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Chapter 1IntroductionRecently it was proved that the problem of simultaneous rigid E-uni�cation (SREU)is undecidable [9]. This (quite unexpected) undecidability result has lead to a seriesof undecidability results in related areas, and is also the main motivation behind thiswork. We perform an in-depth investigation of the undecidable nature of SREU. Asa result we obtain that one can use SREU to uniformly represent any recursivelyenumerable set. From this representation follows that SREU is undecidable alreadyfor 6 rigid equations with ground left hand sides and 2 variables.As a corollary of this investigation we obtain a new characterization of the recur-sively enumerable sets in intuitionistic �rst order logic with equality with one functionsymbol, say f , and a countable set of constants. More precisely, we can conclude thisresult as follows. Let W be an r. e. set of strings over some subset of constants asthe alphabet. If t is a term f(c1; f(c2; : : : ; f(cn; c0) : : :)) let bt stand for the stringc1c2 : : : cn where all the ci are constants. There is a quanti�er free formula '(z; x; y)of the form ( 1 ) s1 = t1) ^ � � � ^ ( 7 ) s7 = t7)where all the  i are closed conjunctions of equations and all the variables in all thesi and ti are among fx; y; zg, which is obtained e�ectively from the index of W suchthat for all ground terms t in Lbt 2 W , `i 9x9y'(t; x; y);where `i stands for intuitionistic provability.1.1 Background of SREUSimultaneous rigid E-uni�cation was proposed by Gallier, Raatz and Snyder [17] as amethod for automated theorem proving in classical logics with equality. It can be usedin automatic proof methods, like semantic tableaux [14], the connection method [4]or the mating method [1], model elimination [27], and others that are based on theHerbrand theorem, and use the property that a formula is valid (i.e., its negation isunsatis�able) i� all paths through one of its matrix are inconsistent. This propertywas �rst recognized by Prawitz [35] (for �rst order logic without equality) and laterby Kanger [22] (for �rst order logic with equality). In �rst order logic with equality,the problem of checking the inconsistency of the paths results in SREU.1.2 Outline of the ReportIn Chapter 2 we explain the notations used in the report. We also explain somebackground material concerning deterministic �nite automata and rewrite systems.We want to point out here that the reader is not assumed to be an expert on rewritesystems (the author is not). We only use very simple results and the report is com-pletely selfcontained. What is important to understand from this chapter (that the1



succeding chapters will make heavy use of) is how the graph of the transition functionof a deterministic �nite automaton can be seen as a convergent rewrite system.In Chapter 3 we de�ne the basic components needed to represent computations.These are words and sentences. Words are simply representations of strings andsentences are representations of sequences of strings. The main result of this chapteris Theorem 3.2.4. It shows how one can construct a system of rigid equations thatdescribes sentences with words in certain regular sets such that the sentence itself hasa given regular pattern. This theorem is used in Chapter 5.In Chapter 4 we describe a technique that can be used to express roughly that onesequence of strings is an encoding of pairwise adjacent strings of another sequence.This is stated as Theorem 4.2.1. This technique is the cornerstone of the main resultof this report (Theorem 5.2.1).In Chapter 5 we prove that one can use SREU to represent (uniformly) any recur-sively enumerable set. The main result is Theorem 5.2.1. The system that is obtainedhas a very simple structure. The undecidability of SREU follows directly from thisresult (2 variables and six rigid equations is enough). We also give an overview ofsome other proofs of the undecidability of SREU that have appeared in the literature.In Chapter 6 we give a uniform charterization of all r. e. sets with certain simpleformulas in intuitionistic �rst order logic with equality, using only one function symbolof arity 2 and some number of constants. The main result here is Theorem 6.1.1. (Itis actually a simple corollary of Theorem 5.2.1.) In particular, the undecidability ofthe 99-fragment of intuitionistic logic follows from it, this is an improvement of therecent result regarding the undecidability of the 9�-fragment in general [11].In Chapter 7 we summerize the current status and state some open problemsregarding decidability questions about SREU.
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Chapter 2PreliminariesHere we explain the notational conventions of this this report and give the mainde�nitions concerning SREU. Also some of the background material used in thisreport, concerning rewrite systems and deterministic �nite automata is presentedhere. We introduce some useful notions and state some simple but useful lemmasrelating �nite automata with convergent rewrite systems.In particular, the graph of the transition function of any deterministic �nite au-tomaton corresponds directly to a convergent rewrite system. This property remainstrue under union of graphs of transition functions of deterministic �nite automatawith disjoint sets of states, which is used in proving Theorem 3.2.4 (the main theo-rem of next chapter).2.1 Basic NotionsThroughout the report, the �rst order language that we are working with is designatedby L. L has one binary function symbol � and a countable set of constants L0. Wewill use in�x notation for � and assume that it associates to the right, so t1 � t2 � t3stands for the term �(t1; �(t2; t3)). In general we will use the letters t and s to standfor terms in L.Formulas are de�ned as usual from atomic formulas, i.e., equations since there areno relation symbols other than `=', using the connectives ^, _, ) and quanti�ers 9and 8. The notions of free and bound variables is standard. For a formula ' we write'(~x), where ~x = x1; x2; : : : ; xn for some n 2 N, to indicate that all the free variablesin ' are among the ~x. For t a term, '(: : : ; xi�1; t; xi+1; : : :) stands for the formulaobtained by substituting t for xi in '(: : : ; xi�1; xi; xi+1; : : :).Substitutions are mappings from variables to terms, and are extended to arbitraryexpressions in the usual manner. An application of a substitution � on an expressionX is written X�. A formula is said to be closed if it contains no free variables. Aterm is said to be ground if it contains no variables. We say also that an equation ora set of equations is ground if all the terms involved are ground. For a formula '(~x)we write 8' for a universal closure of ', i.e., for 8~x'.We write X � Y to say that X is a nonempty �nite subset of Y . We will oftenoverload the mening of `=', we trust the reader to understand the exact meaning fromthe context.2.2 Simultaneous Rigid E-Uni�cationHere we de�ne the main notions concerning simultaneous rigid E-uni�cation. AI rigid equation is an expression of the form E 8̀ s = t where E is a �nite setof equations and s and t are arbitrary terms. A system of rigid equations is a�nite set of rigid equations. 3



A substitution � is aI solution of or solves a rigid equation E 8̀ s = t if` 8 (ê2E e�)) s� = t�:� solves a system of rigid equations if it solves each member of the system.Here ` is classical or intuitionistic provability (for this class of formulas they are thesame). The problem of solvability of systems of rigid equations is called simultaneousrigid E-uni�cation or SREU for short. Solvability of a single rigid equation is calledrigid E-uni�cation.2.3 Convergent Rewrite SystemsIn order to simplify certain proofs we will make use of some results from rewritesystems [13, 21]. We start by introducing some terminology and �nally we state alemma that will be used later. We don't require the reader to be familiar with rewritesystems.Let �! be a binary relation on terms. We de�ne �rst some well-known propertiesof �!. The reexive and transitive closure of �! is denoted by ��!. We say that�! isI noetherian if there is no in�nite chain t1 �! t2 �! � � � �! ti �! � � �,I conuent if s ��! t1 and s ��! t2 imply that there is a t such that t1 ��! t andt2 ��! t,I a rewrite relation if s �! t implies that u[s�] �! u[t�] for all terms s, t and u,and substitutions �,where u[t] stands for u with certain subterm occurence t. Let E be a �nite set ofequations. We say that E is aI rewrite system with respect to an ordering � on terms if we have s � t or t � sfor all equations s = t in E.We sometimes write E� if E is a rewrite system with respect to �, to emphasize theordering. We say that an equation s = t of E is aI rule s = t of E� if s � t,I by �!E� or simply �!E we denote the smallest rewrite relation for whichs �!E t whenever s = t is a rule of E.We sometimes write �! for �!E if E is clear from the context. A term s is said tobe inI normal form or irreducible with respect to E if there is no term t such thats �!E t.We say that a rewrite system E is noetherian (conuent) if the corresponding rewriterelation �!E is noetherian (conuent), and we say that E isI convergent if it is both noetherian and conuent.4



Convergent systems enjoy the property that each term has a unique normal form.Furthermore, if we want to decide whether an equation s = t logically follows from aset of equations E, and E is a convergent rewrite system, then it is enough to see ifthe normal forms of s and t with respect to E coincide (cf [13, Section 2.4]).This is the main motivation behind the completion procedure [24] that attemptsto construct a convergent rewrite system from a given set E of equations. The kernelof this procedure is based on the superposition algorithm in combination with thecritical pair lemma [13] or [21, Lemma 3.1]. (See also [24, Corollary of Theorem 5]or [21, Theorem 3.2].) This lemma can be used to prove that certain rewrite systemsare conuent. In particular we have the following case. A rewrite system E is calledI left-reduced if for every rule s = t of E, s is irreducible with respect to Enfs = tg.Lemma 2.3.1 A left-reduced and noetherian ground rewrite system is convergent.Proof. Follows from the superposition algorithm and Lemma 3.1 in Huet [21]. �That particular property is also pointed out by Bachmair and Ganzinger [3, Sec-tion 2.3].We now let � stand for the following �xed ordering between terms:I t � s i� t has more symbols that s.On a couple of occasions � will temporarily be extended so that a � b holds betweencertain constants a and b. The important property that will not be violated in thatcase is that the set of all such a's is disjoint from the set of all such b's.Note It is clear (even in the extended case) that if E� is a ground rewrite systemthen it is noetherian (in any reduction step either the number of symbols or thenumber of a's (as above) decreases).2.4 Deterministic Finite AutomataWe will make use the following de�nitions. We follow Hopcroft and Ullman [20].Formally, aI deterministic �nite automaton (DFA) M is a 5-tuple (Q;�; �; q0; F ) where{ Q is a �nite set of states,{ � is a �nite input alphabet ,{ � : Q � � ! Q is the transition function (� can be partial, i.e., unde�nedfor certain elements of Q� �),{ q0 2 Q is the initial state, and{ F � Q is the set of �nal states.We assume that the states and the input alphabet are disjoint subsets of L0. Whenwe say that a constant occurs in M we mean that it is either in Q or in �. LetM = (Q;�; �; q0; F ) be a DFA. We say that theI language accepted by M , L(M), is the set of all strings a1a2 : : : an 2 ��, n � 0,such that �(qj�1; aj) = qj for 1 � j � n, where qn is a �nal state.We say that two DFAs areI state-disjoint if their sets of states are disjoint.5



We extend this notion to a family of DFAs in the usual manner. We will also makeuse of the following de�nition. Let M = (Q;�; �; q0; F ) and M 0 be two DFAs. Wesay thatI M 0 is the extension of M with (a; f), if a and f are distinct constants that don'toccur in M andM 0 = (Q [ ffg; � [ fag; � [ f (q; a) 7! f j q 2 F g; q0; ffg);we write M [a; f ] for M 0,The reason why the de�nition is useful is that M [a; f ] has exactly one �nal state fand that Lemma 2.4.1 holds.Let r be a regular expression. When it is clear from the context, we write r for theregular set that it denotes. We sometimes also use regular sets in regular expressions.For example, if a is the regular expression consisting of just the constant a and R isa regular set then Ra stands for the regular set fwa j w 2 R g.Lemma 2.4.1 Let M be a DFA. Then L(M [a; f ]) = L(M)a.Proof. Immediate from the de�nition of M [a; f ]. �Let M = (Q;�; �; q0; F ) be a DFA. We de�ne GM as the following set of equationsand call itI the graph of M , GM = f a � q = p j �(q; a) = p g,i.e., GM represents the graph of the transition function of M with the �rst two argu-ments reversed. We generalize the notion of graph to a (�nite) family M = fMigi2Iof DFAs as follows: GM =[i2I GMi :The following lemma will be the key property in many proofs.Lemma 2.4.2 Let M = (Q;�; �; q0; F ) be a DFA, then GM is a convergent rewritesystem.Proof. All the equations in GM have the form a �p = q where a, p and q are constants.So G�M is a rewrite system. Furthermore, GM is left-reduced because � is a function.The statement follows now by using Lemma 2.3.1 and the note after that lemma. �Let M be a DFA. What Lemma 2.4.2 tells us is that, whenever we want to provethat an equation logically follows from GM , it su�ces to prove that both sides ofthat equation reduce to the same normal form with respect to GM (and vice versaofcource). We will also need the following stronger version of Lemma 2.4.2.Lemma 2.4.3 Let M be a state-disjoint (�nite) family of DFAs, then GM is a con-vergent rewrite system.Proof. Obvious generalization of the proof of Lemma 2.4.2. Note that the unionof the transition functions of the members of M is still a function because of thestate-disjointness of M. �
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Chapter 3Words and SentencesHere we prove some useful properties about representing regular sets. Words are cer-tain terms of L that represent strings, and sentences are certain terms that representsequences of strings.The main theorem of this chapter is Theorem 3.2.4. Many properties of simultane-ous rigid equations regarding representation of regular sets follow from it, for exampleTheorem 3.1.3. A result corresponding to Theorem 3.1.3 is stated also in [19, 33].1Also several theorems used in Plaisted [33, Theorems 8.2{8.11] can be stated as corol-laries of Theorem 3.2.4.3.1 WordsThe basic components in our later constructions are words. Words are our choiceof representing strings of characters, where characters are (represented by) just con-stants. Mostly we will use the letters v and w to stand for strings of constants.Formally, we say that a gound term t of L is aI q-word or simply a word when it has the form a1 � a2 � � � � � an � q for some n 2 Nwhere all the ai and q are constants. If n = 0 then t is said to be empty.If t is a word a1 � a2 � � � � � an � q we mostly use the shorthand v � q for t where v is thestring a1a2 � � � an. We also say that tI represents the string v, in symbols bt = v.Note that any constant q is an empty q-word and represents �. Mostly we want to bemore speci�c and talk about strings in certain regular sets. Let R be a regular setover some set of constants in L. We say a ground term t of L is aI word in R if t is a word and it represents a string in R.For any string v we writeI vr for the reverse of v, and for a set of strings R we write Rr for f vr j v 2 R g.It is well-known that if R is a regular set then so is Rr, see for example Hopcroft andUllman [20, p 281]. The following two lemmas will be used to prove Theorem 3.1.3and they will also be used in later sections.Lemma 3.1.1 Let M = (Q;�; �; q0; F ) be a DFA, let M 0 = M [a; f ], and let t be aq0-word. The following statements are equivalent:1There is a minor technical mistake in [33, Theorem 8.5] (corresponding to our Theorem 3.1.3)where, given a regular set R, one has to consider a DFA that accepts the reverse of R, not R itself.7



1. t is a word in L(M)r (i.e., btr 2 L(M)),2. t ��!GM q for some q 2 F ,3. a � t ��!GM0 f .Proof. We have that t = an � � � a2a1 � q0 for some n 2 N where each ai is a constant.Let v = a1a2 � � �an, i.e., v = btr.[Proof of `1 ) 2'] Assume v 2 L(M). Thus �(qi�1; ai) = qi for 1 � i � n whereqn 2 F . So f ai �qi�1 = qi j 1 � i � n g � GM and thus we can construct the reductionan � � � a2a1 � q0 �!GM an � � � a2 � q1 ��!GM an � qn�1 �!GM qn: (3.1)So t ��!GM qn and qn 2 F .[Proof of `2 ) 1'] Assume t ��!GM qn for some qn 2 F . From the structure of tand the fact that all the rules in GM have the form c1 � c2 = c3 where fc1; c2; c3g areconstants, it follows that the reduction must have the form (3.1) and f ai � qi�1 = qi j1 � i � n g � GM . It follows by de�nition of GM that v is accepted by M .[Proof of `1 , 3'] Apply `1 , 2' to M 0 (for M) and a � t (for t) to obtain thatva 2 L(M 0) i� a � t ��!GM0 f . But L(M 0) = L(M)a by Lemma 2.4.1. �Lemma 3.1.2 Let � be a set of constants and q a constant not in �. There is a setof equations Wordq� such that � solves Wordq� 8̀ x = q i� x� is a q-word in ��.Proof. Let Wordq� = f a �q = q j a 2 � g. Note that Wordq� is the graph of the trivialDFA that has one state q and accepts ��. Since Wordq� is convergent it is enough toshow that x� ��!Wordq� q i� x� is a q-word in ��, which is easy to prove. �Theorem 3.1.3 Let M = (Q;�; �; q0; F ) be a DFA. There is a system S(x) of rigidequations such that � solves S(x) i� x� is a q0-word in L(M)r.Proof. Let S(x) = ( Wordq0� 8̀ x = q0;GM 0 8̀ a � x = fwhere Wordq0� is given by Lemma 3.1.2 and M 0 =M [a; f ].[Proof of `)'] Assume � solves S(x). By Lemma 3.1.2 x� is a q0-word in ��, andby Lemma 2.4.2 a � x� ��!GM0 f . Use now Lemma 3.1.1.[Proof of `('] Assume x� is a q0-word in L(M)r � ��. So � solves the �rst rigidequation according to Lemma 3.1.2, and a � x� ��!GM0 f follows from Lemma 3.1.1.So � solves the second rigid equation by Lemma 2.4.2. �Example 3.1.4 To illustrate the construction above, consider the DFA M such thatL(M) = 1 + 2(10)�, with the following transition diagram:q1 q0 q2 q31 2 01The DFA M 0 =M [a; f ] has then the following transition diagram:
fa aq1 q0 q2 q31 2 01
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From these diagrams we can see that the graphs of M and M 0 are as follows:GM = f1 � q0 = q1; 2 � q0 = q2; 1 � q2 = q3; 0 � q3 = q2gGM 0 = GM [ fa � q1 = f; a � q2 = fgFor example if x� represents the string 012 thena012 � q0 �!GM a01 � q2�!GM a0 � q3�!GM a � q2�!GM0 fwhich shows that 210 2 L(M), whereas if x� represents the string 0012 then x�reduces to 0 � q2 and there is no rule to reduce this further, so a0 � q2 can't be reducedto f showing that 2100 62 L(M). 23.2 SentencesSentences are just representations of sequences of strings. Let us �rst choose a �xedconstant [] (\nil") of L. Formally, a ground term t of L is called aI sentence if it has the form t1 � t2 � � � � � tn � [] for some n 2 N where each ti is aword. If n = 0 then t is said to be empty.We use [t1; t2; : : : ; tn] as a shorthand for the corresponding sentence. We say that asentence t = [t1; t2; : : : ; tn]I represents the sequence of strings bt = (bt1; bt2; : : : ; btn).Our aim here is to represent sequences of strings, where each string belongs to somemember of a given family of regular sets, such that the sequence has some givenregular pattern. For that purpose we introduce the following notion.Let �;� � L0 and let fRqgq2� be a family of regular sets over � and let R be aregular set over �. We say that a sentence t = [t1; t2; : : : ; tn] is aI sentence in fRqgR if each ti is a qi-word in Rqi for some qi 2 � and q1q2 � � � qn 2R.In other words, t is a sentence in fRqgR i� any q-word of t is a word in Rq, and ifwe replace all the words of t with the corresponding empty words then the resultingterm is a []-word in R. When all the members of the family are the same regular setthen we drop the index in our notation.Example 3.2.1 Some examples to illustrate the de�nition:1. t is a sentence in fa+g(b+c)� means that t is a (possibly empty) sentence of b-words and c-words such that each one represents a nonempty string of a's. Forexample [a � b; aaa � c] is such a sentence.2. t is a sentence in fRgb means that t is a unit sentence [s] where s is a b-word inR,3. t is a sentence in fRa; Rb; Rcgab�c means that the �rst word of t is an a-word inRa, the last word of t is a c-word in Rc and the middle ones (if any) are b-wordsin Rb. 29



Let � � L0. We writeI E� for the set of equations f q = choice(�) j q 2 �nfchoice(�)g g, where `choice'is some �xed choice function for P!(L0).The following two lemmas will be used in the proof of Theorem 3.2.4.Lemma 3.2.2 Let �;� � L0 nf[]g be disjoint. There is a set of equations Sent�� suchthat � solves Sent�� 8̀ x = [] i� x� is a sentence in f��g��.Proof. Let " be the constant choice(�) and let Sent�� be the following set of equations:Sent�� = E� [Word"� [ f" � [] = []g;where Word"� is given by Lemma 3.1.2.Extend the ordering � so that q � " for all q 2 � n f"g. Clearly, (Sent��)� isleft-reduced (check that for any rule t = s in Sent��, t can be reduced only with thisrule, here the disjointness of � and � is needed). It follows from Lemma 2.3.1 andthe note after that lemma that Sent�� is convergent. It su�ces therefore to prove thefollowing statement:x� ��!Sent�� [] , x� is a sentence in f��g�� :[Proof of `)'] By induction on the length of the reduction x� ��!Sent�� [].[Base case] x� = []. Trivially, [] is a sentence in f��g�� because � 2 ��.[Induction case] x� ��! " � [] �! []. Thus x� = t � s and s ��! [] and t ��! ".We prove �rst by induction on the length of the reduction of t ��! " that t is aq-word in �� for some q 2 �.[Base case] t = ". Trivially " is an "-word in ��.[Induction case] We have two cases to consider, based on what the lastrule of the reductions is.i. If t ��! q �! " by some rule q = " in E�, then t = q because q is theright hand side of no rule, and trivially q is a q-word in ��.ii. Otherwise t ��! a � " �! " by some rule a � " = " in Word"�. Thent = a � t0 and t0 ��! " because a is the right hand side of no rule. Bythe induction hypothesis t0 is a q-word in �� for some q 2 �, and thusso is a � t0.It follows that t is a q-word in �� for some �xed q 2 �.By the induction hypothesis s is a sentence in f��g�� , so s = [s1; s2; : : : ; sm]for some m 2 N where each si is a qi-word in �� for some qi 2 �.Consequently x� = [t; s1; s2; : : : ; sm] is a sentence in f��g�� .[Proof of `('] Assume that x� is a sentence in f��g�� . Thus x� = [t1; t2; : : : ; tn] forsome n 2 N where each ti is a qi-word in �� for some qi 2 �.1. For each ti, reduce qi in ti to " by using the rule qi = " in E�. Let us call theresulting term si. So each si is an "-word in ��.2. Use the rules from Word"� to reduce each si to ".3. Finally, use the rule " � [] = [] to reduce ["; "; : : : ; "] to [].10



From (1{3) follows that x� ��!Sent�� []. �Lemma 3.2.3 Let M be a state-disjoint family of DFA's and M a �xed memberof M. The following holds for all states q of M , all q-words t and all terms s. Ift ��!GM s then t ��!GM s and s is a p-word for some state p of M .Proof. By easy induction on the length of the reduction of t ��!GM s. Let q be astate of M , t a q-word and s a term.[Base case] If the length of the reduction is 0, i.e., t = s, then trivially t ��!GM sand s is a q-word.[Induction case] Assume t �!GM t0 ��!GM s. Since t is a word, the rule that isused in the �rst step must be of the form a � q = q0 (for some constants a and q0),yielding a q0-word t0. But that rule must be in GM because q is a state of M and thefamily is state-disjoint, i.e., t �!GM t0. So q0 is a state of M . From the inductionhypothesis follows now that t ��!GM s and s is a p-word for some state p of M . �We can now state the main theorem of this section.Theorem 3.2.4 Let �;� � L0 n f[]g be disjoint. Let fRcgc2� be a family of regularsets over �. Let R be a regular set over �. There exists a system S(x) of rigidequations such that � solves S(x) i� x� is a sentence in fRcgR.Proof. We start by constructing a state-disjoint family M = fMcgc2�[f[]g of DFA'swith the following properties. First let all the members Mc, c 2 �, be such thatL(Mc) = Rcr; Mc = (Qc;�; �c; c; Fc):Let F� = [c2�Fc. LetM = (Q;F�; �; []; F ) be a DFA such that qm � � � q2q1 2 L(M) i�there exists c1c2 � � � cm 2 R such that qi 2 Fci for 1 � i � m. (It is easy to constructM from a DFA for Rr by replacing any transition (p; c) 7! p0 in the latter with theset f (p; q) 7! p0 j q 2 Fc g of transitions.) Finally, let M[] =M [a; f ]:Assume also all the DFAs above to be such that M is state-disjoint.Let now S(x) be the following system of rigid equations:S(x) = ( Sent�� 8̀ x = [];GM 8̀ a � x = fwhere Sent�� is given by Lemma 3.2.2. We will prove that � solves S(x) i� x� is asentence in fRcgR. First of all, we make the following observations:� If � solves S(x) then x� is a sentence in f��g�� by Lemma 3.2.2.� If x� is a sentence in fRcgR, it is by de�niton also a sentence in f��g�� andsolves therefore Sent�� 8̀ x = [] by Lemma 3.2.2.Based on these observations and Lemma 2.4.3 it is su�cient to prove the following:if x� is a sentence in f��g�� thena � x� ��!GM f , x� is a sentence in fRcgR:So let x� = [t1; t2 : : : ; tm] be a sentence in f��g�� , where each tj is an cj-word in ��for some fc1; c2; : : : ; cmg � �.[Proof of `)'] Assume that a � x� ��!GM f . This reduction is possible only if1) tj ��!GM qj for some �xed constant qj for 1 � j � m, and11



2) aq1q2 � � � qm � [] ��!GM f , let ~q = q1q2 � � � qm.Let j be �xed and consider (1). By applying Lemma 3.2.3 to (1) and that tj is acj-word (note that cj is a state of Mcj ) we obtain (1'). By applying Lemma 3.2.3 to(2) we obtain (2').1') tj ��!GMcj qj and qj is a state of Mcj , and2') a~q � [] ��!GM[] f .From (2') follows, by using Lemma 3.1.1 (recall that M[] =M [a; f ]), that ~qr 2 L(M).By de�nition of M this implies that qj 2 Fc0j , 1 � j � m, for some c01c02 � � � c0m 2 R,where, by state-disjointness and (1'), each c0j = cj . So� c1c2 � � � cm 2 R.From (1') and that qj 2 Fcj follows, by using Lemma 3.1.1 (recall that the constantcj is the initial state of Mcj ), that� tj is a cj-word in L(Mcj )r = Rcj for 1 � j � m.From these two points follows that x� is a sentence in fRcgR.[Proof of `('] Assume that x� is a sentence in fRcgR, i.e., each tj is a cj-word inRcj = L(Mcj )r and c1c2 � � � cm 2 R. By Lemma 3.1.1 tj ��!GMcj qj for some qj 2 Fcj .Let ~q = q1q2 � � � qm. So, by de�nition of M , ~q 2 L(M)r. Thus a~q � [] ��!GM[] f byLemma 3.1.1. By putting the reductions together, we have that a � x� ��!GM f . �Theorem 3.2.4 turns out to be quite useful. Many properties of simultaneous rigidequations regarding representation of regular sets follow from it, for example Theo-rem 3.1.3 { just consider unit sentences. Some other cases were mentioned in Ex-ample 3.2.1. We conclude this section with an example that illustrates the aboveconstruction.Example 3.2.5 Let fRcgc2fq1;q2;q3g be a family of regular sets over f0; 1g, whereRq1 = 0�1, Rq2 = 0�10� and Rq3 = 10�. Let R = q1q�2q3. Assume that Mc forc 2 fq1; q2; q3g have the transition diagrams below, so L(Mc) = Rcr.Mq1 : q1 q41 0Mq2 : q2 q50 1 0Mq3 : q3 q60 1From these and R we obtain a DFA M[] with the following transition diagram:[] p1 p2 faq6 q5 q412



Let M be the family fMq1 ;Mq2 ;Mq3 ;M[]g. We get thatGM = f1 � q1 = q4; 0 � q4 = q4g [f0 � q2 = q2; 1 � q2 = q5; 0 � q5 = q5g [f0 � q3 = q3; 1 � q3 = q6g [fq6 � [] = p1; q5 � p1 = p1; q4 � p1 = p2g [fa � p2 = fg:Take for example t = [001 � q1; 0010 � q2; 1 � q2; 10 � q3]:Then t is clearly a sentence in fRq1 ; Rq2 ; Rq3gR. We can also see that a � t ��!GM f .First each qi-word of t is reduced to a �nal state of Mqi , so t ��! [q4; q5; q5; q6], then[q4; q5; q5; q6] ��! p2 and �nally a � p2 �! f . So a � t ��! f showing that �, such thatx� = t, solves the corresponding system S(x) constructed in the proof of Theo-rem 3.2.4. 2
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Chapter 4Shifted PairingThe purpose of this chapter is to describe a technique, called shifted pairing, that canbe used to construct a system of rigid equations, the solutions of which are sentenceswith certain interesting properties. Similar technique was used by Plaisted [33] andwe have taken the term shifted pairing from there. The main result of this chapter isTheorem 4.2.1.4.1 Encoding Pairs of StringsGiven a set of constants � � L0, we want to encode pairs of strings over � in a simplemanner. Let �b be a �xed constant in L0 called a blank. We can assume without lossof generality that �b 2 �, � n f�bg is nonempty and that we only wish to encode pairsof strings in �� that don't end with a blank (otherwise just expand � with �b). Wesay that a function hi : �� �! L0 is aI pairing function for � if hi is injective and h�i = f ha; bi j a; b 2 � g is disjointfrom �, and we associate the following sets of equations with hi:�hi1 = f ha; bi = a j a; b 2 � g;�hi2 = f ha; bi = b j a; b 2 � g:We will abbreviate �hi1 and �hi2 by �1 and �2, respectively.Let hi be a pairing function for �. Considerv = ha1; b1iha2; b2i � � � hak; bki 2 h�i�for some k 2 N and let n;m 2 N be least such that an+1; : : : ; ak and bm+1; : : : ; bk areblanks. We say thatI v encodes the pair (a1a2 � � �an; b1b2 � � � bm) of strings.We will write hv; wi for any string that encodes the pair (v; w) of strings in �� n���b.Note that hv; wi has some arbitrary number of h�b;�bi's as su�x.4.2 Shifted PairingWe want to encode adjacent pairs of strings in a given sequence of strings. Let� � L0. Assume �b 2 �, � n f�bg is nonempty and let hi be a pairing function for �.Let ~w = (w1; w2; : : : ; wn) be a nonempty sequence of strings in �� n���b. We say thata sequence ~v = (v1; v2; : : : ; vn) of strings in h�i� is aI shifted pairing of ~w if vi encodes the pair (wi; wi+1) for 1 � i < n and vn encodesthe pair (wn; �), i.e., ~v = (hw1; w2i; hw2; w3i; : : : ; hwn�1; wni; hwn; �i).14



w1 w2 w3 wn�1 wnw1 w2 wn�2 wn�1 wnFigure 4.1: Shifted pairing.This is illustrated in Figure 4.1.Theorem 4.2.1 Let � � L0 be such that �b 2 �, � n f�bg is nonempty, and let hi bea pairing function for �. Let also � � L0. Assume that �, h�i, � and f[]g are allpairwise disjoint.Let q 2 � n f�bg. There is a system SPq(z; x; y) of rigid equations such that� � solves SPq(z; x; y) i�� cy� is a shifted pairing of cx� and the �rst string of cx� is qcz�,for any substitution � such that z� is a c-word in (� n f�bg)� for some c 2 �, x� is asentence in f�+ n���bg�+ and y� is a sentence in fh�i+g�+ .Proof. Let " = choice(�). Assume that z� is a word in (� n f�bg)� and let tw = q � z�and w =ctw. Assume also that x� = t and y� = s are sentences in f�+ n���bg�+ andfh�i+g�+ , respectively. Sot = [t1; t2; : : : ; tn]; n � 1; ti is a word in �+ n���b,s = [s1; s2; : : : ; sm]; m � 1; si is a word in h�i+.De�ne SPq(z; x; y) as the following system:SPq(z; x; y) = 8>>><>>>: �1 [ E� [ f�b � " = "g| {z }E1 8̀ x = y;�2 [ E� [ f�b � " = "; " � [] = []g| {z }E2 8̀ x = (q � z) � yExtend the ordering � so that c � " for all c 2 � n f"g and ha; bi � a, ha; bi � bfor all a; b 2 �. From the assumption that the sets �, h�i, � and f[]g are pairwisedisjoint, it follows that E�1 and E�2 are left-reduced. By using Lemma 2.3.1 and thenote following that lemma, we get that E1 and E2 are convergent.The only rules in E1 or E2 that can be used to reduce t are in E�. Let t0 be thenormal form of t with respect to E1 or E2, sot0 = [w1 � "; w2 � "; : : : ; wn � "]where wi = bti for 1 � i � n. It is therefore su�cient to prove the statement:s ��!E1 t0 and tw � s ��!E2 t0 i� bs is a shifted pairing of bt0 and w1 = w.[Proof of `)'] Assume s ��!E1 t0 and tw � s ��!E2 t0. From s ��!E1 t0 follows thatn = m and si ��!E1 wi � " (1 � i � n):From tw � s ��!E2 t0 follows that w1 = w and s ��!E2 [w2 � "; : : : ; wn � "]. This lastreduction implies thatsi ��!E2 wi+1 � " (1 � i < n); sn � [] ��!E2 []:15



Let i 2 f1; : : : ; n � 1g be �xed. From si ��!E1 wi � " and si ��!E2 wi+1 � " followsthat bsi encodes the pair (wi; wi+1). The reduction sn � [] ��!E2 [] is possible only ifsn ��!E2 ". Together with sn ��!E1 wn � " it follows that csn encodes the pair (wn; �).So bs is a shifted pairing of bt0 and w1 = w.[Proof of `('] Assume bs is a shifted pairing of bt0 and w1 = w. So n = m and bsiencodes the pair (wi; wi+1) for 1 � i � n where wn+1 = �.We prove �rst that s ��!E1 t0, by proving that si ��!E1 wi � " for 1 � i � n. Leti be �xed. Use �rst the rules in �1 and a rule in E� to obtain the word wi~�b � ". Usethen the rule �b � " = " to remove the blanks.We prove now that tw � s ��!E2 t0. Trivially tw ��!E� w1 � " since w = w1. Leti 2 f1; : : : ; ng be �xed. To see that si ��!E2 wi+1 � ", use �rst the rules in �2 anda rule in E�. Remove then the blanks with the rule �b � " = ". Finally use the rule" � [] = [] to get rid of the last ". �This theorem is the kernel behind the main result of this report (Theorem 5.2.1).
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Chapter 5Uniform Characterization ofRE with SREUThe main result of this chapter and the whole report is Theorem 5.2.1 which showsthat any r. e. set can be represented by a system of simultaneous rigid equations whichis obtained uniformly in the r. e. index of that set. The construction of the system isin fact easily seen to be primitive recursive.In particular, this theorem and the way the system in the theorem is constructedimply that given any r. e. set W over some alphabet � and a string w over �, one cane�ectively construct a system of rigid equations, having ground left hand sides andonly two variables, which has a solution i� w 2 W . So SREU is undecidable alreadywith ground left hand sides (which was also shown by Plaisted [33]) and only twovariables (that is a new result).We start by giving the formal de�nitions of the notions that are needed. Theterminology is taken mainly from Hopcroft and Ullmann [20]. We then prove themain result, which is Theorem 5.2.1.5.1 The Turing Machine ModelIn this section we give the formal de�nition of the Turing machine model that wewill use and some de�nitions of related concepts, in particular the notion of validcomputations. Formally, aI Turing machine (TM) M is a 7-tuple (Q;�0;�1; �; q0;�b; F ), where{ Q is the set of all states of M ,{ �0 is the input alphabet not including �b,{ �1 = �0 [ f�bg,{ � : Q� �1 ! Q� �1 � fl;rg is the transition function,{ q0 2 Q is the initial state, and{ F � Q is the set of �nal states.We also assume here, as we did with DFAs, that Q and �1 are disjoint subsets of L0.The constant �b is still called a blank. Let M = (Q;�0;�1; �; q0;�b; F ) be a TM. AnI instantaneous description (ID) of M is any string �q� where q 2 Q and � 2 ��1and � is a string in ��1 not ending with a blank.The intended meaning of an ID �q� of M is to give a complete description of apossible execution state of M . There q is the state of the machine, � corresponds tothe contents of the tape from the left edge of the tape to (but not including) the symbol17



pointed to by the tape head, and � is the rest of the contents of the tape terminatedby the rightmost nonblank. So any \snapshot" of M during its computation is someID (there can ofcource exist ID's that can never be reached by M). Let ~�b stand for astring of 0 or more blanks. De�neI move as a pair (v; w) of ID's such that if v~�b = �qa� and �(q; a) = (p; b;r) thenw~�b = �bp�, � � �� � � � a � � �� � � �"q `M � � �� � � � b � � �� � � �"pand if v~�b = �cqa� and �(q; a) = (p; b; l) then w~�b = �pcb�,� � �� � � � c a � � �� � � �"q `M � � �� � � � c b � � �� � � �"pi.e., w is obtained from v according to the next move function.The binary relation of all moves of M is denoted by `M , as shown above already, andits transitive and reexive closure by `�M . TheI language accepted by M , L(M), is the following setL(M) = fw 2 ��0 j q0w `�M �p� where p 2 F and �p� is an ID g:Valid ComputationsThe notions of valid and invalid computations [20] of a TM are a powerful tool inproving undecidability results about context free languages. The technique that isused in our proof (in particular shifted pairing) bears certain similarities to the tech-nique that is used to prove that the language of any TM is given by the intersectionof two context free languages [20, Lemma 8.6]. AI valid computation of M is a nonempty sequence (w1; w2; : : : ; wn) such that{ each wi is an ID of M , i.e., wi 2 ��1Q(��1 n��1�b) for 1 � i � n,{ w1 is the initial ID, one of the form q0v where v 2 ��0,{ wn is a �nal ID, wn 2 ��1F (��1 n��1�b),{ wi `M wi+1 for 1 � i < n, i.e., each pair (wi; wi+1) is a move of M .We will use the following relationship between valid computations and the languageof M without further notice: there is a valid computation of M with initial ID q0v i�v 2 L(M).5.2 The Main TheoremLet M be a Turing machine. In the following theorem we will, e�ectively from M ,construct a system SM (z; x; y) of rigid equations which represents the language ac-cepted byM by the set of all solutions for z. The auxiliary variables x and y are suchthat, for any � that solves SM (z; x; y), cx� is a valid computation of M with initial IDq0cz� and cy� is a shifted pairing of cx�.This theorem turns out to have some far-reaching consequences. We mention someof them at the the end of this section. The results of the following chapter are alsobased on this theorem. 18



Theorem 5.2.1 Let M = (Q;�0;�1; �; q0;�b; F ) be a TM and let " be constant not inQ or �1. There is a system SM (z; x; y) of rigid equations such that for any substitution� that solves SM (z; x; y), z� is an "-word andL(M) = fcz� j � solves SM (z; x; y) g:Proof. Let � = �1 [Q and let hi be a pairing function for �. Assume also, withoutloss of generality, that all the sets �, h�i, � = f"; "1g and f[]g are pairwise disjointand that " = choice(�). Let Rid, R�n and Rmv be the following regular sets:Rid = ��1Q(��1 n��1�b);R�n = ��1F (��1 n��1�b);Rmv = �����;where � = f ha; ai j a 2 �1 g;� = f hq; biha; pi j �(q; a) = (p; b;r) g [f hc; pihq; ciha; bi j �(q; a) = (p; b; l); c 2 �1 g:So Rid � �+ and R�n � �+, are the sets of IDs and �nal IDs, respectively. A stringv is in Rmv � h�i+ i� v encodes a move of M . Use now Theorem 3.2.4 to obtain thesystems Sid(x) and Smv(y) and Lemma 3.1.2 to obtain the system Sin(z), such that1. � solves Sid(x) i� x� is a sentence in f" 7! Rid; "1 7! R�ng"�"1 ,2. � solves Smv(y) i� y� is a sentence in f" 7! Rmv; "1 7! h�i+g"�"1 , and3. � solves Sin(z) i� z� is an "-word in ��0.Let SPq0(z; x; y) be the system obtained from Theorem 4.2.1. So, for any substitution� that solves the systems given in (1{3) we have in particular that z� is an "-wordin (�0 [ Q)�, x� is a sentence in f�+ n ���bg�+ , and y� is a sentence in fh�i+g�+ .Theorem 4.2.1 tells us then that, for any such �,4. � solves SPq0(z; x; y) i� q0cz� is the �rst string of cx� and cy� is a shifted pairingof cx�.De�ne now SM (z; x; y) as follows:SM (z; x; y) = Sid(x) [ Smv(y) [ Sin(z) [ SPq0(z; x; y):If there is a substitution � that solves SM (z; x; y) then z� is an "-word by item 3. Itremains to prove prove that fcz� j � solves SM (z; x; y) g = L(M).[Proof of `�'] Assume that � solves SM (z; x; y). By item 1, and the de�nitions ofRid and R�n,cx� = (v1; v2; : : : ; vn); vi is an ID of M for 1 � i � n, vn is �nal.By item 2 and the de�nition of Rmv,cy� = (hw1; w02i; hw2; w03i; : : : ; hwm�1; w0mi; ); wi `M w0i+1 for 1 � i < m:By item 4 and the de�nition of shifted pairing, n = m, v1 = q0cz�, andvi = wi (1 � i � n� 1);vi = w0i (2 � i � n):So cx� is a valid computation of M and thus cz� 2 L(M).19



[Proof of `�'] Let w 2 L(M). So there is a valid computation (v1; v2; : : : ; vn) wherev1 = q0w. Let � be such thatx� = [v1 � "; : : : vn�1 � "; vn � "1];y� = [hv1; v2i � "; : : : hvn�1; vni � "; hvn; �i � "1];z� = w � ":From items (1{3) follows immediately that � solves the system Sid(x)[Smv(y)[Sin(z).From item 4 follows that � solves the system system SPq0(z; x; y). �Corollary 5.2.2 SREU is undecidable.Proof. Let M be a TM and w a string over its input alphabet. Let S(x; y) be thesystem SM (w � "; x; y) given by Theorem 5.2.1. The construction of S(x; y) is clearlye�ective and S(x; y) is solvable i� w 2 L(M). �Corollary 5.2.3 SREU is undecidable even when restricted to ground equations onthe left hand side and allowing only two variables, in any �rst order language with atleast one binary function symbol and one constant.Proof. The system S(x; y) in the preceding corollary contains only ground equationson the left hand side and has two variables x and y.Furthermore, one can easily simulate any number of constants with just one con-stant c and �, e.g., as follows. If at most 2k constants for some k 2 N are requiredthen the i'th constant can be simulated by the term correspoding to the perfectlybalanced binary tree of depth k + 1 and with 2k + 1 leaves such that the i'th vertexat level k is internal and all the others are external. For example if k = 3 then thethird simulated constant is the termc c c c c c c c cBecause of the way words and sentences are de�ned, all the statements in this reportremain intact even if all constants are simulated. �This corollary shows that an even smaller subclass of SREU is undecidable thanknown before. Plaisted [33] has a proof for ground left hand sides and three variableson the right hand sides (and his proof uses several function symbols of arity 1 and 2).5.3 Undecidability Proofs of SREUHere we outline the main points of some of the undecidability proofs of SREU thathave emerged since the problem was �rst [9] found to be undecidable. The di�erentproofs reect the undecidable nature of SREU more or less directly. The most trans-parent proof is probably by reduction of second order uni�cation, which shows howclose these problems really are to each other. The proof by reduction of Hilberts 10'this less transparent and reveals that one can express certain derivations with a systemof rigid equations. The least transparent proof, revealing more or less completely theundecidable nature of SREU, is ofcourse the one preseted above.5.3.1 Reduction of Monadic Semi-uni�cationThe �rst proof of the udecidability of SREU [9] was by reduction of the monadicsemi-uni�cation to SREU. This proof has its roots in [6] where it is proved that the20



variable-bounded semi-uni�cation1 can be reduced to SREU. Semi-uni�cation wasproven undecidable by Kfoury, Tiuryn and Urzyczyn [23] and the monadic semi-uni�cation was proven undecidable by Baaz [2]. A semi-uni�cation problem consistsof a set of expressions si � ti, 1 � i � n, where si and ti are terms. Its solutionconsists of a substitution � and a set of substitutions �i, 1 � i � n, such that �i�sicoincides with �ti. In the monadic case each �i is either empty or involves exactlyone variable.The �rst step in reducing the monadic semi-uni�cation to SREU is to give a uniform(in n) presentation of this problem by a �nite set of (simpler) �-uni�cation problems.A �-uni�cation corresponds roughly to some particular permutation (or guess) of nvariables invoved in the �i (there are at most n! such guesses). It follows that �-uni�cation is undecidable. A �-uni�cation problem is then reduced to SREU. Thisreduction is rather technical, and it does not really reveal the nature of SREU thatmakes it undecidable.5.3.2 Reduction of Second Order Uni�cationThe second proof of the undecidability of SREU by Degtyarev and Voronkov [8, 11],and probably the most straightforward one, is by reducing second order uni�cation toSREU. The undecidability of second order uni�cation was proved by Goldfarb [18].A second order uni�cation problem is the problem of deciding if a �nite set S ofsecond order equations is uni�able. A second order equation is an expression t = swhere t and s are terms with possibly some (second order) variables in place offunction symbols. One can without loss of generality assume that all the equationsin S are such that1. either all variables in t and s are �rst order, or2. that s is x(s1; : : : ; sm) where all variables in all the si and t are �rst order andx is a second order variable.In the second case a second order substitution � maps x to a term x� where socalled bound (�rst order) variables fw1; : : : ; wmg (say ~w) may occur, meaning thatx� corresponds to the �-abstraction �~wx�. For � to be a uni�er for s = t it must bethe case that x�fs1�=w1; : : : ; sm�=wmg coincides with t�.The set S is reduced to the following system of rigid equations [11, Theorem 1].(Roughly speaking.) The �rst case is simply reduced to the rigid equation 8̀ t = s.The second case is reduced to two rigid equations. The �rst one stating that x is aterm possibly containing new \constants" from ~w, and the second one stating thatfw1 = s1; : : : ; wm = smg 8̀ x = t, where the wi are constants.Clearly, this is just a slight reformulation of the original problem, and one readilyproves that S has a uni�er if and only if this system of rigid equations is solvable [11,Lemma 5].5.3.3 Reduction of Hilberts 10'thIn 1900 David Hilbert presented a list of 23 problems at a mathematics conference inParis. The 10'th problem was, if there exists an algorithm that for each diophantineequation can decide whether it has an integer solution or not. A diophantine equationis an equation p(x1; : : : ; xn) = 0 where p(~x) is a polynomial in variables ~x withcoe�cients that are integers, e.g., 3x3y4 � 5xz + 3 = 0 is a diophantine equation.It took 70 years before Matiyasevi�c proved the problem to be undecidable [29]. Asthe third undecidability proof of SREU [10], Degtyarev and Voronkov showed how toreduce Hilberts 10'th to SREU. The proof is quite short and the key argument [10,Lemma 6] lies in representing multiplication with a system of rigid equations.1It is not known if this problem is decidable. 21



The idea is to represent a multiplication of k and l as a list D of pairs, such thatthe �rst pair in D is (k0; l0) (some start values) the next (k0 + k; l0 + 1), the one afterthat (k0 + 2k; l0 + 2) and so on until the last element is (k0 + kl; l0 + l). So if wedenote such a list by Dk0;l0(k; l) thenDk0;l0(k; l) = � [(k0; l0)]; if l = 0;[(k0; l0)jDk0+k;l0+1(k; l � 1)]; otherwise.So the �rst element of the last pair in D0;0(k; l) is kl. This can be expressed by asytem of rigid equations. (Using two lists, in the same spirit as shifted pairing.)Similar technique is used by Voda and Komara [38] to claim (we did not check thedetails) the undecidability of the problem of Herbrand skeletons, i.e., given n and aformula  = 9~x'(~x) where ' is quanti�er free, if the Herbrand skeleton of size n of is solvable. (The Herbrand skeleton of size n of  is the disjunction of n variantsof '.) For n = 1 SREU is a special case of this problem.5.3.4 Reduction of PCPThe Post's Correspondence Problem (PCP) over an alphabet � can be stated asfollows. Given (v1; v2; : : : ; vk) and (w1; w2; : : : ; wk) as two sequences of strings over�, is there a sequence i1; i2; : : : ; im, m � 1, such thatwi1wi2 � � �wim = vi1vi2 � � � vim?This is an undecidable problem [34]. To reduce PCP to SREU one uses the samebasic technique that is used to reduce the membership problem above. This was doneby Plaisted [33]. The proof gets more complex because it is not as straightforward todescribe the legal transposition relation as it is to describe the moves of a TM.
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Chapter 6Uniform Representation ofRE in Intuitionistic Logicwith EqualityIn this chapter we show that any r. e. set can be represented by a f.o. formula  (z) ofthe form 9x9y'(z; x; y), where ' is quanti�er free and its only connectives are ^ and), in a language (with equality) with just one binary function symbol and a countableset of constants. Furthermore, the construction of  is performed uniformly in theindex of the r. e. set in question.We obtain that the 99-fragment of intuitionistic logic is undecidable. This is animprovement of the undecidability result of the 9�-fragment in general shown recentlyby Degtyarev and Voronkov [10, Theorem 10] (or [11, Theorem 3]).A closely related problem is the skeleton instantiation problem, i.e., the problemof existence of a derivation with a given skeleton. Voronkov shows that SREU ispolynomially reducible to this problem [39, Theorem 3.12] (where the actual proofsystem under consideration is a sequent calculus LJ= for intuitionistic logic withequality). Moreover, the basic structure of the skeleton is determined by the numberof variables in the SREU problem and the number of rigid equations in it. Ourresult implies that this problem is undecidable already for a fairly restricted class ofskeletons.6.1 The Main TheoremRecall the following. L has one binary function symbol � and a countable set ofconstants. The input alphabet of a Turing machine is assumed to be a subset of theconstants in L. If t is the term �(c1; �(c2; : : : ; �(cn; ") : : :)), where all the ci and " areconstants, we call it an "-word and we write c1c2 : : : cn � " for t, and bt stands for thestring c1c2 : : : cn. Let `i stand for provability in intuitionistic predicate calculus withequality and let `c stand for provability in classical predicate calculus with equality.Theorem 6.1.1 Let M be a Turing machine. There is a formula '(z; x; y) and aconstant " in L such that the following statements are equivalent, for all ground termst in L:1. t is an "-word in L(M),2. `i 9x9y'(t; x; y).Proof. Let SM (z; x; y) be the system of rigid equations given by Theorem 5.2.1. SoSM (z; x; y) = fEj 8̀ sj = tj j 1 � j � 7 g;23



where each Ej is a set of (ground) equations, let'(z; x; y) = ^1�j�7(( ^e2Ej e)) sj = tj):[Proof of `1 ) 2'] Assume w 2 L(M) and t = w � ". By Theorem 5.2.1 there is a �such that z� = t that solves SM (z; x; y). By de�nition, this means that `c '(t; x�; y�).But `c '(t; x�; y�) ) `i '(t; x�; y�)for this particular class of formulas. Statement 2 follows now by 9-introduction.[Proof of `2) 1'] By explicit de�nabilty of intuitionistic logic there are ground termstx and ty such that `i '(t; tx; ty). It follows that �, such that z� = t, x� = tx andy� = ty, solves the system SM (z; x; y). Thus t is an "-word in L(M) by Theorem 5.2.1.�Some comments The exact number of implications in the formula ' is not the leastpossible. The author believes that it is possible to give an equivalent formula withjust 4 implications. This requires a slightly di�erent formulation of Theorem 4.2.1.Technically the presentation becomes more cumbersome, although nothing substantialchanges.6.2 Undecidability of the 99-fragment of Intuitionistic LogicThis is an improvement of the undecidability result of the 9�-fragment in generalshown recently by Degtyarev and Voronkov [10, Theorem 10] (or [11, Theorem 3]):Corollary 6.2.1 The class of formulas in intuitionistic logic with equality, of theform 9x9y' where ' is quanti�er free and the only connectives in ' are ^ and ), isundecidable.Proof. Note that the construction of the formula '(t; x; y) in Theorem 6.1.1 ise�ective. �Note that it is enough that the number of implications in ' is 6. This is because inthe corresponding system of rigid equations, the rigid equation Sin(t) is ground andcan be decided for example by using the Shostak congruence closure algorithm [36, 5].Decidabilty problems for some other fragments of intuitionistic logic with and with-out equality were studied by Orevkov [31, 32], Mints [30] and Lifschitz [26]. More re-cently some new results have been obtained by Degtyarev and Voronkov [40, 39, 12, 7],and Tammet [37].Another interesting question is the relationship between classical (`c) and intu-itionistic provability of the formulas 'M in Theorem 6.1.1. For example, if it was thecase that `c 9x9y'M (t; x; y) always implies that bt 2 L(M) then the problem of Her-brand skeletons would be undecidable already for a very restricted class of formulas.Voda and Komara have recently claimed that this problem is undecidable [38].One should note that the classical and the intuitionistic provability of the \SREUformulas" is not the same in general even if all the left hand sides are ground. Asimple counterexample is 9z((c = 0 ) z = 1) ^ (c = 1 ) z = 0)). This formula isobviously valid classically, whereas it is not true in a Kripke model consisting of threenodes formed as a V , where, except for trivial identities, only c = 0 is true in the leftbranch and only c = 1 is true in the right branch.24



Chapter 7Current Status and OpenProblemsDecidability of rigid E-uni�cation has been known for some time now [16], for a clearproof see for example De Kogel [5]. The current status about what is known aboutSREU and rigid E-uni�cation is summarized below.1. Rigid E-uni�cation with ground lefthand side is NP-complete [25]. Rigid E-uni�cation in general is NP-complete and there exist �nite complete sets ofun�ers [16, 15].2. If all function symbols have arity � 1 then SREU is PSPACE-hard [19]. If onlyone unary function symbol is allowed then the problem is decidable [7, 6]. Ifonly constants are allowed then the problem is NP-complete [7] if there are atleast two constants.3. If there are more than one unary function symbol then the decidability is still anopen question, it is known however that the word equation solving [28] (uni�-cation under associativity), which is an extremely hard problem (no interestingupper bounds for the complexity of this problem are yet known), can be reducedto SREU [6].4. In general SREU is undecidable [9], already with ground left hand sides [33] andtwo variables (this report).Some other decidable cases of SREU are also described by Plaisted [33]. It shouldalso be noted that the decidability of SREU with just one variable is an open questionand thus also the decidability of the 9-fragment of intuitionistic logic with equality.Note that SREU is decidable when there are no variables, then each rigid equationcan be decided for example by using the Shostak congruence closure algorithm [36, 5].AcknowledgementsI want to thank Andrei Voronkov and Erik Palmgren for valuable comments on earlierversions of this report.
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