
difficult, especially when the research is exploratory. Sharing
the results of the browsing session with others can be even
more difficult. As found by Sellen et al.[20], research brows-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST’06,October 15–18, 2006, Montreux, Switzerland..
Copyright 2006 ACM 1-59593-313-1/06/0010 ...$5.00.

ing sessions typically last a long time, span several sessions,
involve gathering large amounts of heterogeneous content,
and can be difficult to organize ahead of time as the cate-
gories emerge through the tasks themselves. Current meth-
ods for collecting and organizing Web content include sav-
ing bookmarks or tabs, collecting content in documents, or
storing pages locally. While useful, these methods require a
great deal of overhead as pages must be saved manually and
organized into folders, which distracts from the real task of
analyzing the content and making decisions.

In this paper, we present a new approach to collecting and
organizing Web information. Our approach is motivated by
Gibson et al.’s analysis[8] of the amount of template content
on the Web. Their study shows that 40-50% of the content on
the Web is template content and that template material has
grown and is continuing to grow at a rate of approximately
6% per year. Studies of users’ habits for collecting Web con-
tent[19] further show that people are often interested in col-
lecting not only full webpages but also pieces of webpages.
These findings motivated us to design an interface that lever-
ages the growing amount of templated information on the
Web and allows users to gather only the pieces of content
they find relevant to their task.

Our interface includes two parts: user specification of rele-
vant content, and automatic collection of similar content. The
user specifies relevant content by interactively selecting web-
page elements and labeling each element with a keyword,
chosen from a predefined set. The selected content is stored
locally and used to create anextraction patternthat can be
applied to collect more content from similar pages. Extrac-
tion patterns specify the locations of selected elements using
the structure of the webpage and, optionally, text that must be
matched in any new pages. When the user visits a new page,
he can automatically collect all of the content that is analo-
gous to the content previously selected as relevant. Further,
we provide an interface for collecting content from multiple
pages simultaneously by allowing the user to select hyper-
links that point to pages of interest.

To organize and present the gathered content, we employ lay-
out templates that create visual summaries. A layout template
specifies how the content should be organized and formatted
and defines a set of user interactions available within a sum-
mary. The templates filter and present the content according
to the labeling specified by the user during content selection.

To demonstrate possible content presentations, we have im-
plemented several layout templates, including a map, calen-
dar, and grid. Our system is not limited to these designs and
can incorporate additional layout templates.

Our work has two key contributions: a novel interaction
mechanism for collecting Web content semi-automatically,
and a presentation technique for the gathered content that
uses pre-defined layout templates to construct summaries
that are interactive and can be shared with others. We demon-
strate our approach on three types of tasks: comparison shop-
ping, travel planning, and researching academic papers. How-
ever, our approach can be used for any type of Web research
and can be applied to other domains. User feedback shows
that people can quickly learn to use our system and find many
tasks for which it is useful.

RELATED WORK
Our work has its roots in the area of information workspaces
and systems like WebBook[5], Data Mountain[17], and
TopicShop[1], which present different mechanisms for pre-
senting and organizing collections of webpages. Our system
is most closely related to Hunter Gatherer[19] and Internet
Scrapbook[22], which provide the ability to save webpage
elements and place them together in a document. Like these
two systems, we provide an interface that allows the user to
select pieces of webpages; however, we go further by mak-
ing use of the user selection to create extraction patterns that
can then be used to gather content automatically. We also
provide a mechanism for organizing the gathered content in
richer ways, such as on a map or calendar, and for different
purposes, such as for a PDA or printer.

Our use of user-specified labels for relating content from dif-
ferent sources is similar to approaches in Semantic Web ap-
plications, such as Piggy Bank[11] and Thresher[10]. Our
work differs from these in two ways. First, we create visual
summaries of the gathered content, while Piggy Bank and
Thresher store the collected data in a database. Second, our
interface for labeling the content is more accessible to the
average Web user, because the user must simply right-click
and select a keyword. Piggy Bank requires that the user write
scripts, and Thresher expects that the user has some knowl-
edge of Semantic Web constructs.

Another related system is Chickenfoot[3], which also auto-
mates repetitive Web tasks through the use of a high-level
interface and pattern matching in webpages. However, our
goals, approaches, and results are very different. Chicken-
foot is designed for customizing webpage appearance and
thus provides a scripting interface for manipulating webpage
elements. Our system is designed for collecting and sharing
Web content and thus provides an interface for collecting el-
ements and organizing them in different ways.

Automated layout has been explored previously including
approaches that use constraints[2] and employ machine learn-
ing [14]. Jacobs et al.[13] combine constraints with pre-
defined layout templates to create adaptive documents. Our
system does not use constraints, as we rely on Cascading
Style Sheets (CSS) and the browser for correct layout. In

some cases, we override the browser’s layout engine, using
scripts, to create more aesthetic results.

Bibliographic reference tools, such as RefWorks[16] and
EndNote [6], are specifically designed for collecting and
managing academic references. These systems have special-
ized filters, much like our extraction patterns, for electronic
references websites and can automatically import all the data
for a particular reference into a database. Our system com-
plements such systems by giving the user an interface for
selecting personally relevant bibliographic information. Fur-
thermore, our approach is more general and is applicable to
other Web content.

USER INTERFACE
We designed the user interface with the goal of making the
process of collecting information as unobtrusive as possible
and allowing the user to focus on the task at hand rather
than worry about organizing and keeping track of content.
Our system is implemented as an extension to the Firefox
browser and is presented to the user through a toolbar (see
Figure 1). The toolbar includes four buttons and a check-
box. The “Start” button opens the “summary” window that
displays a visual summary of the content gathered thus far.
The “Select” button initiates the selection mode and enables
the user to select and label pieces of Web content. The “Add
Page” button allows the user to automatically add the content
found by an extraction pattern to the summary. This button
is enabled only when there is a matching pattern that can
be used to extract content automatically. The “Add Linked
Page(s)” button initiates a different selection mode in which
the user can select any number of hyperlinks to add the con-
tent from the linked pages to the summary directly and simul-
taneously. A checkbox specifies whether to visually outline
the elements found by an extraction pattern on a new web-
page. If it is checked, the elements found are outlined in pur-
ple. The summary window (shown in Figure 2) has buttons
for opening and saving summaries and a menu for changing
the layout template used to compose the summary.

Sample User Scenario
To help explain the interface, we describe an example user
scenario and show the steps taken by the user to create a
summary. In particular, we describe the steps a user takes
in planning a night out in Seattle.

The user starts the browsing session by looking through
restaurant listings atwww.seattleweekly.com . When
he finds a potential restaurant, he presses the “Select” bu-
ton, which enables the selection mode. This mode disables
the webpage’s default functionality to allow the user to se-
lect page elements, such as a paragraph or an image. As the
user moves the cursor over the webpage, the page element
directly underneath the cursor is outlined in red. To select
an item, the user clicks with the left mouse button. The out-
line becomes purple, and the item remains highlighted while
he selects other elements. The user also assigns a label to
each selected element with a right-button context menu. This
label assignment step is necessary because our layout tem-
plates are defined with respect to these labels. Figure 1, step
1, shows that the user has selected three elements and has as-
signed them the “name,” “image,” and “description” labels.

Figure 1: In step 1, the user selects the picture, name, and type of cuisine for a restaurant; labels them with “image,”
“name,” and “description”; and adds them to the summary database, shown below the restaurant webpage. When the
user finds a new restaurant, as shown in step 2, he can add the same content to the database automatically by pressing
the “Add Page” button. In step 3, the user finds a list of restaurants at that website and adds the content for three of the
restaurants to the database simultaneously by selecting the linked restaurant names. In step 4, the user selects a new
page element, the address, and the system automatically finds all the address elements for the restaurants previously
gathered and adds them to the summary database.

Figure 2: The grid layout template places all the con-
tent in the database on a grid in groups, according to
extraction pattern.

To finish the selection mode and save the selected elements
to the summary, the user turns off the “Select” button. The
system stores the selected elements locally and builds an ex-
traction pattern for the selected elements in that page. The
user can view the collected content as a summary at any time
by going back to the summary window and selecting a layout
template, such as a calendar, map, or grid.

When the user finds a new restaurant he wants to save, all he
has to do is press the “Add Page” button and all of the same
content is automatically added to the summary (see Figure 1,
step 2). He can also add several restaurants to the summary
simultaneously (Figure 1, step 3) by selecting hyperlinks. To
add content simultaneously, the user presses the “Add Linked
Page(s)” button, which enables the hyperlink selection mode.
To finish selecting hyperlinks, the user turns off the “Add
Linked Page(s)” button, and the content from all the linked
pages is simultaneously added to the summary.

The user can select new page elements for pages he has al-
ready visited, without returning to the page where he first se-
lected the elements. For example, to add the address to all the
already gathered restaurants, he can select the address on any
restaurant page. He again initiates the selection mode with
the “Select” button and selects the address (see Figure 1, step
4). The elements corresponding to previously selected page
elements are highlighted in purple. When he is finished, the
summary is automatically updated to include the addresses
of all the events he has already gathered. Because the saved
restaurants now include an address, the user can see where
they are located using the map layout template (Figure 3).

In addition to gathering information about restaurants, the
user can collect any other type of information, such as movies
or current events in the area. When he goes to a new website
and wants to add content, he must first specify which content
for that website is relevant. This is necessary because our

Figure 3: With the map layout template, the user can
view the content with respect to a geographical map.
The template filters the database and presents only
content that includes an address.

system gathers content using the structure of a given web-
page, as we describe in the next section, and different web-
sites have different structures. If, however, he has been to this
website in a previous browsing session and has already spec-
ified important elements, he can use the same specification
and automatically collect new content. Since the labels as-
signed to data from different websites are a constrained set,
all the content can be presented uniformly in one summary.
The user can add content from any number of sites and go
back and forth updating the summary. All summary elements
are linked to the original webpages, and the user can navigate
directly from the summary and return to those webpages.

The experience we have created separates the content pre-
sented on the Web from its structure, presentation, and source,
and allows the user to create personal summaries of content.
This type of interface can lower the overhead of gathering
and managing data and allow the user to focus on the task at
hand. Next we describe the details of how we make this user
experience possible.

SYSTEM DESCRIPTION

We first describe our overall system design and then explain
the technical details for each part. Our system includes three
components: an extraction pattern repository, a database, and
a set of layout templates. Theextraction pattern repository
containspatternsdefined from the user-selected page ele-
ments. When the user visits a new page, the patterns in the
extraction repository are compared with the page. If there
are matches, the user can add the matching content to the
database. Thedatabasestores the content according to the
user-specified labels and source webpages. Thelayout tem-
platesfilter the database to create summary views. Please re-
fer to Figure 4 for a visual description of our system.

Figure 4: The user-selected page elements define extraction patterns that are stored in the extraction pattern repository.
Every new page the user visits is compared with the patterens, and if matching page elements are found, the user can
add them to the summary database. The layout templates filter the database and compose summary views. The user can
view the database contents at any time with any view.

Gathering content

The content of every webpage is accessible through the Doc-
ument Object Model (DOM), which is an interface for dy-
namically accessing and updating the content, structure, and
style of Web documents. With the DOM, every element in a
webpage, represented with tags such as<body> , <table> ,
or <p>, becomes a node in the DOM hierarchy, with the
<html> tag at the root of the hierarchy.

The page-element selection interface uses the DOM struc-
ture to provide a mechanism for selecting content. When the
user initiates the selection mode, the typical behavior of the
webpage is frozen and the browser mouse event handlers are
extended to allow the user to select pieces of the DOM hi-
erarchy. As the user moves the cursor and clicks, the DOM
nodes directly underneath the cursor are highlighted. Once
the user has selected a set of nodes, the system generates an
extraction rule for each selected node. Theextraction rule
consists of the selected node, the path from the root of the
document to the selected node, and the user-assigned label.
The path enables finding analogous elements in documents
with similar structure. The extraction rules rely on consistent
structure. Thus, if the structure changes, the user will have
to go back and re-specify extraction rules. Gibson et al. show
that template material changes every 2 to 3 months; however,
the magnitude of these changes and their effect on the extrac-
tion rules is not yet clear.

In addition to thestructural extraction rules just described,
our system also provides content-based rules.Content-based
extraction rulescollect content from new webpages by match-
ing text patterns instead of structural patterns. To specify a
content-based rule, the user selects an element and labels it
not with a keyword, as he does with the structural rules, but
with text from the selected element that should be matched
in analogous elements. For example, to only collect arti-

cles by author “John” the user selects an article and its au-
thor, chooses “semantic rule” from the right-button context
menu, and types “John.” A content-based rule first tries to
find matching content using the structural path, but if it is
not successful, the rule searches the entire document. It finds
matching content only if the node types match. For example,
if the rule finds the word “John” in a<table> node and
the selected node defining the rule is in a<p> node, the rule
will fail. This limits the number of spurious matches and en-
sures consistency in the gathered content. The effectiveness
and power of content-based rules, when possible, was shown
by Bolin et al. in Chickenfoot.

The user may specify any number of extraction rules for
a given page. As those rules should always be applied to-
gether, the system collects the extraction rules intoextrac-
tion patternsand then stores them in the extraction pattern
repository. An extraction pattern can include any number of
extraction rules and can be edited by the user to add or re-
move rules. For example, the user might care about the name,
hours, and address of a restaurant. The system creates an ex-
traction rule for each of these elements and then groups them
together so that for any new restaurant page, it searches for
all three page elements in concert.

When the user visits a webpage, each extraction pattern is
compared with the DOM hierarchy, and the pattern with the
highest number of matching rules is selected as the match-
ing pattern. If the user chooses to store the matched content,
the webpage is stored locally, and the elements found by the
matching pattern are added to the summary database. When
the user selects hyperlinks to collect content from multiple
pages simultaneously, the system loads the linked pages in
a browser not visible to the user, compares the pages with
the extraction patterns, and adds all matching elements to the
database. If an extraction pattern does not match fully, it may

Figure 5: The PDA layout template is designed for a
small-screen device so that the user can take the sum-
mary anywhere. The layout separates the content into
tabs according to website and provides detailed views
when the user clicks on an item.

be because some of the content is absent from the page, or be-
cause the structure of the page is slightly different. In these
cases, the user can augment the extraction pattern by select-
ing additional elements.

Although the growing use of webpage layout templates for
formatting and organizing content on the Web makes it pos-
sible for us to automate collecting information from the Web,
this automation comes at a cost. Our system is sensitive to the
structure of HTML documents and depends on a sensible or-
ganization to enable the selection of elements of interest. If
the structure does not include nodes for individual elements,
the user is forced to select and include more content than nec-
essary. On the other hand, if the structure is too fine, the user
must select multiple elements, adding overhead to the selec-
tion process. Most websites that do use templates tend to use
templates with good structure, because good structure makes
it easier to automate webpage authoring.

Summary composition
The database organizes the webpage elements according to
the user-assigned label, the page where it was found, and
the extraction pattern used to collect it. Since we provide the
same set of labels for all webpages, we can create layout tem-
plates that filter the database using the labels rather than the
specific HTML content.

A layout template consists of placement and formatting con-
straints. Theplacement constraintsspecify how the data should
be organized in the summary. For example, a placement con-
straint can specify that all content with the label “name” be
placed in a list at the top of the document. The position of
each element can be specified in absolute pixel coordinates or
be relative to previously placed elements. For relative place-
ment, the browser layout manager computes the final content
position; for absolute placement, the template specifies all
final element position. Placement constraints can be hierar-

Figure 6: The print layout template formats the content
so that it can be printed.

chical. For example, the template designer can specify that
content collected from the same webpage be grouped into
one visual element and that such groupings be organized in
a list. Although the hierarchy can have any depth, in practice
we have found that most layout templates include placement
constraint hierarchies no deeper than two or three levels.For-
matting constraintsspecify the visual appearance of the ele-
ments, such as size, spacing, or borders.

Each layout template can also specify mouse and keyboard
interactions for the summary. For example, when the user
moves the cursor over an item in the calendar, a short de-
scription of the event is presented. When the user clicks on
the item, a detailed view of that item is displayed in a panel
next to the calendar.

The layout templates are implemented with javascript and
Cascading Style Sheet (CSS) style rules. To create the sum-
mary, our system loads an empty HTML document and dy-
namically populates the document with the DOM nodes in
the database using the placement constraints of the current
layout template. Each node is wrapped in a<div> container,
and the container’s class attribute is set to the label stored
with the node. This allows us to specify some of the format-
ting constraints with CSS style sheets.

We provide “save” and “load” functionality, which makes it
possible to share a summary and any specified extraction pat-
terns. The user can share the database without sharing all
the locally stored HTML documents, making summaries like
those shown in this paper no bigger than 500KB. Since the
framework is implemented as a browser extension, a collab-
orator can install the extension, load an existing summary
and its corresponding extraction patterns, and continue the
research session.

Layout templates
To demonstrate different possibilities for summarizing Web
content we implemented a set of layout templates. We present
two types of layouts: table-based and anchor-based. The table-
based layouts organize the content in a grid, and the anchor-
based layouts relate the content through a graphical element.

Figure 7: The text layout template is designed for
collecting text content, as is common in a literature
search. The paper titles are placed in a list, and fur-
ther details for each paper, such as the authors and
abstract, are available through mouse interactions.

Thegrid layout template(Figure 2) places webpage elements
found on the same page into one visual element, a box, and
arranges these elements according to extraction pattern. If
there is only one pattern specified for a website, as in Fig-
ure 2, the content appears to be arranged according to web-
site. Webpage elements labeled as “description” are available
to the user through mouse rollovers.

The PDA layout template(Figure 5) separates the content
into tabs to make it more accessible on a small-screen de-
vice. Each tab contains a list of the elements collected from
the same website. The webpage elements labeled as “name”
or “image” are displayed in a list on each tab. When the user
clicks on a name or image, the elements found on the same
webpage as the clicked item appear. For example, on the
PDA on the right in Figure 5 the user clicked on the “Starlight
Review” and is now viewing details about this event.

Theprint layout template(Figure 6) organizes content such
that it can be placed on paper. It resizes images and con-
denses the content to minimize the number of printed pages.

The text layout template(Figure 7) is designed for text-
intensive tasks, such as literature surveys. The template or-
ganizes the names — or, in the case of Figure 7, the paper
titles — in a list. The user can click on each title to see more
information, such as the paper authors or abstract. If present,
a link to the document is placed with the title.

We present two anchor-based layouts, a map and a calendar.
An anchor-based layout allows us to relate items to one an-
other through a common element. To create this relationship
we analyze the collected content. Any element with the label
“address” is parsed to find the actual address, while any ele-
ment with the label “time” is parsed to find the date and time.
As in previous work [21], we use heuristics to find the ad-
dress, date, and time within the selected nodes. While these
heuristics are not capable of finding an address in a whole
document, they are sufficient for finding the address in the
nodes typically selected.

Themap layout template(Figure 3) has three parts, a list of
names at the top, a map in the bottom left, and a detail-view

Figure 8: With the calendar layout template, the user
can view content with respect to time. When the user
clicks on an event, details about the event are dis-
played in a panel next to the calendar.

panel in the bottom right. The user can click on a name on the
list to see its details in the detail-view panel and its location
on the map. The user can also interact with the map and nav-
igate the content geographically. Unlike the other templates,
the map layout displays only the content that includes an ad-
dress. To create a map we use the Google Maps API[9].

Thecalendar layout template(Figure 8) displays a calendar
on the left and a detail-view panel on the right. Content that
includes a date and time is placed in the calendar, and the user
can navigate between the day, week, and month view and
click on events in the calendar to see more details about each
event. Similar to the map layout template, the calendar layout
template filters the database and presents only content that
includes a date and time. The implementation of the calendar
is provided by the Planzo API[15].

EVALUATION
We evaluated our system by 1) measuring the performance
of our extraction patterns on a set of popular websites, and 2)
soliciting user feedback in an informal user study.

Quantitative analysis
To measure the performance of our extraction patterns we
used nine popular websites for shopping, travel planning, and
academic reference. We selected the websites for the shop-
ping and travel categories fromwww.alexa.com , which
tracks Web traffic patterns and reports the most visited web-
sites. For the academic reference category, we chose the three
most popular reference websites in computer science. For
each website, we visited 25 randomly selected webpages.
On the first visited page for each website, we selected 3-6
page elements to build an extraction pattern and then col-
lected content from 24 more pages. We then measured how
much of the content was collected from the 24 webpages and
computed anaccuracyfor each pattern. We define accuracy
as the number of page elements actually collected using the
extraction patterns divided by the number of page elements
that were actually present in all the visited webpages. Table 1
shows the accuracy of our patterns on the selected websites.
We also measured how many extra page element selections
would be necessary to collect 100% of the desired informa-
tion and report that number in the fifth column.

accuracy initial addl.
domain website (%) els els

Shopping Amazon (books) 100 3 0
Amazon (household) 90 3 4
Ebay (electronics) 82 5 11
Netflix (films) 100 4 0

Travel Expedia (hotels) 59 5 17
Orbitz (hotels) 100 5 0
Travelocity (hotels) 99 5 1

Academic ACM Dig. Lib. (papers) 100 6 0
CiteSeer (papers) 100 4 0
IEEEXplore (papers) 100 5 0

Table 1: We measure the accuracy of our approach on
nine popular websites. Our system is able to collect
most of the information with only a few user selec-
tions. The fourth column shows the number of initially
selected page elements. Websites that use more than
one template, such as Ebay and Expedia, require more
user assistance. The fifth column shows the number
of additional element selections necessary to collect
100% of the content. The additional user selections
are still many fewer than would be necessary if the
user were to collect the same information manually.

Our results show that popular websites tend to use templates
to display content, and our system can robustly extract con-
tent from such websites. The two websites where our system
has trouble are Ebay and Expedia. Each product webpage on
Ebay can be customized by the seller, and thus there are a
variety of possible presentations. Although not shown in the
table, we did measure pages created by the same seller and
for those our system was 100% accurate. Similarly, Expedia
uses several different layouts for hotels. We suspect the hotel
layouts have regional differences and also depend on when
the hotel was added to the Expedia database. For this anal-
ysis, we selected hotels from five different cities in various
parts of the world.

We used structural extraction patterns for all websites, except
the CiteSeer website. The CiteSeer website is a wiki and can
be edited by anyone; thus the structural layout of pages varies
from paper to paper. We collected the name and authors of
each paper with structural extraction rules and the link to the
PDF of the paper and BibTex reference with content-based
extraction rules. The text strings for the content-based rules
were “PDF” and “author =”.

Informal user evaluation
We conducted an exploratory evaluation of our system with
three questions in mind:

1. Can people effectively specify extraction patterns by se-
lecting from a webpage’s underlying Document Object
Model?

2. Are people happy with the workflow of specifying patterns
and subsequently adding extracted items to a summary?

3. What kinds of operations did users feel should be sup-
ported in interacting with the summary?

We interviewed nine participants, five women and four men.
Seven of the participants were graduate students and the re-
maining two were staff in the university. All participants

were highly active Web researchers, both personally and pro-
fessionally. Of the nine participants, four had extensive digi-
tal collections of content and used a variety of tools for man-
aging their collections including bookmarks, documents, and
the file system. One user reported using JabRef[12], which
is a specialized database tool for organizing academic ref-
erences. The remaining five participants had minimal orga-
nization schemes for their professional activities and almost
none for personal activities. Similar to the conclusions of the
KTFT study[4], those that did not save Web content simply
hoped they would find it again.

We performed the study on a WindowsXP desktop machine
with 512MB RAM and 1Ghz processor. The machine was
connected to the Internet via a well provisioned campus net-
work. Our extension was installed on Firefox v1.5. The par-
ticipants had individual sessions, and each session lasted ap-
proximately one hour. Each session included a background
questionnaire (10 minutes), a tutorial of the system (10 min-
utes), three tasks (30 minutes), and a debriefing session (10
minutes). During the tutorial the participants were shown
how to create and use an extraction pattern on the web-
sitewww.giantrobot.com . The three tasks were framed
as part of the same scenario, which was “a family visit to
Seattle.” In the first task, the participants were directed to
www.hotels.com and asked to find five potential hotels.
At the end of the first task, the users were asked if cer-
tain hotel attributes (name, address, price, image, and re-
view) were included in their summary. If they were not, the
users were asked to go back and add those elements to the
summary. In the second task, the users were asked to go to
www.seattleweekly.com and find five suitable restau-
rants. For the last task, the participants were asked to go
to www.seattleartmuseum.org and collect any infor-
mation of their choosing.

Observations and feedback
The amount of aid we offered the participants decreased with
each task. For the first task, we made sure the participants
understood the pattern specification mode and how to add
information using the patterns. In the second task we only
guided the users if they asked for help, and by the third task,
all participants were using the system independently.

Overall, the participants were very positive about using the
tool. Several users asked when the system would be avail-
able. One user mentioned, “I would be willing to use this
even if it has some bugs, because it would save me so much
time. I don’t need it to be perfect.”

Specifying extraction patterns. Most of the participants found
the process of specifying extraction patterns straightforward.
One user noted, “What I like about this is that it’s really easy
and quick.” However, three participants had trouble with the
selection interface. Upon further discussion with the partic-
ipants, we found that this was in part due to the immediate
highlighting response to the cursor. In our design, we aimed
to make the selection interface quick and responsive, and per-
haps we went too far. It would be easy to include a delay and
only highlight items when the cursor hovers over them for
some time. Alternatively, the interface could be extended to
a click-based interaction model with the user cycling through

the available regions by repeatedly clicking with the mouse.
Saund et al.[18] showed this type of interface can be effec-
tive in their drawing system, ScanScribe.

Four of the participants attempted to select regions of the
webpage that were not available through the DOM by high-
lighting text. While our system could easily be extended to
include such cut-and-paste functionality, it is not clear how to
make general extraction rules out of text selections. There are
two possible scenarios: a text selection that includes DOM
nodes fully, and a text selection that includes DOM nodes
only partially. In the first case, we can use our current ap-
proach and just group the selected DOM nodes together. For
the second case, we can use our approach to find matching
nodes, but we need an alternative mechanism for finding the
corresponding text in the matching node. For example, the
address on a page can be embedded in the same node as
the name and telephone number. The user might select just
the address and expect that we match the address from other
pages. For this, we might consider using regular expressions
or devising a set of heuristics.

Somewhat surprisingly, four of the participants did not re-
member to label the elements they selected. We suspect that
for some of our users requiring labeling at the beginning of
the gathering process may not be best. Currently, if the user
does not label an element, it is placed in the summary accord-
ing to the order of selection. One way to solve this problem
is to allow label assignment in the visual summary.

Model for collecting information. Although we designed our
interface with the goal of minimizing user effort, at the on-
set of the user evaluation we were concerned about requiring
manual specification of extraction patterns. We were pleas-
antly surprised to find that all nine participants were happy
to specify their own patterns, as it considerably accelerated
the rest of the task. One user mentioned, “I’m willing to do
that [manually select pieces of content], because to me it’s a
method for narrowing down the space of what I’m looking
at. By waiting for me to specify what I care about, it allows
me to eliminate what I don’t care about.” Another user noted,
“No . . . it’s not too much work [to manually select elements]
. . . it’s fast. And it’s way better than saving the pages be-
cause then I can email the summary instead of emailing the
10 links to the pages.” We were also surprised to observe
that all participants used the “Add Linked Pages” functional-
ity significantly more than the “Add Page” functionality. One
user noted, “This way I get a double save. I don’t actually
visit the other pages and I don’t get distracted by all those
other things that are on those pages.” Another user remarked
that once she realized the system worked, she trusted it to
collect content independently, and this is what really made
the system useful.

Three of the participants requested that we add multi-page
extraction patterns. Extending our framework to include con-
tent from multiple pages could be done with an approach
similar to C3W[7] by recording user actions between pages
or allowing the user to interactively specify how the pages
are related (through a hyperlink, form, etc). Two of the par-
ticipants requested sub-page patterns for pages that included
lists of items. For example, thewww.hotels.com page

shows not just the name of the hotel, but also a picture and
price. The participants wanted to start the summary session
by selecting only the name and price of a hotel in that list and
then applying that pattern to other items in the list. Our sys-
tem can be extended to provide such sub-page patterns. Zhai
and Liu[23] present an algorithm that automatically extracts
all the fields in such a list. We could combine our interface
and their partial tree alignment algorithm.

Summary representation. During the three tasks, the partic-
ipants primarily used the grid and map layout. Six of the
participants explicitly commented on the pleasing aesthet-
ics of the summary layout templates. One user mentioned,
“This [the summary] is exactly what I make in my word file.”
As expected, the participants wanted to further organize the
summary contents. We received requests for annotating the
summary, using metadata to filter content, spatially organiz-
ing the elements, and grouping content in pages and folders.

Five of the participants requested that we provide mecha-
nisms for configuring both the label choices and the summary
layouts. We expected that the set of labels currently defined
by the templates might not be meaningful for all users or in
all situations. For such cases, it would be best to allow the
user to create labels; however, any new labels would have
to be incorporated in the templates. In the future, we hope
to create a graphical authoring tool for the templates, which
would make it possible to dynamically add new labels as the
user is gathering content. We expect that there will be two
types of users of our system. There will be those who use
the defaults that we present here and those who would want
to create their own layouts and schemas for collecting and
presenting information.

Feedback. Overall, the participants were very positive about
using our tool. Six of them are willing to use it immediately.
Two of the users actually wanted to try their own task imme-
diately following the session. One of them wanted to see how
well it would work on www.ieeexplore.org , and the
other was curious how well it works onwww.amazon.com .

CONCLUSIONS AND FUTURE WORK
This paper presents an approach for collecting and viewing
content found on the Web in a personalized way. Based on
this approach we implemented a system that is applicable
for a variety of tasks, including comparison shopping, travel
planning, and reference collecting. An evaluation of our sys-
tem leads us to the firm conclusion that such an approach is
much needed and welcomed by Web users. Furthermore, our
work suggests new directions for research, such as designing
an end-user interface for customizing layouts and using the
personalized summaries in collaborative settings.

Currently, the layout templates we use are pre-defined with
the help of a designer and are limited in the types of interac-
tions possible. We envision allowing the user to interactively
specify the templates either with an authoring tool or directly
in the summary by applying filters or interactively selecting
which content should be displayed. We plan to provide a set
of default templates that the user can customize interactively
to create new specialized summary views.

Our system is also appropriate for collaborative settings,
when several people are gathering information and interact-
ing with the summary simultaneously. We plan to explore
visualizations for presenting content collected by different
people, changes to the visual summary over time, and the in-
tegration of other types of content, such as personal files, into
the visual summary.

While we are satisfied that our user study participants didn’t
find the overhead of selecting and labeling page elements too
time consuming, we were curious how they felt about using
a public repository of extraction patterns instead of manually
selecting page elements. We asked the participants whether
they would be willing to share and use a public repository of
extraction patterns. The participants were timid about using
patterns defined by others as they felt they were no longer in
control of the gathered information. Seven of the participants
said they would be hesitant to use a public repository, as they
were unsure how much work would be required. We antici-
pate that although a public repository of extraction patterns
may not be used by everyone, a public repository could be
useful for automatically labeling page elements, especially
since four of the nine participants did not remember to label
the page elements they selected.

Finally, we plan to evaluate our system more rigorously. We
plan to evaluate the robustness of our extraction patterns over
time and understand the type and frequency of changes of
website templates. Given the positive reaction in the pilot
study, we hope to release the system and study users as they
carry out their own tasks over several months. We want to
explore how people accumulate content and use our frame-
work over time. We expect that users will find new tasks for
our system in addition to those we have already explored.

ACKNOWLEDGEMENTS
We thank our study participants for spending time with our
system and providing useful feedback on future improve-
ments. We thank Ken Hinckley for helping us with the text.
Funding and research facilities were provided by Microsoft
Research and the University of Washington GRAIL lab.

REFERENCES
1. B. Amento, L. Terveen, and W. Hill. Experiments in so-

cial data mining: The TopicShop system.ACM Trans-
actions on Computer-Human Interaction (TOCHI),
10(1):54–85, 2003.

2. G. J. Badros, A. Borning, K. Marriott, and P. Stuckey.
Constraint cascading style sheets for the Web. InPro-
ceedings of UIST’99, pages 73–82.

3. M. Bolin, M. Webber, P. Rha, T. Wilson, and R. C.
Miller. Automation and customization of rendered web
pages. InProceedings of UIST’05, pages 163–172.

4. H. Bruce, W. Jones, and S. Dumais. Keeping and re-
finding information on the web: What do people do and
what do they need to do? InProceedings of ASIST 2004.

5. S. Card, G. Roberston, and W. York. The WebBook
and the Web Forager: An information workspace for
the World-Wide Web. InProceedings of SIGCHI’96,
pages 111–117.

6. EndNote. http://www.endnote.com.

7. J. Fujima, A. Lunzer, K. Hornbæk, and Y. Tanaka.
Clip, connect, clone: combining application elements
to build custom interfaces for information access. In
Proceedings of UIST ’04, pages 175–184.

8. D. Gibson, K. Punera, and A. Tomkins. The volume
and evolution of web page templates. InSpecial interest
tracks and posters of WWW’05, pages 830–839.

9. Google Inc. http://www.google.com/apis/maps/.

10. A. Hogue and D. Karger. Thresher: Automating the
unwrapping of semantic content from the World Wide
Web. InProceedings of WWW ’05, pages 86–95.

11. D. Huynh, S. Mazzocchi, and D. Karger. Piggy Bank:
Experience the semantic web inside your Web browser.
In Proceedings of the International Semantic Web Con-
ference, 2005.

12. JabRef. http://jabref.sourceforge.net/.

13. C. Jacobs, W. Li, E. Schrier, D. Bargeron, and
D. Salesin. Adaptive grid-based document layout.ACM
Transactions on Graphics, 22(3):838–847, 2003.

14. S. Lok and S. Feiner. A survey of automated layout
techniques for information presentations. InProceed-
ings of the SmartGraphics Symposium, Hawthorne, NY,
USA, 2001.

15. Planzo. http://www.planzo.com.

16. RefWorks. http://www.refworks.com.

17. G. Robertson, M. Czerwinski, K. Larson, D. Robbins,
D. Thiel, and M. van Dantzich. Data Mountain: Us-
ing spatial memory for document management. InPro-
ceedings of UIST’98, pages 153–162.

18. E. Saund, D. Fleet, D. Larner, and J. Mahoney.
Perceptually-supported image editing of text and graph-
ics. InProceedings of UIST ’03, pages 183–192.

19. m.c. schraefel, Y. Zhu, D. Modjeska, D. Wigdor, and
S. Zhao. Hunter Gatherer: Interaction support for the
creation and management of within-web-page collec-
tions. InProceedings of WWW ’02, pages 172–181.

20. A. J. Sellen, R. Murphy, and K. L. Shaw. How
knowledge workers use the web. InProceedings of
SIGCHI’02, pages 227–234.

21. J. Stylos, B. A. Myers, and A. Faulring. Citrine: Provid-
ing intelligent copy-and-paste. InProceedings of UIST
’04, pages 185–188.

22. A. Sugiura and Y. Koseki. Internet Scrapbook: Au-
tomating Web browsing tasks by demonstration. InIn
Proceedings of UIST ’98, pages 9–18.

23. Y. Zhai and B. Liu. Web data extraction based on partial
tree alignment. InProceedings of WWW ’05, pages 76–
85.

