
UPMAIL Technical Report No. 97February 21, 1995
Cycletrees: Flexible Interconnection Graphsfor Parallel ComputingMargus Veanes & Jonas BarklundBox 311, S-751 05 Uppsala, SwedenPhone: +48�18�18 25 00Fax: +46�18�51 19 25

AbstractNatural cycletrees, formally de�ned in this report, is a subclass ofHamiltonian graphs with maximum degree 3 that contain a binaryspanning tree. A natural cycletree used as an interconnection networkthus supports directly broadcasting through the binary tree as well asnearest-neighbour communication through the cycle. Natural cycle-trees have several other interesting properties, e.g., they are planar,easily extensible and can be contracted using the same methods as forbinary trees. The two main results of the paper are: (i) Given an arbi-trary basic binary spanning tree, there exists a natural cycletree witha minimal number of edges. (ii) Given a set of vertices, we present analgorithm for constructing a natural cycletree such that it has a min-imal number of edges, its binary spanning tree has the minimal totalpath length and its structure satis�es a given abstract speci�cation.For example, if we wish to construct a natural cycletree connectingk processing elements, we could invoke the algorithm with a set of kdistinct vertices and a simple speci�cation (provided as an example inthe paper).

1 IntroductionA cycletree is a graph that has a basic binary spanning tree and a uniqueHamiltonian cycle. The problems addressed in this paper can be statedsuccinctly:1. Given a basic binary tree T , can we obtain a cycletree with as lowdegree as possible by adding a minimal number of edges to T ?2. Given a cycle C, can we construct a cycletree with minimal degree,having a binary spanning tree with minimal total path length, byadding a minimal number of edges to C?Solutions to these problems will be immediately applicable to process in-terconnection graphs, because binary trees and Hamiltonian cycles supportdirectly the following important communication patterns. (Let the nodesbe numbered from 1 to N .)1. Broadcasting or distributing data from node 1 to all the other nodes.2. Collecting or combining data from all nodes to node 1.3. Communication between nodes i and i + 1 for all i, 1 � i < N , andpossibly between nodes 1 and N .These communication patterns occur frequently in many parallel program-ming paradigms [10], but also in computations obtained by automatic par-allelization of repetition usually in the form of sequential loops [25, 27, 31,46, 51].The theoretically ideal network has a complete interconnection graph, seeFigure 1. Clearly, such a network is prohibitively expensive to realize for alarge number of nodes. Some parameters that are commonly used to char-
Figure 1: The ideal network.acterize networks are: number of edges, degree of the network (maximumdegree of the nodes), diameter (the largest distance between any two nodes),average distance, symmetry, edge- and node connectivities, extensibility, andreliability [1, 2, 7, 38, 39, 50]. 1

In this paper, the following parameters are treated as the most important,in the order given.1. Minimal degree. When using an interconnection network for commu-nication between computation nodes, the number of physical commu-nication ports of each node is usually limited. For example, INMOSTransputers have four communication ports, where typically one portis needed for connection to an external device, leaving only three portsfor the interconnection network.1 Three is the theoretical minimumof ports required and it is thus imperative to design the network witha degree of three.2. Minimal total path length. The path lengths from the root to everynode a�ects the minimum time for broadcasting information from theroot or gathering information to the root, that is, two of the operationslisted above. More generally, we wish to map divide-and-conquer com-putations onto the network, and it is desirable to minimize the depthof such computation trees.3. Minimal number of edges (while the cycletree under consideration ful-�lls certain criteria). The number of edges is another measure (apartfrom the degree of the network) of the cost of realizing the networkand should be minimized, while maintaining the above two properties.4. Flexible structure and size. Many proposed interconnection graphs re-quire, e.g., that the number of nodes is 2k�1 for some k > 0, or �x thestructure of the graph in such a way that it is di�cult to describe theaddition of a new node to the graph. This is undesirable for those ap-plications where the structure should be able to grow in smaller steps,or where physical considerations make some structures expensive torealize (e.g., if the locations of the nodes are �xed, then in some in-terconnection graphs there could be comparatively long connections).An inductively de�ned class of graphs that we call natural cycletrees, isintroduced. Figure 2 illustrates a natural cycletree. It is shown that1. natural cycletrees indeed belong to the class of cycletrees;2. the degree of every nontrivial natural cycletree is three;3. the class of ringtrees [52] is strictly contained by the class of naturalcycletrees;1In fact, our �rst application of natural cycletrees was as an interconnection networkbetween Transputers on a Meiko parallel computer.2

Figure 2: A natural cycletree. The curved lines correspond to edges thatare not part of the binary tree and the dashed lines correspond to edges thatare not part of the cycle.4. given any basic binary tree T , every natural cycletree which isminimalfor T has fewer edges than any other Hamiltonian graph having T asspanning tree;5. given any odd cycle C, every path-minimal natural cycletree for Chas C as its Hamiltonian cycle and contains a binary tree that hasthe minimal total pathlength; such a natural cycletree has fewer edgesthan any other graph with those properties and the exact number ofedges can be computed by a formula.Finally, a recursive algorithm is presented that, given a set of vertices, can beused to produce natural cycletrees with various properties. That algorithmis based on the inductive de�nition of natural chaintrees.The problems set forth in the opening are thus answered positively by theclass of natural cycletrees and the algorithm for constructing them.We now outline the remainder of the paper. Section 2 is a brief accountfor the terminology. In Section 3 the concepts cycletree and natural cycle-tree are formally de�ned and some basic properties are stated and proved.Solutions to the minimality problems stated in the beginning are given inSection 4. In Section 5 the order induced by the Hamiltonian cycle in anatural cycletree is related to the recursive structure of natural cycletrees.That relationship is used in Section 6 for automatic construction of a nat-ural cycletree, parameterized with a formal speci�cation of its structure.Section 7 relates natural cycletrees to similar interconnection graphs. Fi-nally, Section 8 concludes the presentation by summarizing the relationshipsbetween the classes of graphs introduced in the paper and their applications.2 PreliminariesThe reader is assumed to be familiar with elementary concepts in graphtheory [15]. Let G = hV;Ei be a graph. Throughout the paper we willassume that G is simple and undirected. We will sometimes denote theedge-set of G by EG and the vertex-set by VG. By writing EG1�G2 we meanEG1 �EG2 where `�' is some set operation. An edge in EG is written as a3

pair (a; b) where a and b are vertices in VG. (Note that (a; b) = (b; a), asG is undirected.) We use the notation G[X1;X2; : : : ;Xn], to indicate thateach Xi, i 2 f1; : : : ; ng, is a distinguished partial subgraph of G; if Xi is anisolated vertex, i.e., Xi = hfvg; ;i for some vertex v, then we simply write vfor Xi.A free tree is a connected, acyclic, undirected graph. We say that a freetree T is a binary tree if T has exactly one vertex of degree 0 or 2, called theroot of T , and all the other vertices have degree 1 or 3. A vertex of degree1 is called an external vertex or a leaf. A vertex of degree 2 or 3 is called aninternal vertex. If a binary tree is not an isolated vertex, i.e., its root hasdegree 2, then we call it a basic binary tree. We make explicit the root r ofa binary tree T by T [r].Note that a binary tree is not ordered, and thus a basic binary tree is notthe same as an extended ordered binary tree [24], although the concepts arerelated. (Knuth [24, pp. 309 and 315] uses the term b-trees for (unordered)binary trees as de�ned above.)A Hamiltonian circuit or path in a graph G is a circuit or path whichvisits all the vertices of G exactly once. We call the partial subgraph of Gtraversed by a Hamiltonian circuit or path of G simply a cycle or chain inG, respectively. We identify the terminals r and s of a chain C by C[r; s].We say that a chain C[r; s] in G is unique with respect to r and s if thereexists no chain C 0[r; s] in G such that C 0 6= C.3 Natural chaintrees and cycletreesIn the following we de�ne formally two classes of interconnection graphscalled chaintrees and cycletrees. We show how a certain class of chaintrees,which we call natural chaintrees, can be de�ned inductively. A natural cy-cletree is constructed from two natural chaintrees.De�nition 3.1 (Chaintrees, Cycletrees) Let G[C[r; s]; T [r]] be a graphwhere VC = VT = VG and EG = EC[T . G is a chaintree if T is a binarytree and C is a chain in G that is unique with respect to its endpoints. G isa cycletree if, in addition, T is a basic binary tree and r = s, i.e., C is theunique cycle in G.We write G[r; s] for a chaintree G[C[r; s]; T [r]]. The uniqueness criterionin De�nition 3.1 yields a unique ordering of the graph and is an importantimplementation issue which is discussed in Section 5. We say that a chaintreeis trivial if it is an isolated vertex. We say that a cycletree is trivial if itconsists of only three vertices, i.e., when it is a \triangle". We say that agraph G[C; T], where VC = VT = VG, is a candidate cycletree if T is a basicbinary tree and C a (not necessarily unique) cycle of G.4

Let G[C; T] be a cycletree. We say that an edge e, e 2 EG, is a tree edge(with respect to T), if e 2 ET ; a cycle edge, if e 2 EC ; a nontree edge, ife 2 EC�T ; a noncycle edge, otherwise.We proceed to show how to construct natural chaintrees inductively andto show that natural chaintrees are indeed chaintrees. A natural cycletreeis constructed from two natural chaintrees. First, let us illustrate the formof a natural cycletree by an example (see Figure 3). The edges representedby solid lines form a unique cycle. The edges represented by straight linesform a basic binary tree. The dashed lines represent edges that are not partof the cycle. The curved lines represent edges that are not part of the basicbinary tree.
Figure 3: A full natural cycletree of 31 vertices.De�nition 3.2 (Natural chaintrees)[1] Let r be a vertex. Then hfrg; ;i[r; r] is a natural chaintree.[2(a)] Let H1[r1; s1] be a natural chaintree, and let r and s be two distinctvertices not in VH1 . ThenhVH1 [fr; sg; EH1 [f(r; r1); (r; s); (s1; s)gi[r; s]is a natural chaintree (see Figure 4).[2(b)] Let Hi[ri; si], i 2 f1; 2; 3g, be disjoint natural chaintrees, and let rand s be two distinct vertices not in VH1[H2[H3 . ThenhVH1[H2[H3[fr; sg; EH1[H2[H3[f(r; r1); (r; s); (s; r2); (s; r3); (s1; s2)gi[r; s3]is a natural chaintree (see Figure 5).[3] The only natural chaintrees are those given by clauses 1, 2(a) and 2(b).Notice that this de�nition of natural chaintrees is similar to an inductivede�nition of binary trees, where the inductive case is asymmetric, explicitlyseparating the cases where one subtree is a leaf and where it is not. (Simplydo not add the edge (s1; s) in case 2(a) and the edge (s1; s2) in case 2(b).)5

sr
s1

r1H1Figure 4: Case 2(a) of De�nition 3.2. The bold lines illustrate a chain.

sr
s1

r1H1 s2 s3r2 r3H2 H3Figure 5: Case 2(b) of De�nition 3.2. The bold lines illustrate a chain.
6

It is thus obvious that we can construct a natural chaintree from a binarytree by adding some edges. The choice of which vertex is r1 in cases 2(a)and 2(b) is arbitrary, so the edge (r; r1), which is the topmost edge of thechain, can go to either child of r.We can now construct a natural cycletree from two natural chaintrees asfollows.De�nition 3.3 (Natural cycletrees) Let H1[r1; s1] andH2[r2; s2] be disjointnatural chaintrees, and r a vertex not in VH1[H2 . ThenhVH1[H2 [frg; EH1[H2 [f(r; r1); (r; r2); (s1; s2)giis a natural cycletree (see Figure 6).
s1 s2r1 r2r

H1 H2Figure 6: Construction of a natural cycletree. The bold lines illustrate acycle.An example of a possible natural cycletree is shown by Figure 7. We get
d ec f g hb ia

Figure 7: A natural cycletree.the following immediate result.Theorem 3.4 The degree of every nontrivial natural cycletree is three.7

Proof. An easy inductive argument can verify that in a nontrivial nat-ural chaintree H[r; s], the degrees of r and s are 2 and the degrees of allother vertices are at most 3. The theorem then follows immediately fromDe�nition 3.3.The observant reader may have noticed that we cannot always uniquelyidentify the basic binary tree in a natural cycletree, the smallest example toillustrate this is when the natural cycletree is a triangle. This is, however,only a minor detail and we deal with it in Section 5.We will now prove that all natural cycletrees are cycletrees, using thefollowing lemma.Lemma 3.5 A natural chaintree is a chaintree.Proof. Let H[r; s0] be a natural chaintree. We must prove that H has aunique chain C[r; s0] and that H contains a binary spanning tree. We provethe �rst statement by induction over natural chaintrees.[Base case] When H is an isolated vertex (r = s0) then trivially C (C = H)exists and is unique.[Induction case] We prove the lemma for cases 2(a) and 2(b) of De�ni-tion 3.2.[Case 2(a)] Let H1[r1; s1] be a natural chaintree as in De�nition 3.2.2(a).Assume as induction hypothesis that C1[r1; s1] is a chain in H1 and that thelemma holds for H1. Clearly, C[r; s], where s = s0, must use the edges (r; r1)and (s1; s) (see Figures 4 and 5), and thus the chain through H1 must haver1 and s1 as terminals. According to the induction hypothesis, C1 is such aunique chain. Consequently,C = hVH ; f(r; r1); (s1; s)g [EC1i[r; s]is a chain in H and there exists no other chain C 0[r; s], C 0 6= C, in H.[Case 2(b)] Let Hi[ri; si], i 2 f1; 2; 3g, be natural chaintrees as in De�ni-tion 3.2.2(b). Assume as induction hypothesis that Ci[ri; si] is a chain ineach Hi and that the lemma holds for every Hi. Obviously, C[r; s3], wheres3 = s0, must use the edges (r; r1), (s1; s2), (r2; s) and (s; r3) (see Figures 4and 5), and thus the chains through H1, H2 and H3 must have ri and sias terminals. According to the induction hypothesis, C1, C2 and C3 are thecorresponding unique chains. Consequently,C = hVH ; f(r; r1); (s1; s2); (r2; s); (s; r3)g [EC1[C2[C3i[r; s3]is a chain in H and there exists no other chain C 0[r; s3], C 0 6= C, in H.According to the induction principle we have proved the �rst statementfor all natural chaintrees. The second statement follows from the discussionfollowing De�nition 3.2. 8

We can now easily prove the following theorem by using Lemma 3.5.Theorem 3.6 A natural cycletree G is a cycletree G[C; T].Proof. Let G, r, H1[r1; s1] and H2[r2; s2] be as in De�nition 3.3. As r hasdegree 2, both of the edges (r; r1) and (r; r2) must be part of any cycle ofG. Clearly the edge (s1; s2) must also be used. Thus, the chains throughH1 and H2 must be C1[r1; s1] and C2[r2; s2], respectively. It follows fromLemma 3.5 that C1 and C2 exist and are unique. ConsequentlyC = hVG; f(r; r1); (s1; s2); (r2; r)g [EC1[C2iis the unique cycle of G. According to Lemma 3.5, each of H1 and H2contains a binary spanning tree. The tree T having r as root and thesetrees as immediate subtrees is a binary spanning tree for G. Hence G is acycletree.All cycletrees are not natural cycletrees. A non-natural cycletree is il-lustrated by Figure 8. Another example of a non-natural cycletree is thethreaded X-tree in Figure 16.
Figure 8: A non-natural cycletree.4 Minimality and path-minimalityIn this section, our goal is to construct a Hamiltonian graph with a binaryspanning tree having \few" edges. More precisely, there are two comple-mentary goals:1. Given any binary tree T , add as few edges as possible to obtain aHamiltonian supergraph. We say that such a cycletree is minimal (forT).2. Given a cycle, add as few edges as possible to obtain a supergraphthat contains a binary spanning tree with minimum total path length.We say that such a cycletree is path-minimal. We also give a formulafor the exact number of edges in a path-minimal cycletree.The path length of a path is the number of edges on that path. The level ofa vertex s in a binary tree T [r] is the path length of the shortest path fromr to s, e.g., r has level 0. The total path length of T is the sum of the levelsof all vertices of T . 9

MinimalityGiven a basic binary tree T , we want to obtain a cycletree G[C; T] by addingas few edges as possible to T .De�nition 4.1 (Minimality) A cycletree G[C; T] is minimal for T , ifjEGj � jEG0 j for any cycletree G0[C 0; T].Note that the the uniqueness of the cycle in a cycletree does not entailminimality; this is illustrated with the next example.Example 4.2 Consider the natural cycletree G illustrated in Figure 9. Thenoncycle edges are (b; c) and (i; g). Clearly it has the same set of tree edgeswith respect to the binary tree T [a] as the cycletree in Figure 7, but thetotal number of edges is less in Figure 9 than in Figure 7.
f d ec g hb ia

Figure 9: A minimal (and path-minimal) cycletree.We shall now prove that there exists a natural cycletree G[C; T] that isa minimal cycletree for the binary tree T (Theorem 4.4). As an immediateconsequence we get that all full natural cycletrees are minimal, e.g., thenatural cycletree in Figure 3 is minimal. This also con�rms the result provedfor ringtrees [52], which are in fact full natural cycletrees.We shall �rst prove a lemma in which we will make use of the followingde�nitions. Let T be a basic binary tree. Let S[s] be a subtree of T and rthe parent of s, if S 6= T ; any vertex not in VT , otherwise. De�nejSj2 = minf jES�C j j C is a cycle ^ VT = VC ^ (r; s) 2 EC g;and jSj62 = minf jES�C j j C is a cycle ^ VT = VC ^ (r; s) 62 EC g:The norms jSj2 and jSj62 thus measure the minimal number of noncycleedges in S, the �rst when the edge to the parent is part of the cycle, the10

other when it is not. Informally, this is a measure of to what extent the cycleedges can be used also in the tree. As a special case, jT j 62 is the theoreticallower bound for the number of edges of T that cannot participate in a cycle.Lemma 4.3 Let T be a basic binary tree and let G[C; T] be a natural cycle-tree such that there exists no other natural cycletree for T having less edges.Then G is minimal for T and jET�C j = jT j62.Proof. Let S[s] be any subtree of T . Let r be the parent of s, if S 6= T ;any vertex not in VT , otherwise. We claim thatjES�C j = (jSj2; if (s; r) 2 EC ;jSj62; otherwise: (1)An immediate consequence of Property 1 is that jT j62 = ET�C , which provesthe lemma. It remains to prove Property 1, together with the followingproperty, jSj2 � jSj62 + 1 � jSj2 + 1; (2)by induction over binary trees (subtrees of T).[Base case] If s is a leaf of T then jES�C j = jSj2 = jSj62 = 0, and 0 � 1 � 1.It is obvious that Property 1 and Property 2 hold for S.[Induction case] Let S1[s1] and S2[s2] be the immediate subtrees of S andassume that Property 1 and Property 2 hold for S1 and S2. There are twosubcases: either (r; s) is in C or it is not.[(r; s) in C] According to the discussion after De�nition 3.2, we canconstruct natural cycletrees such that either of (s; s1) and (s; s2) is inthe cycle (clearly, one of them must be). Without loss of generality,assume that S1 is the immediate subtree of S such thatjS1j2 + jS2j62 � jS1j62 + jS2j2 (3)holds. We have assumed that Property 2 holds for S1 and S2, simplearithmetic gives that S1 can always be chosen in this way. The minimalnumber of noncycle edges in S is thusjSj2 = jS1j2 + jS2j62 + 1; (4)where the addition of 1 counts the edge (s; s2). Furthermore, sinceProperty 1 holds for S1 and S2, i.e., jES1�C j = jS1j2 and jES2�C j =jS2j62, and since jES�C j = jES1�C j+ jES2�C j+1 (due to the structureof natural cycletrees), it follows that jES j = jSj2.11

[(r; s) not in C] In this case both (s; s1) and (s; s2) are in C. FromProperty 2 it follows thatjSj62 = jS1j2 + jS2j2: (5)Furthermore, since Property 1 holds for S1 and S2, i.e., jES1�C j =jS1j2 and jES2�C j = jS2j2, and since jES�C j = jES1�C j + jES2�C j(again, obvious from the structure of natural cycletrees), it followsthat jES j = jSj62.Property 1 now follows immediately from the two cases above. Also, Prop-erty 2 follows from (4) and (5), because Property 2 holds for S1 and S2.According to the induction principle, we have proved Property 1 andProperty 2 for all subtrees of T and in particular for T itself.We can now easily prove the following theorem, which asserts that there isno graph that contains a given binary spanning tree T and a unique cycle,and has fewer edges than every natural cycletree spanned by T .Theorem 4.4 Let G0[C 0; T] be any candidate cycletree and let G[C; T] be anatural cycletree that is minimal for T . Then jEGj � jEG0 j.Proof. We know, by de�nition, that jT j62 � jET�C0 j. Using Lemma 4.3,jET�C j = jT j62, we get that jET�C j � jET�C0 j. We know that jEGj =jET�C j + jEC j because there are no superuous edges in G, and we knowtrivially that jEG0 j � jET�C0 j + jEC0 j. Hence jEGj � jEG0 j, since jEC j =jEC0 j.Path-minimal cycletreesLet us assume that one wants to construct a cycletree G[C; T] given onlya set of vertices. Clearly, constructing T to have the minimal total pathlength has several advantages. For example if T is used as the interconnec-tion graph of a process network then the total communication path lengthof T is minimized. At this point it is worth noting that we are not giving toppriority to minimizing the average distance between an arbitrary pair of ver-tices of G. The reason for introducing natural cycletrees in the �rst place isto provide e�cient communication for parallel computations that generallyneed T for \global" communication and C for \local" communication.The depth of a binary tree T is the maximum level of T . We say that abinary tree T of depth d is tree-complete if all the leaves of T are at levelsd and d� 1. We say that a cycletree G[C; T] is tree-complete (with respectto T) if T is tree-complete.We know that the total path length of a basic binary tree T is minimal ifT is tree-complete. (The relation to complete extended ordered binary trees12

is obvious, see Knuth [24, pp. 399{400].) When constructing a cycletreeG[C; T] we also want to keep the number of additional edges at minimum,which suggests the following de�nition.De�nition 4.5 (Path-minimality) Let G[C; T] be a tree-complete cycle-tree. We say that G is path-minimal if jEGj � jEG0 j for every tree-completecycletree G0[C; T 0].Clearly, if a cycletree G[C; T] is path-minimal then it is both minimal forT and tree-complete. (The converse is in general not true, i.e., a cycletreethat is both tree-complete and minimal need not be path-minimal.)Theorem 4.6 Let G[C; T] be a path-minimal cycletree, thenjEGj = ((3n� 1)=2 � b(2k + 1)=3c; if n � 4b(2k + 1)=3c � 1;n� 1 + b(2k + 1)=3c; otherwise. (6)where n = jVGj and k = blog2(n+ 1)c.Proof. Let n = jVGj. As T is a tree-complete basic binary tree, T is full upto level k�1, i.e., T has 2l vertices at level l, 0 � l < k, and R = (n+1�2k)=2number of internal vertices at level k � 1. Let us by Im denote the numberof noncycle edges at a full level2 m of a natural cycletree, and by Jm thatof a natural chaintree. ThenIm = 2Jm�1; m > 0;and, by using De�nition 3.2, we obtain the following linear recurrence equa-tion for Jm: J0 = 0;J1 = 1;Jm = Jm�1 + 2Jm�2; m > 1:Using standard techniques we get the following solution:Jm = 2m � (�1)m3 = �2m + 13 � :Let R0 be the number of noncycle edges at level k. We know that R0 mustbe minimal, since G is path-minimal and the number of noncycle edges atlevels m, 1 � m < k, are �xed by Im. There are R internal vertices atlevel k� 1 and for each of these vertices exactly one edge is a noncycle edge2The level of an edge (r; s), where r is the parent of s, is the level of s.13

(assume that k > 1). Thus R�R0 of these edges are at level k � 1. We getthe following formula for R0, since R�R0 can be at most Ik�1,R0 = (R� Ik�1; if R� Ik�1 � 0;0; otherwise.We know that R = (n+ 1)=2 � 2k�1 and Ik�1 = 2Jk�2, thusR� Ik�1 = n+ 12 � 2k�1 � 22k�2 � (�1)k�23= n+ 12 � 22k � (�1)k3= n+ 12 � Ik+1:Thus the following is an equivalent formula for R0:R0 = ((n+ 1)=2 � Ik+1; if n � 2Ik+1 � 1;0; otherwise.Now, the total number of edges of G is the number of cycle edges, which isn, plus the number of noncycle edges at all levels. ThusjEGj = n+ k�1Xm=1 Im +R0= n+ 2 k�2Xm=0 Jm +R0= n+ 2 k�2Xm=0 2m � (�1)m3 +R0= n+ 23 k�2Xm=0 2m � k�2Xm=0(�1)m!+R0= n+ 23 2k�1 � 1� (�1)k�1 � 1�2 !+R0= n+ 2k � (�1)k3 � 1 +R0= n+ Jk � 1 +R0= (n+ Jk � 1 + (n+ 1)=2 � 2Jk; if n � 4Jk � 1;n+ Jk � 1; otherwise.= ((3n� 1)=2 � Jk; if n � 4Jk � 1;n� 1 + Jk; otherwise.= ((3n� 1)=2 � b(2k + 1)=3c; if n � 4b(2k + 1)=3c � 1;n� 1 + b(2k + 1)=3c; otherwise.14

Let G[C; T], n = jVGj, be a cycletree where T is a full binary tree, i.e., n+1is a power of 2. Then Formula 6 reduces ton� 1 + b(n+ 2)=3c; (7)which was also shown by Xie and Ge [52] to be the number of edges ina ringtree. One can easily verify that the natural cycletree in Figure 9 ispath-minimal, by using Formula 6. We also get the following corollary fromTheorem 4.6.Corollary 4.7 Let G[C; T] be any candidate cycletree where T is tree-com-plete. Then G has at least as many edges as given by Theorem 4.6.Proof. Immediate by using Theorem 4.4, because any path-minimal cycle-tree is, by de�nition, also minimal.As an example of the use of the above formulas, assume that one has afull cycletree of n vertices and wants to double its size to 2n + 1. Howmany additional edges are required? By using Formula 7, we obtain thatn+ 2b(n+ 3)=6c additional edges are required. Thus, doubling the numberof vertices roughly doubles the number of edges in a cycletree.5 Ordered natural cycletreesUp to this point natural cycletrees have been treated as undirected simplegraphs and are therefore not ordered. In order to use a graph for organizingnodes, e.g., in an interconnection graph (as we will propose in Section 6), wemust be able to identify each subtree of a binary tree by means of direction,using for example the terms left and right subtree.Let T [r] be a binary tree. We say that T is ordered if it is associated witha mapping � : VT n frg ! fleft; rightg such that for each internal vertex v ofT with children v1 and v2, f�(v1); �(v2)g = fleft; rightg. We call � an ordermapping for T . We write T � to emphasize the ordering. If T �[r] is a basicbinary tree with immediate subtrees T1[r1] and T2[r2] such that �(r1) = leftand �(r2) = right then we call T1 and T2 the left and right subtrees of T ,respectively. Clearly T can be ordered in many di�erent ways, e.g., any fullbasic binary tree of depth k can be ordered in 22k�1 di�erent ways.Given an order mapping � de�ne � so that �(v) = �(v), where left = rightand right = left. We can now de�ne (by induction over the structure ofnatural chaintrees) what we mean by the order mapping �r;u induced by anatural chaintree H[r; u]. As the base case let �r;r = ;. Let s and Hi[ri; si],for i 2 f1; 2; 3g, be as in De�nition 3.2 and assume that we have order15

mappings �i = �ri;si induced by Hi. If case 2(a) is used to form H (u = s)then �r;s = �1 [f r1 7! left; s 7! right g:If case 2(b) is used to form H (u = s3) then�r;s3 = �1 [�2 [�3 [fr1 7! left; s 7! right; r2 7! left; r3 7! rightg:Let G be the natural cycletree obtained from r, H1[r1; s1] and H2[r2; s2] asin De�nition 3.3, and let �i = �ri;si be the order mappings induced by therespective Hi. The order mapping �r1;r2 for G is de�ned as follows.�r1;r2 = �1 [�2 [f r1 7! left; r2 7! right g:Observe that there exist exactly two such mappings �r1;r2 and �r2;r1 , andthat �r2;r1 = �r1;r2 . When we say that a natural cycletree G is ordered,we assume a �xed order mapping � and we write G� if we wish to make �explicit. It should be clear that the above notions are well-de�ned, i.e., thatthe de�nitions indeed produce unique order mappings.We will now present an alternative method of constructing natural cycle-trees where the starting point is an ordered basic binary tree. The methodis based on the following notion.De�nition 5.1 (cycle order traversal) Let T be an ordered basic binarytree. Traverse T in root-mode.Root-mode Visit the root and mark it with ` '.Traverse the left subtree in pre-mode.Traverse the right subtree in post-mode.Visit the root again.Pre-mode Visit the root and mark it with `#'.Traverse the left subtree (if any) in pre-mode.Traverse the right subtree (if any) in in-mode.In-mode Traverse the left subtree (if any) in post-mode.Visit the root and mark it with `!'.Traverse the right subtree (if any) in pre-mode.Post-mode Traverse the left subtree (if any) in in-mode.16

Traverse the right subtree (if any) in post-mode.Visit the root and mark it with `"'.Let T [r] be an ordered basic binary tree. Let v 2 VT . We use v+ to denotethat vertex of T which is the immediate successor of v in a cycle ordertraversal of T .Theorem 5.2 For all �, G�[C; T] is an ordered natural cycletree if and onlyif T � is an ordered basic binary tree and EC = f (v; v+) : v 2 VT g.Proof.[)] Let H1[C1[r1; s1]; T1[r1]] and H2[C2[r2; s2]; T2[r2]] be as in De�nition 3.3and consider G�[C; T [r]]. Assume that � = �r1;r2 . (Note that �r1;r2 tells usthat T1 is the left subtree of T .) We know that the paths P1 = (r1; : : : ; s1)and P2 = (s2; : : : ; r2) corresponding to C1 and C2, respectively, are uniquewith respect to their endpoints. By the below lemma P1 is the pre-modetraversal of T1 and P2 is the post-mode traversal of T2. Clearly (r; P1; P2; r)corresponds to C and is the cycle order traversal of T �.[Lemma] Let H, r, s, Hi[Ci[ri; si]; Ti[ri]] for i 2 1; 2; 3 be as in De�ni-tion 3.2. We prove by induction over the structure of H that P = (r; : : : ; s0)is the pre-mode traversal of T �r;s0 and P = (s0; : : : ; r) is the post-modetraversal of T �r;s0 . (s0 is one of fr; s; s3g depending on the case of the def-inition.) Let � = �r;s0. If H is the isolated vertex, s0 = r, then this holdstrivially.Assume that Pi is the pre-mode traversal of Hi[ri; si] for i 2 f1; 2; 3g, andPi is the corresponding post-mode traversal.If H is constructed using H1 only, s0 = s, (by using 2(a)) then clearlyP = (r; P1; s) correponds to C[r; s] and is the pre-mode traversal of T �.(Note that the right subtree of T � is just s, so the in-mode traversal ofthe right subtree of T � is simply (s0).) Also P = (s; P1; r) is clearly thepost-mode traversal of T �.If H is constructed according to 2(b) then P = (r; P1; P2; s; P3) corre-sponds to the chain in H and is the pre-mode traversal of T �. Note that(P2; s; P3) is indeed the in-mode traversal of the right subtree of T �. We getalso that P = (P3; s; P2; P1; r) is the post-mode travesal of T �. Note that(P3; s; P2) is indeed the in-mode traversal of the left subtree of T �.[(] Let T �[r] be an ordered basic binary tree. We must prove that ThenG�[C; T [r]] is a natural cycletree, where EC = f (v; v+) : v 2 VT g.The statement follows easily from De�nition 5.1 and De�nition 3.3 oncewe haved proved the following lemma.17

[Lemma] Let T�[r] be an ordered binary tree and P = (r; : : : ; s) its pre-mode traversal. Then by adding the edges of P to T we obtain a chaintreeH[r; s] and � = �r;s.The proof is by straightforward induction over T . The base case, i.e.,when T is just one vertex is trivial. The case when the right subtree is a leafcorresponds to case 2(a) of De�nition 3.3 and the case when the right subtreeis not a leaf correponds to case 2(b). There is an obvious correspondencebeteen De�nitions 3.2 and 3.3 and De�nition 5.1.The theorem provides us with an alternative de�nition of cycletrees, whichwe will use in the subsequent sections.We introduce some more useful terminology. Let v be a vertex of a naturalcycletree G�[C; T [r]]. We call v a pre-, an in- or a post-vertex if v has mark`#', `!' or `"', respectively (in the cycle order traversal of T �). We saythat the ith vertex in the cycle order traversal of T has address i, r hasaddress 1. We often identify a vertex with its address and say \vertex a"instead of \vertex v such that v has address a". The addresses and marksare illustarted in Figure 10. 1234 5 6 7 8 9 10 11 12 1314 15
1617 ### " ! # " ! # " ! ## !
""

Figure 10: An ordered natural cycletree.Related concepts. The choice of names containing `pre', `post' and `in'has a historical background in ordered binary trees. In fact, there is aconnection between ordered natural cycletrees and threaded binary trees [24].Some types of threaded trees, to be used as interconnection graphs, havebeen studied by Despain and Patterson [11] and are illustrated in Figure 16.6 Natural cycletrees as interconnection graphsWe have so far studied some basic properties of natural cycletrees. Letus now turn to the more practical issue of using natural cycletrees as in-18

terconnection graphs in the MP-RAM model, see for example Almasi andGottlieb [2] for a formal treatment of the various computational models.We will present an algorithm that recursively con�gures a natural cycletreefrom a given collection of nodes.We will think of our RAMs simply as nodes. Each node has a uniqueaddress between 1 and N , where N is the total number of nodes. Whensaying `node a' we will mean `the node with address a'.The interconnection graph has a vertex corresponding to each node in theensemble. An edge in the graph indicates that the nodes at its endpointscan communicate via a bidirectional channel or link. Nodes so connected arecalled neighbours. We will be referring to the vertices and the edges of aninterconnection graph as nodes and links, when we have that interpretationin mind.Let us assume having only a collection of N nodes that we want to con�g-ure as a natural cycletree. As there exists a vast number of possible naturalcycletrees having N vertices (N must be odd and � 3), we assume thatcertain constraints are given and must be satis�ed, e.g., tree-completeness.Let n be the number of internal vertices of a basic binary tree having Nvertices. The relationship between n and N is simply n = (N � 1)=2. LetM be the set of marks and N the set of natural numbers. In the followingwe will assume that the constraints are given in the form of de�nitions forpartial functions splitm, for each mark m 2M, with the typeN �N ! 2N�N [f fhig g(where hi denotes an impossible \split"), such that for all m 2 M andk; n 2 N ,splitm(0; k) = f hi g and hn1; n2i 2 splitm(n; k)) n1 + n2 + 1 = n:Let G[C; T] be a natural cycletree and S[s] a subtree of T . Let n be thenumber of internal vertices of S, letm be the mark and k the level of s. Thensplitm(n; k) is the set of allowed partitions, hn1; n2i, of n into the numberof internal vertices, n1, in the left subtree of S, and the number of internalvertices, n2, in the right subtree of S.Example 6.1 If we want to divide the vertices as evenly as possible amongthe subtrees then we can de�ne `split' as follows. For m 2M and k; n 2 N ,splitm(n; k) = 8><>: f hn1; n� 1� n1i jn1 = b(n� 1)=2c _ n1 = d(n� 1)=2e g; if n > 0;f hi g; otherwise.19

Example 6.2 The formulasplitm(n; k) = (f hn� 1; 0i g; if n > 0;f hi g; otherwise,says that each internal vertex must have a leaf as its right child. The nat-ural cycletree in Figure 11 satis�es this constraint and is, for example, the
Figure 11: An extreme example of a natural cycletree.interconnection graph of the cyclic-order odd-even transposition bilinearsorter [26].We needed neither the mark nor the level in the simple examples 6.1 and 6.2.Using the mark and the level is more powerful and one can de�ne a `split'that yields, for example, a path-minimal natural cycletree. This is illustratedwith the next example.Example 6.3 We wish to obtain a natural cycletree G[C; T] that is path-minimal, i.e., it is tree-complete and has a minimal number of noncycleedges (i.e., a minimal number of in-vertices).Let d be the highest level of T such that the number of vertices at leveld is 2d, i.e., the highest \full" level of T . Let nT be the number of internalvertices in T . T is tree-complete if, and only if,d = blog2(nT + 1)c:After two de�nitions, we shall state a criterion (8) for path-minimality,which must hold for each subtree of T .Clearly, T is tree-complete if, and only if, each subtree of T is tree-complete. Consider any subtree S[s] of T , let n be the number of internalvertices in S, let m be the mark and k the level of s. De�ne g : N �N ! Nas follows: g(l; x) = x� (2l � 1):S is tree-complete if and only if S has g(d � k; n) internal vertices at leveld� k of S (i.e., at level k of T in S). For each mark m, de�ne I : N ! N20

as follows: I#(l) = I"(l) = 2l � (�1)l3 = $2l + 13 % ;I!(l) = (1; if l = 0;2I#(l � 1); otherwise,I (l) = (0; if l = 0;I!(l); otherwise.Im(l) is the number of in-vertices at any \full" level l of S[s], where m isthe mark of s [47, pp. 47, where Jl denotes I#(l) and I"(l)].Let h(S) be the number of internal in-vertices at level d � k of S. Now,path-minimality of G is equivalent with h(S) being as large as possible, i.e.,h(S) = min(g(d� k; n); Im(d� k)); (8)as S is tree-complete and d� k is a full level of S.Using the information above, we can de�ne `split' as follows. Assume,when n > 0, that m1 and m2 are the marks of the left and right children ofs, respectively (m1 and m2 are uniquely determined by m), thensplitm(n; k) = (f hi g; if n = 0;f hn1; n2i j 9l(l = d� k ^ ') g; otherwise,where ' is the formulag(l; n) = g(l � 1; n1) + g(l � 1; n2) ^g(l � 1; n1); g(l � 1; n2) � 2l�1 ^min(g(l; n); Im(l)) =min(g(l � 1; n1); Im1(l � 1)) + min(g(l � 1; n2); Im2(l � 1)):Figure 12 shows a path-minimal natural cycletree with 10 internal ver-tices. We have split (10; 0) = fh4; 5i; h5; 4ig, split#(4; 1) = fh2; 1ig andsplit"(5; 1) = fh1; 3i; h2; 2ig. Note that, e.g., h6; 3i is not in split (10; 0)because although it would give tree-completeness, the tree would not bepath-minimal.Before turning to the con�guration algorithm, let us show how, for a givensubtree S[a], the addresses of a's left and right children can be calculated ina \top down" manner. Let S1[a1] and S2[a2] be the left and right subtreesof S, respectively. We know from Section 5 that the vertices of S1 shallprecede in cycle order those of S2. We know also the following:� If a is a pre-vertex then it is the �rst vertex of S (in cycle order).21

1234 5 6 7 8 9 10 11 1213 14 15 161718 192021 ### " ! # " ! # ! "" ! # " ! # """
Figure 12: A path-minimal natural cycletree.� If a is an in-vertex then it is between S1 and S2.� If a is a post-vertex then it is the last vertex of S.For example, if a is a pre-vertex then a1 = a+1 and a2 = a+1+jVS1 j+jVS02 j,see Figure 13. a a2S1 S02# !

Figure 13: Calculating the address of the right child of a pre-vertex.We can now present the algorithm which constructs a cycletree recursively,using the properties above. As it is a trivial matter to construct a cycle, oneis assumed to be given. De�ne �(hx; yi) = 2(x + y + 1) + 1 and �(hi) = 1,�1(hx; yi) = 2x + 1 and �1(hi) = 0, and �2(hx; yi) = 2y + 1 and �2(hi) = 0.The intuition behind the above functions is as follows. Consider a binarytree S having x + y + 1 internal vertices. Then �(hx; yi) denotes the totalnumber of vertices in S. Accordingly, �1(hx; yi) and �2(hx; yi) denote thetotal number of vertices in the left and right subtrees of S, respectively.Algorithm 6.4 Let C be a cycle of N vertices; N is odd and N � 3.An enumeration of the vertices is assumed. The algorithm constructs anordered cycletree G[C; T] = hVC ; EC [Ei;22

by adding the missing noncycle edges E to C in such a way that for everysubtree S of T having root with mark m and level k, n1 internal verticesin its left subtree and n2 internal vertices in its right subtree, hn1; n2i 2splitm(n1 + n2 + 1; k).[Initialize] Let nT = (N � 1)=2, i.e., nT is the number of internal verticesin T . Let p 2 split (nT ; 0) (note that �(p) = N). Now E is given bycfg (1; p; 0) where `cfg' is de�ned recursively as follows.[Con�gure] cfgm(a; p; k).[Base case] If p = hi then a is an external vertex at level k withmark m;cfgm(a; p; k) = ;.[Recursive case] If p = hn1; n2i, then a is an internal vertex at levelk with mark m. The (addresses of the) left child a1 and right child a2of a are calculated and the corresponding subtrees are con�gured asfollows. There are four cases depending on the mark m of a.[m is]p1 2 split#(n1; 1); p2 2 split"(n2; 1);a1 = 2; a2 = �(p);cfg (a; p; 0) = cfg#(a1; p1; 1) [cfg"(a2; p2; 1).[m is #] (see Figure 13)p1 2 split#(n1; k + 1); p2 2 split!(n2; k + 1);a1 = a+ 1; a2 = a+ 1 + �(p1) + �1(p2);cfg#(a; p; k) = cfg#(a1; p1; k + 1)[cfg!(a2; p2; k + 1) [f (a; a2) g[m is "]p1 2 split!(n1; k + 1); p2 2 split"(n2; k + 1);a2 = a� 1; a1 = a� 1� �(p2)� �2(p1);cfg"(a; p; k) = cfg!(a1; p1; k + 1)[cfg"(a2; p2; k + 1) [f (a; a1) g[m is !]p1 2 split"(n1; k + 1); p2 2 split#(n2; k + 1);a1 = a� 1; a2 = a+ 1;cfg!(a; p; k) = cfg"(a1; p1; k + 1) [cfg#(a2; p2; k + 1).23

Termination of Algorithm 6.4 is guaranteed by the fact that the secondargument of `cfg' is strictly less in each recursive call of `cfg'. Thus eventuallythe base case must be reached. For example, by running Algorithm 6.4 withN = 11 and assuming a de�nition of `split' as given in Example 6.2, thealgorithm produces the natural cycletree as shown in Figure 11. The dashedlines correspond to the edge-set E in the algorithm.7 Embedding of binary tree based networksEmbedding of circular and linear arrays, binary trees and binary tree basednetworks, like X-trees [11], leap trees [20], back-to-back trees [13], de Bruijnnetworks [42] and completely linked trees, in other networks such as hy-percubes [20, 35, 37, 48, 49], meshes [28, 43, 54], rings [23], pyramids [12],butteries [40], and VLSI arrays [18, 22, 41, 53] have been studied exten-sively. Several of those techniques and results apply directly, or with minormodi�cations, to cycletrees.Large virtual networks can be simulated by smaller networks by map-ping several virtual nodes to one node [21]. The mapping problem, in itsmost general form, is computationally equivalent to the graph isomorphismproblem, as shown by Bokhari [9], and therefore NP-hard.In a recent paper [5] Barak and Ben-Natan discuss degree and structurepreserving partition schemes for mapping (contracting) full trees. In par-ticular, they introduce an ABFS (alternating breadth �rst search) partitionscheme, which for full binary trees yields a bounded contraction of degreethree. As a corollary of their Theorem 3.2 [5] we can prove that the samepartition scheme can be used to contract natural chaintrees as illustratedby Figure 14.

Figure 14: The ABFS partition scheme applied to a full natural chaintree,each grey area corresponds to a supervertex.The same contracted graph is obtained, since the nontree edges occuronly locally within each \supervertex" at the leaf level. It is straightforwardto modify the ABFS partition scheme for natural cycletrees, to obtain acorresponding bounded contraction of degree three.24

Contraction of a natural chaintree using the ABFS partition scheme thusalways yields a binary tree. Contraction of a natural cycletree, also withthe modi�ed algorithm, generally yields a graph with maximum degree threethat is not a binary tree.8 Properties of natural cycletrees and related networksIn this section we present some properties of natural cycletrees and give abrief survey of related network topologies that have been proposed. For anoverview of other static and dynamic connection topologies see, e.g., Almasiand Gottlieb [2].Our main reason for introducing cycletrees is to support pipeline commu-nication and broadcasting from (or collecting data to) a speci�c node, i.e.,the two communication patterns mentioned in the introduction.Therefore we have, for now, disregarded issues such as keeping the aver-age distance between an arbitrary pair of nodes as short as possible, faulttolerance and avoidance of congestion points for dense all-to-all communi-cation. It is clear that in case of arbitrary communication patterns naturalcycletrees perform only marginally better than binary trees. As in binarytrees, the diameter and the average distance is proportional to the depthof the tree, i.e., logarithimic in the best case. Cycletrees have better faulttolerance than binary trees, however, because they are biconnected.The main properties of a natural cycletree G[C; T] are the following.� C is the unique Hamiltonian cycle of G and T a basic binary spanningtree of G.� The maximum degree of G equals the maximum degree of T .� If G is minimal for T then no Hamiltonian graph with T as a spanningtree has fewer edges than G. A minimal natural cycletree exists forany T .� If G is path-minimal then T is tree-complete3 and EG is minimal.There exists no Hamiltonian graph with a tree-complete binary span-ning tree that has the same set of vertices but fewer edges than G. Apath-minimal natural cycletree exists for any odd number of vertices.� G can be extended incrementally to G0 by turning any leaf of T into aninternal vertex with two leaves as children and letting those leaves \in-herit" its nontree edges. Thus the structure is very exible. Figure 15illustrates extension on an in-vertex.3T has the minimal total path length. Then the diameter of G is at most dmin + 1, ifdmin is the minimal possible diameter. 25

a b cd a b cd
x yFigure 15: Extending a natural cycletree on an in-vertex.� G is a planar graph. Moreover, there always exists a plane depiction ofG where EC is the contour of the in�nite region. These, and other pla-nar properties of natural cycletrees are used in the context of routingin natural cycletrees [47].The proofs of the properties stated in the last two items are left as easyexercises; the others have been proved in the preceding text.Binary trees and Linear arrays. A linear array is in itself a powerfulinterconnection graph for many problems [8] and is used, for example, in theWarp computer [3]. Tseng [46] discusses loop distribution on systolic arraysand presents a systolic array parallelizing compiler for the AL languagespecially designed for the Warp computer.Another circular array based interconnection graph is the chordal ring [4].A binary tree [22] is, for example, a common feature of the DADO architec-tures [44]. Binary trees are generally used in dictionary machines [17].X-trees. Most of X-trees introduced by Despain and Patterson [11], e.g.,threaded X-trees (having maximum degree 4) and ringed X-trees (havingmaximum degree 5) are full binary tree based interconnection graphs aug-mented with extra links to provide uniform message tra�c and fault toler-ance. A threaded X-tree, see Figure 16, is actually a \preorder threaded"binary tree (assuming left and right as shown in the �gure), with an extrathread from the rightmost leaf to the root. Threaded X-trees belong to theclass of cycletrees, see also Knuth [24, Exercise 2.3.1{33]. The threadedbinary tree in the lower left corner of Figure 16 is what is commonly un-derstood as a threaded binary tree [24, pp. 319{320], i.e., it is threaded ininorder (or symmetric order). Ringed X-trees are supergraphs of natural cy-cletrees. Ringed X-trees are interesting in that they do not su�er from datatra�c congestion at the root, assuming arbitrary communication patterns.26

A threaded binary tree. A threaded X-tree. A double threaded X-tree.
A full cycletree (ringtree). A cyclic sneptree. A binary deBruijn graph.
A completely linked tree. A half-ringed X-tree. A ringed X-tree.

A simple ring. A chordal ring. A full binary tree.
A hypertree.A leap tree.

Figure 16: Some examples of related networks.
27

Despain and Patterson point out that a threaded X-tree network is attrac-tive because the threaded links provide a path that linearizes the nodes thusmaking the network attractive if pipelines of processes are to be distributedonto the tree. Natural cycletrees are also designed with this application inmind, but are even more attractive because, in addition, they minimize thedegree and allow arbitrary basic binary spanning trees.The X-tree structure is used, for example, in the Ottman, Rosenbergand Stockmeyer machine [36]. The Leiserson machine [19, 29] uses thecompletely linked binary tree structure (also called a semi X-tree [19]), whichis also a supergraph of a natural cycletree. In the Leiserson machine, theinternal nodes are used for routing only.Hypertrees. Hypertrees [16] are similar to X-trees in their design. Ahypertree is based on a full binary tree structure. There are extra links con-necting the nodes on the same level n, forming a set of n-cube connections.Figure 17 illustrates a 4-cube. There is an edge between the i'th and thej'th vertices whenever the binary representations of i and j di�er in exactlyone bit (i.e., the Hamming distance between i and j is one). The hypercube
16 17
24 25

18 19
26 27

20 2128 29
22 23
30 31

Figure 17: A 4-cube.illustrated in the �gure is actually the virtual 4-cube formed at level 4 ofthe hypertree in �gure 16. The vertices are enumerated from left to rightin normal order of the binary tree. The leftmost vertex at level 4 then hasnumber 16, which is why the labels in the cube begin with 16 (= 100002).The vertical edges in the cube are the horizontal edges at level 4 in thehypertree. Any other edge is actually a path through the upper part of thehypertree, which is why we say that the hyper-cube is virtual.The maximum degree of a hypertree is either four or �ve. Similarly toX-trees, hypertrees were designed as general purpose interconnection graphs28

for problems where arbitrary communication patterns can appear. Hyper-trees are better suited than ringed X-trees for problems where remote leavescommunicate heavily.Leap trees [20] have a similar structure as hypertrees. These are full binarytrees with additional \leap" edges between the i'th and the j'th vertices (innormal order with the �rst one being 0'th) at level k, whenever j = i+2k�1.The interconnection graph of the CM-5 parallel computer [45] is some-times called a hypertree [33] and is a variant of fat-trees [30]. Althoughrelated, this is not the same network.DeBruijn networks. Binary deBruijn networks [42] of n nodes have aHamiltonian cycle and and a full binary tree of n� 1 nodes. The degree is�xed, i.e., the same for all nodes. In the case of the binary deBruijn network,the degree is four. Those networks have good fault tolerance properties andare well suited as sorting networks, as demonstrated by Samatham andPradhan [42].Hyper-deBruijn networks. This interconnection graph [14] is a combi-nation of a hypercube and a deBruijn network. A hyper-deBruijn networkadmits several other networks, including a circular array and a full binarytree. Unlike hypercubes, hyper-deBruijn networks are bounded degree net-works. A hyper-deBruijn network of 2n nodes can be designed to have amaximum degree k, for any k such that 4 � k � n. The diameter is loga-rithmic. It is a general purpose interconnection graph and the main designgoals are fault-tolerance, scalability and simplicity of routing.Sneptrees. Another class of full binary tree based interconnection graphsare the sneptrees [32]. Each node in a sneptree has degree four. Sneptreeswere designed as general purpose interconnection graphs. The main featureof sneptrees is that they can simulate over-sized computation trees throughthe additional links and are thus particularly suitable for divide-and-conqueralgorithms. A deBruijn network of degree 4 is one kind of sneptree. Cyclicsneptrees contain two Hamiltonian circuits.Ringtrees. Ringtrees [52] form a special case of cycletrees, namely, fullnatural cycletrees. Natural cycletrees can therefore be seen as a generaliza-tion of ringtrees. A ringtree is constructed of two k-linear trees. A k-lineartree corresponds to a full natural chaintree of 2k � 1 vertices. Ringtreeswere designed largely for the same reasons as natural cycletrees. Unlikethe de�nition of a natural chaintree, the de�nition of a k-linear tree is notinductive. 29

9 ConclusionsThe most common communication patterns that arise in parallel compu-tations are, arguably, supported by a binary tree structure and a circulararray structure. These communication patterns occur frequently in manyparadigms for parallel programming [10], but also in computations obtainedby automatic parallelization of repetition usually in the form of sequen-tial loops [31, 46, 51]. These communication patterns arise also in parallelcomputations resulting from parallelization of repetition in declarative pro-gramming using, e.g., bounded quanti�cations [6] or Reform [34], a �eldwhere we plan to apply the techniques described herein.Let us illustrate the relationships between the main classes of graphs thatwe have introduced in this paper. Let CCT denote the class of candidatecycletrees, i.e., all Hamiltonian graphs with a basic binary spanning tree, letCT be the class of cycletrees and let NCT be the class of natural cycletrees.Let MCT , T CT and PCT be the classes of minimal, tree-complete andpath-minimal cycletrees, repectively. Let RT denote the class of ringtrees.See Figure 18. Note that all the intersections in the �gure are nonempty.CCT CT MCT PCT NCTRTT CT
Figure 18: Some relationships between the various classes of graphs.In this paper we focused on natural cycletrees and showed that a naturalcycletree includes any basic binary tree, has a unique Hamiltonian cycle,and that the maximum degree of a natural cycletree is 3, which is clearlythe lowest possible. We showed that a minimal natural cycletree has thetheoretically smallest possible number of nontree edges. Thus, a naturalcycletree can be used to realize both a basic binary tree structure and acircular array structure to the lowest possible cost, from an embedding ormapping point of view.Natural cycletrees have an appealing inductively de�ned structure. Weshowed through Algorithm 6.4 how to construct natural cycletrees recur-sively. This algorithm provides the outlines of how natural cycletree net-works can be con�gured dynamically. Routing in cycletrees is treated else-where [47]. 30

References[1] Agrawal, D. P., Janakiram, V. K. and Pathak, G. C., Evaluatingthe Performance of Multicomputer Con�gurations, IEEE Computer,19(5):23{37 (1986).[2] Almasi, G. S. and Gottlieb, A., Highly Parallel Computing, Benjamin/Cummings, Redwood City, Calif., 1989.[3] Annaratone, M., Arnould, E., Gross, T., Kung, H. T., Lam, M., Men-zilcioglu, O. and Webb, J. A., The Warp Computer: Architecture,Implementation and Performance, IEEE Transactions on Computers,C-36(12):1523{1538 (1987).[4] Arden, B. W. and Lee, H., Analysis of Chordal Ring Network, IEEETransactions on Computers, C-30:291{295 (1981).[5] Barak, A. and Ben-Natan, R., Bounded Contractions of Full Trees, J.Parallel and Distributed Computing, 17:363{369 (1993).[6] Barklund, J., Bounded Quanti�cations for Iteration and Concur-rency in Logic Programming, New Generation Computing, 12:161{182(1994).[7] Beivide, R., Herrada, E., Balc�azar, E. and Arruabarrena, A., Opti-mal Distance Networks of Low Degree for Parallel Computers, IEEETransactions on Computers, 40(10):1109{1124 (1991).[8] Bentley, J. L. and Ottmann, T., On the Power of One Dimensional Vec-tors of Processors, in: H. Noltemeier (ed.), Graph-Theoretic Conceptsin Computer Science, LNCS 100, Springer-Verlag, Berlin, 1980.[9] Bokhari, S. H., On the Mapping Problem, IEEE Transactions onComputers, C-30(3):207{214 (1981).31

[10] Chaudhuri, P., Parallel Algorithms: Design and Analysis, PrenticeHall, Sydney, 1992.[11] Despain, A. M. and Patterson, D. A., X-tree: A Tree Structured Multi-processor Computer, SIGARCH Newsletters, 6(7):144{151 (1978).[12] Dingle, A. and Sudborough, I. H., Simulation of Binary Trees and X-Trees on Pyramid Networks, J. Parallel and Distributed Computing,19:119{124 (1993).[13] Efe, K., Embedding Mesh of Trees in the Hypercube, J. Parallel andDistributed Computing, 11:222{230 (1991).[14] Ganesan, E. and Pradhan, D. K., The Hyper-deBruijn Networks: Scal-able Versatile Architecture, IEEE Transactions on Parallel and Dis-tributed Systems, 4(9):962{978 (1993).[15] Golumbic, M. C., Algorithmic Graph Theory and Perfect Graphs, Aca-demic Press, New York, 1980.[16] Goodman, J. R. and S�equin, C. H., Hypertree: A Multiprocessor Inter-connection Topology, IEEE Transactions on Computers, C-30(12):923{933 (1981).[17] Goodrich, M. T. and Atallah, M. J., On Performing Robust OrderStatistics in Tree-Structured Dictionary Machines, J. Parallel and Dis-tributed Computing, 9:69{76 (1990).[18] Gordon, D., E�cient Embedding of Binary Trees in VLSI Arrays, IEEETransactions on Computers, C-36:1009{1018 (1987).[19] Goyal, P. and Narayanan, T. S., Dictionary Machine with ImprovedPerformance, The Computer Journal, 31(6):490{495 (1988).32

[20] Gupta, A. K. and Hambrusch, S. E., Multiple Network Embeddings intoHypercubes, J. Parallel and Distributed Computing, 19:73{82 (1993).[21] Heath, L. S., Rosenberg, A. L. and Smith, B. T., The Physical MappingProblem for Parallel Architectures, Journal of the ACM, 35(3):603{634(1988).[22] Horowitz, E. and Zorat, A., The Binary Tree as an InterconnectionNetwork: Applications to Multiprocessor Systems and VLSI, IEEETransactions on Computers, C-30:247{253 (1981).[23] Hromkovit�c, J., M�uller, V., S�ykora, O. and Vr�to, I., On Embedding In-terconnection Networks into Rings of Processors, in: Proc. PARLE 92,Springer-Verlag, Berlin, 1992.[24] Knuth, D. E., The Art of Computer Programming, Second edition,volume 1: Fundamental Algorithms, Addison-Wesley, Reading, Mass.,1973.[25] Kuck, D. J., Muraoka, Y. and Chen, S. C., On the Number of Oper-ations Simultaneously Executable in Fortran-like Programs and theirResulting Speed-up, IEEE Transactions on Computers, 21:1293{1310(1972).[26] Lam, S. P. S., A Novel Sorting Array Processor, in: CONPAR 92 {VAPP V, LNCS 634, Springer-Verlag, Berlin, 1992.[27] Lamport, L., The Parallel Execution of DO Loops, Communicationsof the ACM, 17:83{93 (1974).[28] Lati�, S. and El-Amawy, A., E�cient Approach to Embed Binary Treesin 3-D Rectangular Arrays, IEEE Processors, 137(2):159{163 (1990).[29] Leiserson, C. E., Systolic Priority Queues, in: Proc. CalTech Conf.VLSI, January 1979. 33

[30] Leiserson, C. E., Fat-Trees: Universal Networks for Hardware-e�cientSupercomputing, IEEE Transactions on Computers, C-34(10):892{901(1985).[31] Lengauer, C., Towards Systolizing Compilation: An Overview, in:Proc. PARLE 89, LNCS 366, Springer-Verlag, Berlin, 1989.[32] Li, P. P. and Martin, A. J., The Sneptree { A Versatile InterconnectionNetwork, in: K. Hwang, S. M. Jakobs and E. E. Swartzlander (eds.),Proc. 1986 IEEE Intl. Conf. on Parallel Processing, IEEE Comp. Soc.Press, August 1986.[33] Lin, M., Tsang, R. P., Du, D. H. C., Klietz, A. E. and Saro�, S., Perfor-mance Characteristics of the Connection Machine Hypertree Network,J. Parallel and Distributed Computing, 19:245{254 (1993).[34] Millroth, H., Reforming Compilation of Logic Programs, in: V. Saras-wat and K. Ueda (eds.), Logic Programming: Proc. 1991 Intl. Symp.,MIT Press, Cambridge, Mass., 1991.[35] Monien, B. and Sudborough, I. H., Simulating Binary Trees on Hyper-cubes, in: J. H. Reif (ed.), AWOC 88 VLSI Algorithms and Architec-tures, LNCS 319, Springer-Verlag, Berlin, 1988.[36] Ottman, T. A., Rosenberg, A. L. and Stockmeyer, L. J., A DictionaryMachine for VLSI, IEEE Transactions on Computers, C-31(9):892{897(1982).[37] Provost, F. J. and Melhem, R., A Distributed Algorithm for EmbeddingTrees in Hypercubes with Modi�cations for Run-Time Fault Tolerance,J. Parallel and Distributed Computing, 14:85{89 (1992).[38] Reed, D. A. and Grunwald, D. C., The Performance of MulticomputerInterconnection Networks, IEEE Computer, 20(6):63{73 (1987).34

[39] Reed, D. A. and Schwetman, H. D., Cost-performance Bounds forMultimicrocomputer Networks, IEEE Transactions on Computers, C-32(1):83{95 (1983).[40] Rosenberg, A. L., Graph Embeddings 1988: Recent Breakthroughs,New Directions, in: J. H. Reif (ed.), AWOC 88 VLSI Algorithms andArchitectures, LNCS 319, Springer-Verlag, Berlin, 1988.[41] Ruzzo, W. L. and Snyder, L., Minimum Edge Length Planar Embed-dings of Trees, in: H. T. Kung, B. Sproull and G. Steele (eds.), VLSISystems and Computations, Springer-Verlag, Berlin, 1981.[42] Samatham, M. R. and Pradhan, D. K., The de Bruijn Multiproces-sor Network: A Versatile Parallel Processing and Sorting Network forVLSI, IEEE Transactions on Computers, 38(4):567{581 (1989), cor-rections in vol. 40, pp. 122, Jan. 1991.[43] Sitaram, D., Koren, I. and Krishna, C. M., A Random, DistributedAlgorithm to Embed Trees in Partially Faulty Processor Arrays, J.Parallel and Distributed Computing, 12:1{11 (1991).[44] Stolfo, S. J., Initial Performance of the DADO2 Prototype, IEEEComputer, 20(1):75{83 (1987).[45] Thinking Machines Corp., Connection Machine CM-5 Technical Sum-mary, 1991.[46] Tseng, P.-S., A Systolic Array Parallelizing Compiler, J. Parallel andDistributed Computing, 9:116{127 (1990).[47] Veanes, M., Cycletrees: a Novel Class of Interconnection Graphs, Ph.L.thesis, Computing Science Dept., Uppsala University, 1993, Uppsalatheses in computing science No. 17/93.35

[48] Wagner, A. S., Embedding All Binary Trees in the Hypercube, J.Parallel and Distributed Computing, 18:33{43 (1993).[49] Wagner, A. S., Embedding the Complete Tree in the Hypercube, J.Parallel and Distributed Computing, 20:241{247 (1994).[50] Wittie, L. D., Communication Structures for Large Networks of Micro-computers, IEEE Transactions on Computers, C-30:264{273 (1981).[51] Wolfe, M., New Program Restructuring Technology, in: Parallel Com-putation, First Intl. ACPC Conf., LNCS 591, Springer-Verlag, Berlin,1991.[52] Xie, X. and Ge, Y., An Optimal Structure that Accommodates Botha Ring and a Binary Tree, in: A. Bode (ed.), Distributed MemoryComputing, LNCS 487, Springer-Verlag, Berlin, 1991.[53] Youn, H. Y. and Singh, A. D., On Implementing Large Binary TreeArchitectures in VLSI and WSI, IEEE Transactions on Computers,38(4):526{537 (1989).[54] Zienicke, P., Embeddings of Treelike Graphs into 2-dimensional Meshes,in: R. H. M�ohring (ed.), WG'90 Graph-Theoretic Concepts in Com-puter Science, LNCS 484, Springer-Verlag, Berlin, 1990.

36

