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AbstractThis report focuses on the following basic decision problems of �nite tree au-tomata: nonemptiness and intersection nonemptiness. There is a comprehensiveproof of EXPTIME-completeness of the intersection nonemptiness problem, andit is shown that the nonemptiness problem is P-complete. A notion of succinct-ness is considered with respect to which the intersection nonemptiness problemis in fact a succinct version of the nonemptiness problem. The report includesa short survey of closely related problems which shows that there is a rule ofthumb: if a decision problem for (deterministic) �nite automata is complete fora certain space complexity then the same decision problem for (deterministic)�nite tree automata is complete for the corresponding alternating space complex-ity, but alternating space is precisely deterministic time, only one exponentialhigher.



1 IntroductionFinite tree automata [14, 51] is a natural generalization of classical �nite automatato automata that accept or recognize trees of symbols, not just sequences of symbolsor strings. In the deterministic case, this generalization is best understood by �rstlooking at a deterministic �nite automaton with input alphabet � as a �nite (f�g[�)-algebra with its elements as states, where � is a constant and the symbols in � areunary function symbols.1 The generalization consists of arbitrary (not just unary)function symbols in �. The recognizability condition of a ground (or closed) term is,like in the unary case, simply that its value is a �nal state.Many decision problems concerned with �nite automata (nonemptiness, inequiva-lence, etc.) have natural counterparts with �nite tree automata. Like in the case of�nite automata, decision problems of �nite tree automata are typically complete forthe computational complexity classes they belong to and have, due to their simpleformulation, proved to be useful tools in classifying complexity bounds of other prob-lems. In particular, inequivalence [44, 46] and intersection nonemptiness [7, 15, 47]are examples of such decision problems.The intersection nonemptiness problem of �nite tree automata arises naturally inthe context of type inference in logic programming [15]. The same decision problemrestricted to top-down deterministic �nite tree automata arises also in sort inferencein typed functional programming [47]. Our main motivation for studying this problemis its close connection with a certain fragment of intuitionistic logic with equality anda subcase of a problem called simultaneous rigid E-uni�cation, or SREU, that arisesin the automated theorem proving context [19]. These connections are investigated ina separate joint paper by Degtyarev, Gurevich, Narendran, Veanes and Voronkov [7].Until SREU was proved undecidable by Degtyarev and Voronkov [9, 10, 11, 12] thereappeared many faulty proofs of its decidability [17, 18, 22].The main contributions of this report can be summarized as follows. We presenta comprehensive proof of EXPTIME-completeness of the intersection nonemptinessproblem of �nite tree automata. More precisely, it is proved that the hardness resultholds already for deterministic �nite (bottom-up) tree automata. Although the com-plexity of this problem has been used in the above mentioned contexts and also in thecontext of a \decidability" proof of SREU [22], its proof is either merely remarkedupon [15], or only briey outlined and incomplete [22, 47]. The proof of its complex-ity is however highly nontrivial and in order to trust it we had to prove it ourselves.In general, it was very hard to �nd complexity results related to the basic decisionproblems of �nite tree automata, as they are scattered throughout the literature, andwe decided to make a short survey by collecting the complexity results of the closelyrelated problems. This survey is summarized with Table 1 in the conclusions. Weshow also that the nonemptiness problem of �nite tree automata is P-complete byshowing its close connection with the two well-known P-complete problems alternat-ing graph accessibility [24, 28] and generability [24, 30, 31]. We consider a notion ofsuccinctness with respect to which the intersection nonemptiness problem is in fact asuccinct version of the nonemptiness problem. We believe that these decision prob-lems of �nite tree automata will appear in other contexts, and expect that this surveywill be useful therein.In general there is a rule of thumb saying that if a decision problem for (deter-ministic) �nite automata is complete for a certain space complexity class, then thesame decision problem for (deterministic) �nite tree automata is complete for thecorresponding alternating space complexity class, but alternating space is precisely1The idea is that the interpretation of � is the initial state and that the interpretation of a unaryfunction symbol � is a function � such that there is a transition with label � from a state q to astate p i� �(q) = p. So the value of a term �1(�2(� � ��n(�))) is the state after reading the string�n � � ��2�1. This observation is attributed to B�uchi and Wright [1].1



deterministic time, only one exponential higher [3].The rest of the report is organized as follows. In Section 2 we recall the mainnotions used in this report, namely �nite tree automata and alternating Turing ma-chines. In Section 3 we introduce the basic decision problems of �nite tree automatathat are considered in this report. In Section 4 we show that the nonemptiness prob-lem is P-complete and in Section 5 that the intersection nonemptiness problem isEXPTIME-complete. In Section 6 the report is summarized and we present a tableof the computational complexities of the closely related problems.2 PreliminariesWe introduce here the main notions and de�nitions used in this report. Given asignature �, i.e., a set of function symbols with �xed arities, the set of all ground (orclosed) terms over � is denoted by T�. Unless otherwise stated it is always assumedthat � is nonempty, �nite and includes at least one constant (function symbol ofarity 0). We will also assume certain familiarity with some basic notions from termrewriting [13], regarding ground rewriting systems.2.1 Finite Tree AutomataFinite tree automata, or simply tree automata from here on, is a generalization ofclassical automata and were �rst studied by Doner [14] and independently by Thatcherand Wright [51]. The main motivation was to obtain decidability results for the weakmonadic second order logic of the binary tree. A remarkable feature of tree autmatais that they provide an alternative characterization of both the class of regular setsand the class context-free languages (see Doner [14]). Here we adopt a de�nition oftree automata based on rewrite rules. This de�nition is used for example by Conquid�eet al [4] and Dauchet [6].I A tree automaton or TA A is a quadruple (Q;�; R; F ) where{ Q is a �nite set of states,{ � is a signature or an input alphabet,{ R is a set of rules of the form �(q1; : : : ; qn) ! q, where � 2 � has arityn � 0 and q; q1; : : : ; qn 2 Q,{ F � Q is the set of �nal states.A is called a deterministic TA or DTA if there are no two di�erent rules in Rwith the same left hand side.It is also assumed that Q and � are disjoint. Note that if A is deterministic then R isa reduced set of ground rewrite rules, i.e., for any rule s! t in R t is irreducible and sis irreducible with respect to R n fs! tg. So R is a ground canonical rewrite system.Tree automata as de�ned above are usually also called bottom-up tree automata. Top-down tree automata were introduced by Rabin [42] and were also studied by Magidorand Moran [34]. Here we will use the following de�nition based on rewrite rules.I A top-down tree automaton or TTA A is a quadruple (Q;�; R; I) where Q and� are like above,{ R is a set of rules of the form q ! �(q1; : : : ; qn), where � 2 � has arityn � 0 and q; q1; : : : ; qn 2 Q,{ I � Q is the set of initial states.A is called a deterministic TTA or DTTA if I is a singleton set, and wheneverq �!R �(~q) and q �!R �(~p) then ~q = ~p.2



Terms are also called trees. A set of terms (or trees) is called a forest. Acceptancefor tree automata or recognizability is de�ned as follows.I The forest recognized by a TA A = (Q;�; R;X) (or a TTA A = (Q;�; R�1; X))is the set T (A) = f � 2 T� j (9q 2 X) � ��!R q g:A forest is called recognizable if it is recognized by some TA (or TTA).Two tree automata are equivalent if they recognize the same forest. It is wellknownthat the nondeterministic and the deterministic versions of TAs have the same expres-sive power [14, 21, 51], i.e., for any TA there is an equivalent DTA. Clearly there is noessential di�erence between a TA and a TTA. However, the class of forests recognizedby DTTAs are properly contained in the class of all recognizable forests. A simpleexample of that is the forest ff(a; b); f(b; a)g that is clearly recognizable but not byany DTTA [21, Example 2.11].We say that a TA is total if every term over its input alphabet reduces to somestate. Every TA can trivially be extended (by adding new rules and a new dummystate) to an equivalent total TA. Every total DTA A = (Q;�; R; F ) can be seen as apair (A; F ), where A is a �-algebra with universe Q whose interpretation function isdetermined by R as follows: for all f 2 � (of arity n) and q; q1; : : : ; qn 2 Q,fA(q1; : : : ; qn) = q , f(q1; : : : ; qn) �!R q:Then we have that T (A) = f � 2 T� j �A 2 F g: (1)Conversely, any pair (A; F ) where A is a �nite �-algebra and F a subset of its universe,can be seen as a DTA. This is actually the de�nition of a DTA used by G�ecseg andSteinby [21]. For an overview of the notion of recognizability in general algebraicstructures see Courcelle [5] and the fundamental paper by Mezei and Wright [38].We will refer to (classical) nondeterministic �nite automata as NFAs and to deter-ministic �nite automata as DFAs. In general, we will follow Hopcroft and Ullman [26]regarding the formal de�nitions and notational conventions of �nite automata.2.2 Alternation and Computational ComplexityAlternation was introduced by Chandra, Kozen and Stockmeyer [3] as a generalizationof nondeterminism. First, let us give an intuitive de�nition of an alternating Turingmachine or ATM. An ATM is like a nondeterministic Turing machine (TM), exceptthat every con�guration or instantaneous description (ID) is labelled as either \uni-versal" or \existential", actually each state is either universal or existential and an IDis labelled accordingly.2 We inductively determine if an ID \leads to acceptance" asfollows. Any �nal ID leads to acceptance. For any non�nal ID we have two cases: anexistential ID leads to acceptance if at least one of its successors leads to acceptance;a universal ID leads to acceptance if all of its successors lead to acceptance and it hasat least one successor.All computation models based on a Turing machine can be considered as variants ofa TM with di�erent acceptance conditions, this point is emphasized by Johnson [29].We follow Hopcroft and Ullman [26] regarding the formal de�nition of a nondetermin-istic Turing machine. For the sake of clearness we recall here the main de�nitions.I A nondeterministic Turing machine M is a 7-tuple (Q;�in;�; �; q0;�b; F ), where{ Q is a �nite set of states,2In the original de�nition of an ATM there is also a possibility of a \negated" state, but it canbe omitted without loss of generality [3, Theorem 2.5].3



{ � is a �nite set of tape symbols,{ �b is a tape symbol called blank,{ �in is a subset of � called the set of input symbols,{ � is a mapping from Q � � to subsets of Q � � � fleft; rightg, and iscalled the transition function of M ,{ q0 is the initial state of M , and{ F � Q is the set of �nal states.By an instantaneous description or ID of M we mean any string vqw whereq 2 Q is a state of M and vw 2 �� (the position of q marks that the tape headpoints to the �rst symbol in w).An ID w is a successor of a non�nal ID v, in symbols v ` w, if w follows fromv in one step according to the transition function of M .We de�ne an ATM formally as follows.I An alternating Turing machine is a pair (M;U) where M is a TM and U asubset of the states of M , called the set of universal states. The states of Mnot in U are called existential.An ATM with an empty set of universal states is simply a TM. An ID of an ATMis said to be existential (respectively universal, �nal, initial) if its state is existen-tial (respectively universal, �nal, initial). We can now formally de�ne the notion ofacceptance for ATMs.I Let M be an ATM with initial state q0 and x a string over its input alphabet.Then M accepts x i� the initial ID q0x, leads to acceptance, where leads toacceptance is de�ned recursively as follows.{ Any �nal ID leads to acceptance.{ If v is a non�nal ID then it leads to acceptance i�� v is existential and some successor of v leads to acceptance, or� v is universal, all successors of v lead to acceptance and v has at leastone successor.Note that the acceptance condition of an ATM without universal states is the sameas the acceptance condition of the underlying TM.Alternating Space vs Deterministic Time The notion of space (and time) com-plexity of ATMs is the same as that of TMs. The key property that we are goingto use is that, alternating space is precisely deterministic time, only one exponentialhigher [3]. In particular,� APSPACE = EXPTIME,� ALOGSPACE = P,where the classes APSPACE and ALOGSPACE consist of all problems that can besolved by a polynomial space ATM and a logarithmic space ATM, respectively. Theclass EXPTIME consist of all problems that can be solved by a deterministic TM thatis time bounded by 2nc for some c > 0. For a general overview of the relationships be-tween EXPTIME and other complexity classes see Johnson [29] or Papadimitriou [40].
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3 Basic Decision Problems of Finite Tree AutomataAll the basic decision problems of �nite tree automata, like the nonemptiness problem,the inequivalence problem (or the more general inclusion problem) are decidable (seeG�ecseg and Steinby [21]). The proofs are fairly easy by �rst transforming a TA into aDTA by a powerset construction and then using a \pumping property" for DTAs. It isalso easy to show that recognizable sets of terms are closed under Boolean operations.This is illustrated next.� Complementation: Let A = (Q;�; R; F ) be a total DTA. The complementof A is the DTA �A = (Q;�; R;Q n F ). It follows immediately from (1) thatT ( �A) = T� n T (A).� Intersection: Let A = (Q1;�; R1; F1) and B = (Q2;�; R2; F2) be TAs. Thedirect product of A and B is the TA A�B = (Q1 �Q2;�; R; F1 � F2), whereR = f f((a1; b1); : : : ; (an; bn))! (a; b) j f(~a)! a 2 R1; f(~b)! b 2 R2 gIt follows easily that T (A�B) = T (A) \ T (B).Note that if A and B above are total DTAs then so is their direct product. Let A andB be total DTAs. Clearly the inclusion and inequivalence problems for DTAs reducee�ectively to the nonemptiness problem, since T (A) � T (B) i� T (A) \ T ( �B) = ;. Itfollows for example thatT (A) = T (B) , (T (A) \ T ( �B)) [ (T (B) \ T ( �A)) = ;T (A� �B �B � �A) = ; (2)In the following two sections we will address the following decision problems.I Nonemptiness of TAs (or, more particularly, of DTAs or DTTAs) is the followingdecision problem: Given a �nite tree automaton A, is T (A) nonempty?I Inequivalence of TAs (or, more particularly, of DTAs or DTTAs) is the followingdecision problem: Given �nite tree automata A and B with the same signature,are T (A) and T (B) unequal?I Intersection nonemptiness of TAs (or, more particularly, of DTAs or DTTAs)is the following decision problem: Given a �nite sequence (Ai)i<n of �nite treeautomata, is Ti<n T (Ai) nonempty?For �nite automata the same decision problems are de�ned analogously. It is clearthat, by using (2), inequivalence of DTAs reduces (in logarithmic space) to nonempti-ness [21]. For DFAs this was already shown by Moore [39]. It is also clear that for a�xed n, the intersection nonemptiness problem reduces to the nonemptiness problemin logarithmic space.4 Nonemptiness and Inequivalence of Finite Tree AutomataFor �nite automata (either deterministic or nondeterministic) the nonemptiness prob-lem is basically the same as the graph accessibility problem and is thus complete fornondeterministic logarithmic space or NL-complete [45]. It follows that the inequiv-alence problem of DFAs is also NL-complete. Analogously, for �nite tree automatathere is a simple reduction from the alternating graph accessibility problem to thenonemptiness problem and vice versa. Alternating graph accessibility was shownP-complete by Immerman [28] by a direct simulation of any ALOGSPACE ATM.There is also a very simple reduction from generability, which is another P-completeproblem due to Jones and Laaser [30] and Kozen [31], to nonemptiness of DTAs and5



vice versa. We follow Greenlaw, Hoover and Ruzzo [23, 24] in our formulation ofalternating graph accessibility and generability.3I Alternating graph accessibility. Given is a directed graph with a set of verticesV and a set of edges E, a subset U of V , and designated vertices a and b in V .The vertices in U are called universal and those in V nU are called existential.The problem is to decide if apath(a; b) holds, where, for any two vertices x andy, apath(x; y) is true if either1. x = y, or2. x is existential and there exists a vertex z with (x; z) 2 E and apath(z; y)is true, or3. x is universal and for all vertices z with (x; z) 2 E, apath(z; y) is true.I Generability. Given is a �nite set Q, (the graph of) a binary function f on Q,a subset V of Q and an element q in Q.The problem is to decide if q is in the smallest subset of Q that includes V andis closed under f .The generability problem remains in P even with more than one function. More gener-ally, it is the problem of deciding if, given a �nite algebra, a subset of its universe andan element in it, this element is in the subalgebra generated by the given subset [31].(See for example Wechler [54] for de�nitions.) Actually, as we will see, generabilityis basically the same problem as nonemptiness of DTAs. In the following proof it iseasily seen that all reductions can be carried out within logarithmic space, assumingreasonable representations of the problems, and we will not mention that explicitly.Theorem 1 Nonemptiness of DTTAs, DTAs and TAs is P-complete.Proof. First we show how alternating graph accessibility reduces to nonemptiness ofDTTAs. Consider a directed graph G = (V;E) a subset U of V of universal vertices,and two designated vertices a and b in V . We can assume without loss of generalitythat the out-degree of any vertex in G is either two or zero. Le A be the TTA(V;�; R; fag), where � = fc; g1; g2; fg, c is a constant, g1; g2 unary function symbols,and f a binary function symbol. Let the rules of A be as follows:1. b �!R c,2. for each vertex x and edges (x; y1); (x; y2) 2 E,(a) if x is universal then x �!R f(y1; y2),(b) if x is existential then x �!R g1(y1) and x �!R g2(y2).Clearly A is a DTTA. It follows easily that for any vertex x,apath(x; b) , (9� 2 T�) x ��!R �; (3)and thus apath(a; b) i� T (A) is nonempty. The `)' direction follows by induction onthe size of any alternating path to b and case analysis on x (universal or existential).The base case (x = b) is trivial. Let us consider one induction case, namely when xis existential and di�erent from b. Then, for some vertex z,apath(x; b) ) (x; z) 2 E; apath(z; b)(IH)) x �!R g(z); z ��!R �) x ��!R g(�);3The book of Greenlaw, Hoover and Ruzzo [24] includes an excellent up-to-date survey of around150 P-complete problems. 6



where � 2 T� and g is either g1 or g2. The `(' direction follows also easily byinduction on the length of reductions.We prove now that the nonemptiness problem of TTAs (and thus TAs) is in Pby giving a simple reduction from it to alternating graph accessibility. Let A be aTTA (Q;�; R; I). Assume without loss of generality that there is only one constantc in � and that I is a singleton set fq0g. We construct a graph G = (V;E) withdesignated vertices a and b and a subset U as the set of universal vertices as follows.Let V = Q [ U where U is the collection fut j q ! t 2 R g [ fucg of new vertices.Let a = q0 and b = uc. LetE = f (q; ut); (ut; q1); : : : ; (ut; qn) j q ! f(q1; : : : ; qn)| {z }t 2 R g:Like above, statement (3) is proved for all x 2 Q by induction. It follows thatapath(a; b) i� T (A) is nonempty.Finally, we give a simple reduction from generability to the nonemptiness problemof DTAs to show that it's P-hard. Let Q be a �nite set, f a binary function on Q,V � Q and qf 2 Q. Let A be the DTA (Q;�; R; fqfg), where � consists of a binaryfunction symbol f and a constant cq for each q 2 V . Let R be the following set ofrules: R = f cq ! q j q 2 V g [ f f(q1; q2)! q j f(q1; q2) = q g:It follows easily that T (A) is nonempty i� qf is in the least subset of Q including Vthat is closed under f . �Nonemptiness of DTAs is in fact the same problem as (the more general formulationof) generability given above. Consider a total DTA A with signature � as the pair(A; F ) where A is a �-algebra and F a subset of its universe. Nonemptiness of T (A)is simply the question of whether there exists a term � 2 T� such that �A 2 F , or inother words, if the subalgebra of A generated by the empty set intersects with F .The nonemptiness problem is clearly a particular case of the inequivalence problem.It is also easy to see that there is logspace reduction from any two DTAs A and B tothe DTA in (2). It follows thus that inequivalence of DTAs is also P-complete. From astatement in Seidl [46, Theorem 4.3: P-completeness of inequivalence of m-ambiguousTTAs] follows that inequivalence of DTTAs is P-complete as well. For TAs in generalthe situation is di�erent however. In order to reduce the inequivalence problem oftwo TAs into the nonemptiness problem by using (2) it is necessary to �rst transformthe TAs in question into DTAs which in general implies an exponential increase inthe number of states (this is true already in the case of NFAs [43, 36]). In fact, Seidlhas proved that the inequivalence problem of TAs is EXPTIME-complete [46, The-orem 2.1]. The inequivalence problem of NFAs and regular expressions is PSPACE-complete [37]. For more recent developments regarding complexity of word problemssee Mayer and Stockmeyer [35].5 Intersection Nonemptiness of Finite Tree AutomataWe proceed in two steps. First we prove that intersection nonemptiness of DTAs isEXPTIME-hard. Then we show that intersection nonemptiness of TAs is in EXP-TIME.EXPTIME-hardness of these problems has been stated before (without detailedproofs) and used in various contexts. EXPTIME-hardness of intersection nonempti-ness of TAs has been remarked by Fr�uhwirth et al [15] and used in the context oftype inference of logic programs. Goubault gives an incomplete EXPTIME-hardnessproof of the intersection nonemptiness problem of DTAs in the context of a faultyEXPTIME-completeness proof of simultaneous rigid E-uni�cation [22]. (Note thatthis proof is faulty by the result of Degtyarev and Voronkov [10, 11, 9, 12].) Seidl [47]7



uses EXPTIME-hardness of the intersection nonemptiness of DTTAs and outlines aproof in the context of sort inference in typed functional programming. The proofpresented here is a generalization of the proof of PSPACE-hardness of the intersec-tion nonemptiness of DFAs by Kozen [32]. It's general outline is the same as in theremarks or proof outlines provided in the above references.We reduce the intersection nonemptiness problem of TAs to a wellkown problemin EXPTIME [2]. It is also remarked by Fr�uhwirth et al that this problem is inEXPTIME [15]. It should be noted that informally this is clear already from the factthat the size of a direct product of an unbounded number of TAs is exponential andto test nonemptiness takes polynomial time in the size of that product by Theorem 1.We state the main result of this section as the following theorem. Formally, itfollows from Lemma 7 and Lemma 11 below.Theorem 2 Intersection nonemptiness of TAs and DTAs is EXPTIME-complete.Any signature can ofcourse be encoded with just one binary function symbol and acollection of constants. In particular, by examining the construction of the DTAs inthe hardness part of the proof of Theorem 2 we see that the signature � of the DTAsconsists of one binary function symbol f , one constant c and a collection of unaryfunction symbols. For any DTA A = (Q;�; R; F ) let A0 = (Q0;�0; R0; F ) denote thefollowing DTA. For each unary function symbol g in � let cg be a new constant andqg a new state. Let �0 consist of f , c and those new constants, and let Q0 be Qextended with those new states. Let R0 be like R except that each rule g(q) ! p inR is replaced with the rules cg ! qg and f(qg ; q)! p. Given DTAs A1 and A2 withsignature � it follows easily that T (A01) \ T (A02) is nonempty i� T (A1) \ T (A2) isnonempty. We obtain thus the following corollary.Corollary 3 Intersection nonemptiness of DTAs is EXPTIME-hard even when re-stricted to signatures consisting of constants and one binary function symbol.It is wellknown that the use of intersection can shorten a regular expression by anexponential amount. So for example the inequivalence problem for regular expressionsis PSPACE-complete [37], but becomes EXPSPACE-complete when intersection isadded [16, 27]. (Similar e�ect if obtained with interleaving [35].) In case of �niteautomata or �nite tree automata, taking their intersection corresponds to taking theirdirect product. In some cases the size of a �nite automaton or TA, can be decreasedby an exponential amount by representing it by a sequence of �nite automata or TAs,resepectively. To be precise let us consider the following notion.I Given a sequenceA = (Ai)i�n of TAs, let �A denote the TA A0�A1�� � ��An�1.The sequence A is called a product representation of any TA that is isomor�cwith �A.It follows immediately from Theorem 2 and the property T (A�B) = T (A)\T (B) (forTAs A and B), that the product nonemptiness problem of �nite tree automata (i.e.:Given a product representation of a TA A, is T (A) is nonempty?), is EXPTIME-complete. For �nite automata the product nonemptiness is PSPACE-complete byKozens result [32]. Let us note that the usual notion of succinct representation ofa graph is a boolean circuit which given as input binary representations of two inte-gers (representing two nodes in that graph) computes the corresponding entry of theadjacency matrix of that graph [20]. For example, the succinct graph accessibilityproblem is PSPACE-complete [41] (also for undirected graphs [33]).In general one can de�ne product representation of an abitrary �nite �rst orderstructure in the above manner, i.e., as sequence of �rst order structures (with thesame type) denoting the corresponding direct product. It follows for example fromCorollary 3 that product generability is EXPTIME-complete. Let us also note that8



it is generally believed that EXPTIME is nothing else but P on exponentially moresuccinct input [40]5.1 EXPTIME-hardness of Intersection Nonemptiness of DTAsWe give a polynomial time reduction of polynomial space ATMs to the intersectionnonemptiness problem of DTAs. It follows that the problem is APSPACE-hard andthus EXPTIME-hard. For the rest of this section letM = ((Q;�in;�; �; q0;�b; F ); U)be a �xed ATM that is space-bounded by some polynomial S such that S(m) � m.We can assume without loss of generality that M has a single tape, this followsfrom a straightforward generalization of the corresponding property for TMs [26,Theorem 12.2]. Let x 2 �+in be a �xed string and n = S(jxj). Let ID stand for the setof all possible strings that represent IDs of M that may be padded with extra blanksat the end so that each string represents the �rst n tape symbols of M , i.e.,ID = [0�k<n�(k)Q�(n�k):From here on we will by ID mean any element of ID. We can assume without loss ofgenerality that M satis�es the following conditions:� The initial state q0 is existential and occurs only in the initial ID (ID0 =q0x�b(n�jxj)).� M has exactly one �nal state qf and the �nal ID has the form ID f = qf�b(n).� Each universal ID has 0 or 2 successors.Let all the symbols in �[Q have arity 1,i.e., treat them like unary function symbols.Let also hi and nil be new function symbols with arities 2 and 0, respectively. Let� = � [Q[ fhi;nilg. We will represent \computations trees" of M by certain termsin T�. For a string v = c1c2 � � � cm over � [Q and � a term we write �v for the termcm(cm�1(� � � c1(�) � � �)), and for any two terms �1 and �2 we write h�1; �2i for the termhi(�1; �2).I ID-trees is the least class of terms in T� that satis�es:{ nil is an ID-tree, called the empty ID-tree;{ if �1 and �2 are ID-trees such that either both are empty or only �2 is emptyand v 2 ID then � = h�1; �2iv�b is an ID-tree.We refer to �1 and �2 as the left and right subtrees (or collectively immediatesubtrees) of � , v is called the root of � . We will use the notations Left(�),Right(�) and Root(�). We let also Root(nil) = �.Let � and � 0 be ID-trees. We say that � 0 is an m-fold subtree of � if either m = 0and � 0 = � or � 0 is an (m�1)-fold subtree of some immediate subtree of � . By subtreewe mean m-fold subtree for some m � 0. The depth of � is the largest m � 0 suchthat there exists an m-fold subtree of � , e.g., the depth of nil is 0.The roots of all the nonempty subtrees of � are called its nodes. A nonemptysubtree of � with empty immediate subtrees is called external. A nonempty subtreeof � that is not external is called internal. The root of any external subtree of � iscalled a leaf of � . We will use the following de�nitions.I An ID-triple is any element of ID � ID � (ID [f�g), where � denotes the emptystring. By a move of M we mean any ID-triple (v; v1; v2) where either9



{ v is existential, v ` v1 and v2 = �, or{ v is universal, v ` v1, v ` v2 and v1 6= v2.We write v � (v1; v2) i� (v; v1; v2) is a move.I A move-tree is any ID-tree � such that for each internal subtree � 0 of � ,Root(� 0)� (Root(Left(� 0));Root(Right(� 0))):A move-tree is valid if its root is the initial ID and its leaves are �nal IDs.The notion of a valid move-tree is a straightforward generalization of the notion ofa valid computation of M on input x. We will exploit the following obvious charac-terization of acceptance in terms of valid move-trees: M accepts x i� there exists avalid move-tree.5.1.1 Main Construction The kernel of the hardness proof is a polynomial timeconstruction of a collection of tree automata such that their intersection is preciselythe set of all valid move-trees. We will construct two kinds of automata, one for eachk, 1 � k � n.1. The �rst kind recognizes all move-trees the leaves of which are �nal IDs andwhich satisfy the following additional property. Roughly, for all internal m-foldsubtrees � where m is even, the ID-triple (v; v1; v2), where v is the root of �and v1 and v2 the roots of the left and right subtrees of � , is a possible moveby looking only at the tape symbols immediately surrounding the k'th symbol.2. The second kind recognizes all move-trees the root of which is the initial ID andwhich satisfy the same additional property as above, except for odd m.First we will formally de�ne the sets of ID-trees correspeonding to items 1 and 2,and show that their intersection gives us precisely all the valid move-trees. Thenwe present formal constructions of DTAs that recognize these sets. We need someadditional notations and de�nitions.By a position we mean any integer k such that 1 � k � n. Let k be a position andv = a1 � � � ai�1qai � � � an 2 ID where q 2 Q. We will write v[k] and View(v; k) for thefollowing substrings of v,v[k] = � qak; if k = i;ak; otherwise.View(v; k) = 8<: v[k]v[k + 1]; if k = 1;v[k � 1]v[k]; if k = n;v[k � 1]v[k]v[k + 1]; otherwise.We let also View(�; k) = � and for any ID-triple (v; v1; v2),View((v; v1; v2); k) = (View(v; k);View(v1; k);View(v2; k)):Consider a �xed position k.I A k-move is an ID-triple ~v = (v; v1; v2) such that the following holds.1. If v[k] 2 Q� then there exist a move ~w such that View(~w; k) = View(~v; k).2. If v[k] = a 2 � then v1[k] 2 fag[Qa and either v2 = � or v2[k] 2 fag[Qa.We write v �k (v1; v2) i� (v; v1; v2) is a k-move.The following propositions follow easily and we leave their proofs to the reader.10



�b �b �b �b �b1 nqf nil nilFigure 1: Base case of Tk. ka1 a a2qka1 b a2q1 �11 �12 ka1 c a2q2 �21 �22Figure 2: One possible induction case of Tk (q is universal, �11; �21 2 Tk and�12; �22 2 Tk [ fnilg).Proposition 4 An ID-triple is a move i� it is a k-move for all positions k.Proposition 5 For all positions k and all ID-triples ~v and ~w. If ~v is a k-move andView(~v; k) = View(~w; k) then ~w is a k-move.For all positions k, let Tk denote the following set of terms. Below we will show thatTk is recognizable and that the time complexity to construct a tree automaton thatrecognizes Tk is polynomial in n.I Tk is the set T of all ID-trees such that1. hnil ;niliID f�b 2 T ,2. h�1; �2iv�b 2 T if �1 is nonempty and,(a) v �k (Root(�1);Root(�2)),(b) Left(�1) 2 T and Right(�1) 2 T [ fnilg, and(c) either �2 is empty, or Left(�2) 2 T and Right(�2) 2 T [ fnilg.So any ID-tree in Tk has external subtrees of the form shown in Figure 1. A possibleinduction case is illustrated in Figure 2. For each position k, we let T �k denote thefollowing sets of terms. Also in this case we will show that each T �k is recognizable bya tree automaton that can be constructed in polynomial time.I T �k is the set of all h�1; �2iID0�b where �1; �2 2 T and either both are empty oronly �2 is empty, where T is the set of all ID-trees where q0 doesn't occur suchthat1. nil 2 T ,2. h�1; �2iv�b 2 T if �1 is nonempty and (a{c) hold,(a) v �k (Root(�1);Root(�2)),(b) Left(�1);Right(�1) 2 T , and(c) either �2 is empty or Left(�2);Right(�2) 2 T .11



x1 x2 xl �b �b �b1 nq0 ... ...Figure 3: All ID-trees in T �k have this form.All ID-trees in T �k are illustrated in Figure 3.Let � 2 Tk \ T �k and let � 0 be any internal m-fold subtree of � for some m � 0. Ifm is even (odd) then it follows by de�nition of Tk (T �k ), thatRoot(� 0)�k (Root(Left(� 0));Root(Right(� 0))):We have thus the following property.Proposition 6 For all positions k, if � 2 Tk \ T �k then for all internal subtrees � 0 of� , Root(� 0)�k (Root(Left(� 0));Root(Right(� 0))):We can now state our main lemma.Lemma 7 The intersection nonemptiness problem of DTAs is EXPTIME-hard.Proof. Construct tree automata Ak and A�k for 1 � k � n such that T (Ak) = Tkand T (A�k) = T �k (see Lemma 8 and Lemma 9). Each one is constructed in time thatis polynomial in n = S(jxj), and thus the total time complexity of the costruction ofall the automata is polynomial in jxj. It is su�cient to show thatf � j � is a valid move-treeg = n\k=1(Tk \ T �k )The direction `�' (i.e., that each valid move tree is in Tk and T �k ) is easy to check.(Note that the property that all computation paths of M have even length is neededhere.) We prove the direction '�'. Let � 2 Tnk=1(Tk\T �k ). It follows immediately fromthe de�nition of any Tk that the leaves of � are �nal IDs. It follows also immediatelyfrom the de�nition of any T �k that the root of � is the initial ID. It remains to provethat � is a move-tree, i.e., that for any internal subtree � 0 of � ,Root(� 0)� (Root(Left(� 0));Root(Right(� 0)));but this follows by �rst applying Proposition 6 and then Proposition 4. �5.1.2 Recognizability of Tk Consider a �xed position k distinct from 1 and n.The handling of positions 1 and n is similar. We will construct a tree automaton Akthat recognizes Tk. It will be clear that one can easily extract an algorithm from thisconstruction that has polynomial time complexity in n. Let� = ��� [Q��� [ �Q�� [ ��Q�;I = �� (� [ f�g):As the main part in the construction of Ak we will use a family fMigi2I[f0g of DFAs,where each Mi is a DFA that accepts ID and for each v 2 ID simply scans v andaccepts it in the �nal state p(�;i) i� View(v; k) = �. Formally, we let, for all i 2 I[f0g,Mi = (Pi;� [Q; �i; p(0;i); f p(�;i) j � 2 � g); L(Mi) = ID ;12



such that for all � 2 � and v 2 ID ,�i(p(0;i); v) = p(�;i) , View(v; k) = �:Furthermore, all the Pi's are assumed to be pairwise disjoint. In particular we cantake all the members to be copies of say M0. It is easy to construct M0 in time thatis polynomial in n. Let also Mf be a DFA (with new states) such thatMf = (Pf ;� [Q; �f ; p(0;f); fpfg); L(Mf) = fID fg:Let now Ri for i 2 I [ f0; fg denote following sets of rules:Ri = f c(p)! p0 j �i(c; p) = p0; c 2 � [Q; p; p0 2 Pi g:For any string v = c1c2 : : : cm�1cm over � [ Q and state p we will write pv for theterm cm(cm�1(� � � c2(c1(p)) � � �)). It is clear that for any string v over �[Q, and anytwo states p and p0 in Pi, �i(p; v) = p0 , pv ��!Ri p0:Let ft�; tfg [ f t� j � 2 � g be a set of new state symbols.I Ak is the following tree automaton:QAk = ft�; tfg [ f t� j � 2 � g [ P0 [ Pf [[i2I Pi;�Ak = �;RAk = [i2I Ri [ R0 [ Rf [fnil ! t� g [f ht�; t�i ! p(0;f) g [f htf ; t�i ! p(0;0); htf ; tfi ! p(0;0)g [f ht� ; ti ! p(0;�;) j (�; ) 2 I g [f p(�;0)�b! t� j � 2 � g [f pView((v;v1;v2);k)�b! tf j v �k (v1; v2) g [f pf�b! tf g;FAk = f tf g:Note that pView((v;v1;v2);k) is the �nal state p(View(v;k);i) in Mi, where i is the index(View(v1; k);View(v2; k)). It is easy to check that Ak is indeed a deterministic treeautomaton. The structure of Ak is illustrated in Figure 4.Lemma 8 T (Ak) = Tk.Proof.[Proof of T (Ak) � Tk] Let � 2 T (Ak), i.e., � 2 T� and � ��!RAk tf . We prove that� 2 Tk. The proof is by induction on the length of the reduction � ��! tf . There aretwo cases, depending on the last step of the reduction.1. � ��! pf�b �! tf , or2. � ��! pView(~v;k)�b �! tf for some k-move ~v. Let View(~v; k) = (�; �; ).13
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Figure 4: Tree automaton Ak. A transition from p(�;�;) to tf exists only if(�; �; ) = View(~v; k) for some k-move ~v.Let us consider the �rst case �rst. From the de�nition of the rules of Ak and thedisjointness of the underlying DFAs it follows that the reduction has to be of thefollowing form: (simply trace the arrows backwards in Figure 4)pf�b �! tfp(0;f)ID f ��!Rf pfhnil ;nili ��! p(0;f);which shows that � = hnil ;niliID f�b, and thus � 2 Tk. We now consider the secondcase. Thenp(�;�;)�b �! tfp(0;�;)w ��!R(�;) p(�;�;) (some w 2 ID such that View(w; k) = �)ht� ; ti �! p(0;�;):So � = h�1; �2iw�b where �1 ��! t� and �2 ��! t . Since � 6= � it follows that thereduction �1 ��! t� must have the following form:p(�;0)�b �! t�p(0;0)w1 ��!R0 p(�;0) (some w1 2 ID such that View(w1; k) = �);14



and either htf ; t�i �! p(0;0) or htf ; tfi �! p(0;0). Assume (without loss of generality)that the former reduction step took place and that  = � (and thus �2 = nil).Under these conditions Root(�1) = w1, Left(�1) ��! tf and Right(�1) = nil . Itfollows by the induction hypothesis that Left(�1) 2 Tk. Let ~w = (w;w1; �), sinceView(~w; k) = View(~v; k) and ~v is a k-move, it follows by Proposition 5 that ~w is ak-move. Now � 2 Tk by the de�nition of Tk.[Proof of Tk � T (Ak)] Let � 2 Tk. Clearly � 2 T�. We must show that � ��! tf . Theproof is by induction on the size of � . The base case is � = hnil ;niliID f�b and it followsby above that � ��! tf . The induction case is � = h�1; �2iv�b, where �1 = h�11; �12iv1�b,1. v �k (v1;Root(�2)),2. �11 2 Tk and �12 2 Tk [ fnilg, and3. either �2 is empty or Left(�2) 2 Tk and Right(�2) 2 Tk [ fnilg.We can assume without loss of generality that �2 and �12 are empty. Let (�; �; �) =View((v; v1; �); k). By using the induction hypothesis and the rules of Ak we obtainthe following reduction: � ��!(IH) hhtf ; t�iv1�b; t�iv�b�! hp(0;0)v1�b; t�iv�b��!R0 hp(�;0)�b; t�iv�b�! ht� ; t�iv�b�! p(0;�;�)v�b��!R(�;�) p(�;�;�)�b:But v �k (v1; �), and thus p(�;�;�)�b �! tf . �5.1.3 Recognizability of T �k Like above, we consider a �xed position k distinctfrom 1 and n, and construct a tree automaton A�k that recognizes T �k . It will be clearthat the construction has polynomial time complexity in n. We will not be as detailedas we were in the previous section due to the similarity of the construction.Let � and I be as in Section 5.1.2 except that the initial state q0 of M is omittedfrom Q. Let also Mi for i 2 I [ f0g have the same de�nition (except for that samerestriction). Let Mf be the following DFA: (with new states)Mf = (Pf ;�; �f ; p(0;f); fpfg); L(Mf) = fx�b(n�jxj)g:Let now Ri for i 2 I [ f0; fg denote the same sets of rules as de�ned above. Letft; t�; tfg [ f t� j � 2 � g be a set of new state symbols.I A�k is the following tree automaton:QA�k = ft; t�; tfg [ f t� j � 2 � g [ P0 [ Pf [[i2I Pi;�A�k = �;RA�k = [i2I Ri [ R0 [ Rf [ fq0(p(0;0))! p(0;f)g [fnil ! t� g [f ht�; t�i ! p(0;0); ht; t�i ! p(0;0); ht; ti ! p(0;0)g [f ht�; ti ! p(0;�;) j (�; ) 2 I g [f p(�;0)�b! t� j � 2 � g [15
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Figure 5: Tree automaton A�k. A transition from p(�;�;) to t exists only if(�; �; ) = View(~v; k) for some k-move ~v.f pView((v;v1;v2);k)�b! t j v �k (v1; v2) g [f pf�b! tf g;FA�k = f tf g:Note that A�k is indeed a deterministic tree automaton (in particular note that theq0-transition from p(0;0) to p(0;f) doesn't violate the determinism). The structure ofA�k is illustrated in Figure 5. The proof of Lemma 9 i analogous to the proof ofLemma 8.Lemma 9 T (A�k) = T �k :5.2 The Intersection Nonemptiness Problem of TAs is in EXPTIMEWe reduce the intersection nonemptiness problem of TAs to the inference problemfor full implicational dependencies or FIDs. An FID is just a universal relationalHorn sentence, we write it as an implication '   where ' is an atom and  aconjunction of atoms. The only function symbols in an FID are constants. Theinference problem is simply the question of whether a given conjunction of FIDsimplies another given FID. This problem can be solved in exponential time (actuallyit is EXPTIME-complete [2, 52]).Let Ai for 1 � i � n for some n � 1 be TAs with a common input alphabet �,Ai = (Qi;�; Ri; Fi); (1 � i � n):16



Let A = (Q;�; R; F ) be the direct product of all the Ai's. So the states of Aare elements of Qni=1Qi and the rules of A are de�ned as follows, we write �q for(q1; q2; : : : ; qn) 2 Q:R = f�(�q1; : : : ; �qk)! �q j �(qi1; qi2; : : : ; qik) �!Ri qi (1 � i � n) g:We know that T (A) is nonempty i� Tni=1 T (Ai) is nonempty. We will construct a setof FIDs P with a distinguised atom Nonempty such that P ` Nonempty i� T (A) isnonempty. Furthermore, it will be obvious that this construction takes polynomialtime (actually linear time) in the total size of the Ai's (not in the size of A, the sizeof A is in general eponential in the total size of the Ai's).First, for 1 � i � n and each k-ary function symbol � 2 �, let Rule�i be a newrelation symbol of arity k + 1. Let also Finali for 1 � i � n and Reduce be relationsymbols of arity 1 and n, respectively. To simplify matters, we can assume withoutloss of generality that all function symbols in � have arity at most 2. There arefollowing atoms (or atomic FIDs) in P : for each Ai and �nal state q in it there is anatom Finali(q)in P ; for each Ai and rule �(q1; : : : ; qk)! q (where k � 0) in Ri there is an atomRule�i (q1; : : : ; qk; q)in P . In addition, P includes the following FIDs: for each constant � 2 � the FIDReduce(�x) n̂i=1 Rule�i (xi);for each unary function symbol � 2 � the FIDReduce(�x) n̂i=1 Rule�i (yi; xi) ^ Reduce(�y)and for each binary function symbol � 2 � the FIDReduce(�x) n̂i=1 Rule�i (yi; zi; xi) ^ Reduce(�y) ^ Reduce(�z):Finally, P includes the FIDNonempty Reduce(�x) ^ n̂i=1 Finali(xi):We have the following relationship between derivations from P and reduction in R.Proposition 10 For all �q 2 Q, P ` Reduce(�q) i� there exists a term � 2 T� suchthat � ��!R �q.Proof. Let �q 2 Q be �xed and consider the direction `)'. Assume that P `Reduce(�q). We prove by induction on the length of the proof of P ` Reduce(�q) thatthere exists a term � 2 T� such that � ��!R �q.The base case is when there is a constant c 2 � such that P ` Ruleci (qi) for1 � i � n. Then c �!Ri qi for 1 � i � n and thus � = c �!R �q. The inductioncase is when there is a nonconstant function symbol f 2 � (we can assume that f isbinary) and states �p; �r 2 Q such thatP ` Rulefi (pi; ri; qi) (for 1 � i � n); P ` Reduce(�p); P ` Reduce(�r):17



By the induction hypothesis follows that there exist terms �1 and �2 in T� suchthat �1 �!R �p and �2 �!R �r. From P ` Rulefi (pi; ri; qi) (for 1 � i � n) followsthat f(pi; ri) �!Ri qi (for 1 � i � n) and thus f(�p; �r) �!R �q. Consequently� = f(�1; �2) ��!R �q.The direction `(' is equally straightforward to prove by induction on the length ofthe reduction � ��!R �q. �Since P ` Nonempty i� there exists a �nal state �q in A such that P ` Reduce(�q), itfollows by Proposition 10 that P ` Nonempty i� T (A) is nonempty. The constructionof P is clearly linear in the total size of the Ai's. By Chandra et al [2] it follows thusthat:Lemma 11 The intersection nonemptiness problem of DTAs is in EXPTIME.We obtain an alternative proof of Lemma 11 by looking at P as a logic programand asking the question if the goal Nonempty follows from it. It is clear that in anyproof tree of Nonempty from P the nodes (or intermediate goals) have a size that islinear in n, simply because there are no nonconstant function symbols in P . Thecomputational complexity of the problem of deciding if P ` Nonempty is therefore inEXPTIME by a correspondence between logic programs and ATMs by Shapiro [48,Theorem 4.4] and the relationship EXPTIME = APSPACE.We can also note that NFAs correspond to monadic TAs, i.e., TAs over a signaturewhere there are besides constants only unary function symbols. If we assume theabove Ai's to be modadic then the nonemptiness problem of T (A) corresponds to thenonemptiness problem of the intersection of the corresponding NFAs. It is easy tosee by looking at P that one can construct an ATM without universal nodes (i.e.,a TM) that uses only linear space in n and \accepts Nonempty" i� P ` Nonempty.Thus the intersection nonemptiness problem of NFAs is in PSPACE. This fact followsalready from the proof of the PSPACE-completeness of the intersection nonemptinessproblem of DFAs by Kozen [32], where the part of the proof regarding inclusion inPSPACE holds also for NFAs.6 ConclusionsIn this report we considered computational complexity of some basic decision problemsof �nite tree automata. In particular, we proved EXPTIME-completeness of theintersection nonemptiness problem (Theorem 2) and we showed P-completeness of thenonemptiness problem (Theorem 1). It follows that for a �xed number of �nite treeautomata, the problem of nonemptiness of their intersection is also P-complete. Wediscussed a notion of succinctness with respect to which the intersection nonemptinessproblem is in fact a succinct version of the nonemptiness problem.Our main motivation for studying these problems and their computational com-plexity is their close connection with the decidability and computational complexityof certain fragments of intuitionistic logic with equality and subcases of a certainproblem called simultaneous rigid E-uni�cation that arises in the automated theoremproving context [19]. These connections are investigated in a separate joint paper byDegtyarev, Gurevich, Narendran, Veanes and Voronkov [7]. Until SREU was provedundecidable by Degtyarev and Voronkov [9, 10, 11, 12] there appeared many faultyproofs of its decidability [17, 18, 22]. See the survey paper by Degtyarev, Gurevich andVoronkov [8] for the impact of this undecidability result on the automated theoremproving community. Further implications are studied by Veanes [53], and Gurevichand Veanes [25].The computational complexities of the problems studied in this report and of closelyrelated problems is summarized in Table 1. In general there seems to be a rule ofthumb that says that if a decision problem for (deterministic) �nite automata is18



Nonemptiness Inequivalence IntersectionnonemptinessDFA NL NL PSPACENFA NL PSPACE PSPACEDTA P P EXPTIMEDTTA P P EXPTIMETA P EXPTIME EXPTIMETable 1: Computational complexities of some basic decision problems of �nite automataand �nite tree automata. All problems are complete for the respective classes.complete for a certain space complexity then the same decision problem with (deter-ministic) �nite tree automata is complete for the corresponding deterministic timecomplexity, only one exponential higher. Besides Table 1, further justi�cation for thisrule follows by comparing computational complexities of some other decision problemsof �nite tree automata studied by Seidl [46] with the corresponding decision problemsof �nite automata studied by Stearns and Hunt III [49, 50]. This relationship be-tween computational complexities of decision problems of �nite tree automata and�nite automata is reected by the fact that proofs of the former are usually extensionsof proofs of the latter, by going from using nondeterministic Turing machines to usingalternating Turing machines.Remarks about Table 1 The nonemptiness problem of �nite automata is in factthe graph accessibility problem and is thus complete for nondeterministic logarithmicspace or NL-complete [45]. Using (2), inequivalence of DFAs reduces to nonempti-ness [39] and since nonemptiness is a particular case of inequivalence, it follows thatinequivalnece of DFAs is NL-complete as well. For �nite automata in general, inequiv-alence is PSPACE-complete by Meyer and Stockmeyer [37]. PSPACE-completenessof nonemptiness of intersection of �nite automata was proved by Kozen [32].Nonemptiness of �nite tree automata is closely related to the two wellknown P-complete problems: alternating graph accessibility [28] and generability [30, 31]. Itfollows by (2) that inequivalence of DTAs is also P-complete. EXPTIME-hardnessof the intersection nonemptiness problem of �nite tree automata has been observedby other researchers [15, 22, 47]. In particular, Seidl outlines a proof in the case ofDTTAs [47]. He has also proved that inequivalence of TAs is EXPTIME-complete [46,Theorem 2.1] and it follows also from a statement by Seidl that when restricted toDTTAs, inequivalnece is P-complete [46, Theorem 4.3].AcknowledgementsThe author wishes to thank Evgeny Dantsin and Andrei Voronkov for valuable com-ments and discussions. In particular, it was pointed out by Dantsin that the nonempti-ness problem of �nite tree automata is a generalization of the graph reachabilityproblem and can be decided in polynomial time, and the reduction of the intersec-tion nonemptiness problem of �nite tree automata to the inference problem for fullimplicational dependencies was suggested by Voronkov.References[1] J.R. B�uchi and J.B. Wright. Mathematical theory of automata. course notes.Communications Sciences 403, University of Michigan, 1960.[2] A. Chandra, H. Lewis, and J. Makowsky. Embedded implicational dependenciesand their inference problem. In Proc. of 13th Annual ACM Symposium on Theoryof Computing (STOC), pages 342{354, 1981.19
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