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AbstractWe show that simultaneous rigid E-uni�cation, or SREU for short, isdecidable and in fact EXPTIME-complete in the case of one variable.This result implies that the 8�98� fragment of intuitionistic logic withequality is decidable. Together with a previous result regarding theundecidability of the 99-fragment, we obtain a complete classi�cationof decidability of the prenex fragment of intuitionistic logic with equal-ity, in terms of the quanti�er pre�x. It is also proved that SREU withone variable and a constant bound on the number of rigid equations isP-complete.



1 IntroductionIn Gallier, Raatz and Snyder [22] and Degtyarev, Gurevich and Voronkov [9],it is explained why simultaneous rigid E-uni�cation, or SREU for short,plays such a fundamental role in automatic proof methods in classical logicwith equality that are based on the Herbrand theorem, like semantic table-aux [18], the connection method [2] or the mating method [1], model elimi-nation [34], and others.It was shown recently in Degtyarev and Voronkov [12] that SREU is un-decidable. The strong connections between SREU and intuitionistic logicwith equality have led to new important decidability results in the latterarea [13, 50]. It follows, for example, that the 9�-fragment of intuitionis-tic logic with equality is undecidable [14, 15]. This result is improved inVeanes [46] to the following.The 99-fragment of intuitionistic logic with equality is undecidable.The decidability of the 9-fragment of intuitionistic logic with equality, orequivalenly SREU with one variable, has been an open problem which issettled in this paper. We prove the following.SREU with one variable is decidable, in fact EXPTIME-complete.This result is obtained by a polynomial time reduction of SREU with onevariable to the intersection nonemptiness problem of �nite tree automata.The latter problem is EXPTIME-complete [47]. By using an analogue of aSkolemization result for intuitionistic logic [13] we can deduce the followingresult.The 8�98�-fragment of intuitionistic logic with equality is decidable.The above results imply the following main contribution of this paper.A complete classi�cation of decidability of the prenex fragment ofintuitionistic logic with equality, in terms of the quanti�er pre�x.We prove also that rigid E-uni�cation with one variable is P-complete andthat SREU with one variable and a constant bound on the number of rigidequations is P-complete. One conclusion we can draw from this is that theintractability of SREU with one variable is strongly related to the number ofrigid equations and not their size. With two variables, SREU is undecidablealready with three rigid equations [26]. In Section 6 we summarize thecurrent status of SREU and list some open problems.
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2 PreliminariesWe will �rst establish some notation and terminology. We follow Chang andKeisler [4] regarding �rst order languages and structures. For the purposesof this paper it is enough to assume that the �rst order languages that we aredealing with are languages with equality and contain only function symbolsand constants, so we will assume that from here on. We will in general use�, possibly with an index, to stand for a signature, i.e., � is a collection offunction symbols with �xed arities. A function symbol of arity 0 is called aconstant. We will always assume that � contains at least one constant.2.1 Terms and FormulasTerms and formulas are de�ned in the standard manner. We refer to termsand formulas collectively as expressions. In the following let X be an ex-pression or a set of expressions or a sequence of such.We write �(X) for the signature of X, i.e., the set of all function symbolsthat occur in X, V(X) for the set of all free variables in X. We writeX(x1; x2; : : : ; xn) to express that V(X) � fx1; x2; : : : ; xng. Let t1; t2; : : : ; tnbe terms, then X(t1; t2; : : : ; tn) denotes the result of replacing each (free)occurence of xi in X by ti for 1 � i � n. By a substitution we mean afunction from variables to terms. We will use � to denote substitutions. Wewrite X� for X(�(x1); �(x2); : : : ; �(xn)).We say that X is closed or ground if V(X) = ;. By T� or simply T wedenote the set of all ground terms over the signature �. A substitution iscalled ground if its range consists of ground terms. A closed formula is calleda sentence. Since there are no relation symbols all the atomic formulas areequations, i.e., of the form t � s where t and s are terms and `�' is theformal equality sign.2.2 First Order StructuresFirst order structures will (in general) be denoted by upper case gothicletters like A and B and their domains by corresponding capital romanletters like A and B respectively. A �rst order structure in a signature � iscalled a �-structure. For F 2 � we write FA for the interpretation of F inA.For X a sentence or a set of sentences, A j= X means that the structureA is a model of or satis�es X according to Tarski's truth de�nition. A setof sentences is called satis�able if it has a model. If X and Y are (sets of)sentences then X j= Y means that Y is a logical consequence of X, i.e., thatevery model of X is a model of Y . We write X � Y when X j= Y andY j= X. We write j= X to say that X is valid, i.e., true in all models.By the free algebra over � we mean the �-structure A, with domainT�, such that for each n-ary function symbol f 2 � and t1; : : : ; tn 2 T�,fA(t1; : : : ; tn) = f(t1; : : : ; tn). We let T� also stand for the free algebra over2



�.Let E be a set of ground equations. De�ne the equivalence relation =Eon T by s =E t i� E j= s � t. By T�=E (or simply T=E) we denote thequotient of T� over =E. Thus, for all s; t 2 T ,T=E j= s � t , E j= s � t:We call T=E the canonical model of E. Structures that are isomorphic withthe canonical model of a �nite set of ground equations are sometimes called�nitely presented algebras. Various problems that are related to �nitelypresented algebras, and their computational complexity, have been studiedin Kozen [28, 29]. Below, we will make use of some of those results.2.3 Simultaneous Rigid E-Uni�cationA rigid equation is an expression of the form E 8̀ s � t where E is a �nite setof equations, called the left-hand side of the rigid equation, and s and t arearbitrary terms. A system of rigid equations is a �nite set of rigid equations.A substitution � is a solution of or solves a rigid equation E 8̀ s � t ifj= (ê2E e�)) s� � t�;and � is a solution of or solves a system of rigid equations if it solves eachmember of that system. The problem of solvability of systems of rigid equa-tions is called simultaneous rigid E-uni�cation or SREU for short. Solvabil-ity of a single rigid equation is called rigid E-uni�cation. RigidE-uni�cationis known to be decidable, in fact NP-complete [21].2.4 Term RewritingIn some cases it is convenient to consider a system of ground equations asa rewrite system. We will assume that the reader is familiar with basicnotions regarding ground term rewrite systems [16]. We will only use veryelementary properties. In particular, we will use the following property ofcanonical (or convergent) rewrite systems. Let R be a ground and canonicalrewrite system and consider it also as as a set of equations. For any groundterm t, let t#R denote the normal form of t with respect to R. Then, for allground terms t and s, (cf [16, Section 2.4])R j= t � s , t#R = s#R:A reduced set of rules R is such that for each rule l! r in R, l is irreduciblewith respect to R n fl ! rg and r is irreducible with respect to R. In thecase of ground rules, a reduced set of rules is also canonical [43]. It is alwayspossible to �nd a reduced set of ground rewite rules that is equivalent toa given �nite set of ground equations [32]. Moreover, this can be done inO(n log n) time [43]. 3



2.5 Finite Tree AutomataFinite tree automata, or simply tree automata from here on, is a generaliza-tion of classical automata. Tree automata were introduced, independently,in Doner [17] and Thatcher and Wright [45]. The main motivation was toobtain decidability results for the weak monadic second-order logic of thebinary tree. Here we adopt the following de�nition of tree automata, thatis based on rewrite rules [5, 7].I A tree automaton or TA A is a quadruple (Q;�; R; F ) where{ Q is a �nite set of constants called states,{ � is a signature that is disjoint from Q,{ R is a set of rules of the form f(q1; : : : ; qn)! q, where f 2 � hasarity n � 0 and q; q1; : : : ; qn 2 Q,{ F � Q is the set of �nal states.A is called a deterministic TA or DTA if there are no two di�erentrules in R with the same left-hand side.It is also assumed that Q and � are disjoint. Note that if A is deterministicthen R is a reduced set of ground rewrite rules and thus canonical [43]. Treeautomata as de�ned above are usually also called bottom-up tree automata.Acceptance for tree automata or recognizability is de�ned as follows.I The set of terms recognized by a TA A = (Q;�; R; F ) is the setT (A) = f � 2 T� j (9q 2 F ) � ��!R q g:A set of terms is called recognizable if it is recognized by some TA.Two tree automata are equivalent if they recognize the same set of terms.It is well known that the nondeterministic and the deterministic versions ofTAs have the same expressive power [17, 23, 45], i.e., for any TA there is anequivalent DTA. For an overview of the notion of recognizability in generalalgebraic structures see Courcelle [6] and the fundamental paper by Mezeiand Wright [36].3 Decidability of SREU with One VariableIn this section we will formally establish the decidability of SREU with onevariable. The proof has two parts.1. First we prove that rigid E-uni�cation with one variable can be re-duced to the problem of testing membership in a �nite union of con-gruence classes. 4



2. By using the property that any �nite union of congruence classes isrecognizable, we then reduce SREU with one variable to the intersec-tion nonemptiness problem of �nite tree automata.The decidability of SREU with one variable follows then from the factthat recognizable sets are closed under boolean operations and that thenonemptiness problem of �nite tree automata is decidable. In Section 4 wewill address the computational complexity of this reduction.3.1 Reduction to Membership in a Union of Congruence ClassesWe start by proving two lemmas. Roughly, these lemmas allow us to reducean arbitrary rigid equation S(x) with one variable to a �nite collection ofrigid equations fSi(x) j i < n g such that, for all substitutions �, � solves Si� � solves some Si. Furthermore, each of the Si's has the form E 8̀ x = tiwhere E is ground and ti is some ground term. The set E is common to allthe Si's.Let E be a set of ground equations and t a ground term. We denote by[t]E the interpretation of t in T=E , in other words [t]E is the congruenceclass induced by =E on T that includes t. For a set T of ground terms wewill write [T ]E for f [t]E j t 2 T g. We write Terms(E) for the set of allterms that occur in E, in particular Terms(E) is closed under the subtermrelation. We will use the following lemma. Lemma 1 follows also from amore general statement in de Kogel [8, Theorem 5.11].Lemma 1 Let t be a ground term, c a constant, E a �nite set of groundequations and e a ground equation. Let T = Terms(E [ feg). If [t]E 62 [T ]Eand E [ ft � cg j= e then E j= e.Proof. Assume that [t]E 62 [T ]E and that E [ ft � cg j= e. Let E0 be areduced set of rules equivalent to E, such that c#E0 = c. Let t0 = t#E0 . Ift0 = c then E [ ft � cg � E0 [ ft � cg � E0 [ ft0 � cg � Eand the statement follows immediately. So assume that t0 6= c. Let R =E0 [ ft0 ! cg. Let l ! r be a rule in E0. Neither l nor r can be reducedwith the rule t0 ! c because [t0]E = [t]E 62 [T ]E . Hence R is reduced,and thus canonical [43]. Also, R � E [ ft � cg. (Note that t0 2 [t]E and[T ]E = [T ]E0 .)Let e = t0 � s0 and let u = t0#R = s0#R. We have thatt0 ��!R u; s0 ��!R u:Consider the reduction t0 ��!R u and let ti �! ti+1 be any rewrite stepin that reduction. Obviously, if each subterm of ti is in some congruence5



class in [T ]E then the rule t0 ! c is not applicable since [t0]E 62 [T ]E and itfollows also that each subterm of ti+1 is in some congruence class in [T ]E .It follows by induction on i that the rule t0 ! c is not used in the reduction.The same argument holds for s0 ��!R u. Hencet0 ��!E0 u; s0 ��!E0 u;and thus E0 j= t0 � s0. Hence E j= e. �Consider a system S of rigid equations. There is an extreme case of rigidequations that are easy to handle from the point of view of solvability of S,namely the redundant ones:I A rigid equation is redundant if all substitutions solve it.To decide if a rigid equation E(x) 8̀ s(x) � t(x) is redundant, it is enoughto decide if E(c) j= s(c) � t(c) where c is a new constant.I The uniform word problem for ground equations is the following de-cision problem. Given a set of ground equations E and a groundequation e, is e a logical consequence of E?We will use the following complexity result [28, 29].Theorem 1 (Kozen) The uniform word problem for ground equations isP-complete.So redundancy of rigid equations is decidable in polynomial time.Lemma 2 Let E(x) 8̀ e(x) be a rigid equation, c be a new constant and tbe a ground term not containing c. ThenE(c) [ ft � cg j= e(c) , E(t) j= e(t):Proof. The only non-obvious direction is `)'. Since t does not include c,E(c)[ft � cg j= e(c) holds with c replaced by t, but then the equation t � tis simply superuous. �Clearly, S is solvable i� the set of rigid equtions in S that are not redundant,is solvable. We will use the following lemma.Lemma 3 Let E(x) 8̀ s0(x) � t0(x) be a non-redundant rigid equationof one variable x and let c be a new constant. There exists a �nite setof ground terms T such that, for any ground term t not containing c thefollowing holds:E(t) j= s0(t) � t0(t) , E(c) j= t � s for some s 2 T :Furthermore, T can be obtained in polynomial time.6



Proof. Let T 0 be the set Terms(E(c) [ fs0(c) � t0(c)g). LetT = f s 2 T 0 j E(c) [ fs � cg j= s0(c) � t0(c) g:Note that T may be empty. Let t be any ground term that does not containc. By using Lemma 2, it is enough to prove that the following statementsare equivalent:1. E(c) [ ft � cg j= s0(c) � t0(c),2. E(c) j= t � s for some s 2 T .Assume �rst that [t]E(c) 62 [T 0]E(c). In particular [t]E(c) 62 [T ]E(c), so state-ment 2 is trivially false. Suppose (by contradiction) that statement 1 holds.But then E(c) j= s0(c) � t0(c) by Lemma 1, which contradicts the assump-tion that the rigid equation is not redundant.Assume now that [t]E(c) = [s]E(c) for some s 2 T 0. ThusE(c) [ fs � cg � E(c) [ ft � cg: (1)So, if s 2 T then statement 2 is trivially true and statement 1 is true by (1)and the de�nition of T . If on the other hand s 62 T then statement 2 istrivially false and statement 1 is false by (1) and the de�nition of T .Observe that the size of T 0 is proportional to the size of the rigid equation,and to decide if some term in T 0 belongs to T takes polynomial time byKozen's result. So the construction of T takes polynomial time. �From Lemma 3 we get the following result.Theorem 2 Rigid E-uni�cation with one variable is P-complete.Proof. P-hardness of rigid E-uni�cation with one variable follows immedi-ately from P-hardness of the uniform word problem for ground equations.Inclusion in P is proved as follows. Let S(x) = E(x) 8̀ e(x) be a rigid equa-tion. Test �rst that S(x) is not redundant. If so, use Lemma 3 to obtain T .Now, S(x) is solvable i� T is nonempty. �This P-completeness result is extended in Section 4.3 to SREU with onevariable and a constant bound on the number of rigid equations.4 Computational Complexity of SREU with One VariableIn the previous section we showed that SREU with one variable is decidable.We paid little or no attention to the actual computational complexity of thisdecision problem. Here we take a closer look at the reduction and show thatSREU with one variable is in fact EXPTIME-complete. We �rst introducethe following de�nition. 7



I The intersection nonemptiness problem of DTAs or DTAI is the fol-lowing decision problem. Given a collection fAi j 1 � i � n g ofDTAs, is Tni=1 T (Ai) nonempty?We will use the following result that has been observed by other authors [19,24, 41] and strictly proved in Veanes [47].Theorem 3 (Veanes) DTAI is EXPTIME-complete.We will �rst show that SREU with one variable reduces to DTAI in poly-nomial time. This establishes the inclusion of SREU with one variable inEXPTIME. We then show that DTAI reduces to SREU with one variable,which shows the hardness part. The construction that we will use is in factbased on a construction in de Kogel [8, Theorems 4.1 and 4.2] that is basedon Shostak's congruence closure algorithm [42].1 A similar construction isused also in Gurevich and Voronkov [27].4.1 SREU with one variable is in EXPTIMEIn the following we will assume that none of the rigid equations are re-dundant. Lemma 3 tells us that the set of solutions of a rigid equationE(x) 8̀ e(x) with one variable is given by the union of a �nite number ofcongruence classes [s2Tf t j E(c) j= s � t g;where T � Terms(E(c) [ fe(c)g) and c is a new constant. We will now givea polynomial time construction of a DTA that recognizes the above set ofterms. Our considerations lead naturally to the following de�nition. Let Ebe a set of ground equations and T a subset of Terms(E).I A DTA A = (Q;�; R; F ) is presented by (E; T ) if A has the followingform (modulo renaming of states). First, let qC be a new state foreach C 2 [Terms(E)]E .Q = f qC j C 2 [Terms(E)]E g;� = �(E);F = f qC j C 2 [T ]E g;R = f f(q[t1]E ; : : : ; q[tn]E)! q[t]E j t = f(t1; : : : ; tn) 2 Terms(E) g:It is clear that the above de�nition is well de�ned. It follows from elementaryproperties of congruence relations that A is deterministic and thus R isreduced. Note that for each constant c in �(E), there is a rule c ! q[c]Ein R. Note also that for any equation s � t in E, both s and t reduce tothe same normal form q[s]E = q[t]E with respect to R, since they belong toTerms(E). We will use the following lemma.1De Kogel does not use tree automata but the main idea is the same.8



Lemma 4 Let E be a set of ground equations and T � Terms(E). Let Abe a DTA presented by (E; T ). Then1. T (A) = f t 2 T�(E) j (9s 2 T )E j= t � s g,2. A can be constructed in polynomial time from E and T .Proof. To prove the �rst statement, consider a �-structure A with theuniverse f t#R j t 2 T�[� g and the interpretation function such that tA =t#R for all t 2 T�. Clearly, it is enough to prove that, for all t; s 2 T�,E j= t � s , A j= t � s:For a proof of this statement see de Kogel [8].The second part is proved as follows. The number of terms in Terms(E)is proportional to the size of E. It follows by Theorem 1 that the timecomplexity of the construction of Q, i.e., the time complexity to partitionTerms(E) into congruence classes, is polynomial. The rest is obvious. �We prove now that SREU with one variable is in EXPTIME.Lemma 5 SREU with one variable is in EXPTIME.Proof. Let S(x) = fSi(x) j 1 � i � n g be a system of rigid equations.Assume, without loss of generality, that none of the rigid equations is redun-dant. Let Si(x) = Ei(x) 8̀ ei(x). Let � be the signature of S. Use Lemma 3to obtain, for each i, 1 � i � n, a set of ground terms Ti in polynomial timesuch that, for all t in T�,Ei(t) j= ei(t) , Ei(c) j= t � s for some s 2 Ti:Use now Lemma 4 to obtain (in polynomial time) a DTA Ai that presents(Ei(c); Ti), for 1 � i � n. It follows by Lemma 3 and the �rst part ofLemma 4 thatT (Ai) = f t 2 T� j Ei(t) j= ei(t) g (for 1 � i � n):Thus, � is a solution to S(x) i� x� is recognizable by all T (Ai). Consequently,S(x) is solvable i� Tni=1 T (Ai) is nonempty. The lemma follows, since DTAIis in EXPTIME. �Remark Decidability of SREU with one variable can also be proved bycombining Lemma 3 with a result by Brainerd [3] that states that, given aset R of a ground rewrite rules and a set T of ground terms, then the setf t j (9s 2 T ) t ��!R s g is recognizable. This proof would not give us thecomputational complexity result, however.9



4.2 SREU with one variable is EXPTIME-completeWe will reduce DTAI to SREU with one variable to establish the hardnesspart. First, let us state some simple but useful facts.Lemma 6 Let A = (Q;�; R; F ) be a DTA, f be a unary function symbolnot in �, and c be a constant not in Q or �. LetS(x) = (R [ f f(q)! c j q 2 F g 8̀ x � c):Then, for all � such that x� 2 T�[ffg,� solves S(x) , x� = f(t) for some t 2 T (A):Proof. Let E = R [ f f(q)! c j q 2 F g. From the fact that R is reducedand that f(q) is irreducible in E and c is irreducible in R, follows that Eis reduced and thus canonical. So, for any x� 2 T�[ffg, E j= x� � c i�x� ��!E c. Butx� ��!E c , x� ��!E f(q) �! c for some q 2 F, x� = f(t) for some t 2 T� and t ��!R q, x� = f(t) for some t 2 T (A): �For a given signature �, and some constant c in it, let us denote by S�(x)the following rigid equation:S�(x) = (f�(c; : : : ; c) � c j � 2 � g 8̀ x � c):The following lemma is elementary [15].Lemma 7 For all �, � solves S�(x) i� x� 2 T�.We have now reached the point where we can state and easily prove thefollowing result.Theorem 4 SREU with one variable is EXPTIME-complete.Proof. Inclusion in EXPTIME follows by Lemma 5. Let fAi j 1 � i � n gbe a collection of DTAs with a signature �. Let f be a new unary functionsymbol and �0 = �[ffg. For each Ai, let Si(x) be the rigid equation givenby Lemma 6. So, for all � such that x� 2 T�0 ,� solves Si(x) , x� = f(t) for some t 2 T (Ai):10



Let S(x) = fSi(x) j 1 � i � n g [ fS�0(x)g:It follows by Lemma 7 that for any � that solves S(x), x� is in T�0 . Hence, byLemma 6, S(x) is solvable i� Tni=1 T (Ai) is nonempty. Obviously, S(x) hasbeen constructed in polynomial time. The statement follows, since DTAI isEXPTIME-hard. �So in the general case, SREU is already intractable with one variable. Itshould be noted however that the exponential behaviour is strongly relatedto the unboundedness of the number of rigid equations. (See Section 4.3.)4.3 Bounded SREU with One VariableThe exponential worst case behaviour of SREU with one variable is stronglyrelated to the unboundedness of the number of rigid equations, and notto the size or other parameters of the rigid equations. This behaviour isexplained by the fact that the intersection nonemptiness problem of a familyof DTAs is in fact the nonemptiness problem of the corresponding directproduct of the family. The size of a direct product of a family of DTAs isproportional to the product of the sizes of the members of the family, andthe time complexity of the nonemptiness problem of a DTA is polynomial.I Bounded SREU is SREU with a number of rigid equations that isbounded by some �xed positive integer.We will use the following de�nition.I The nonemptiness problem of TAs is the following decision problem.Given a TA A, is T (A) nonempty?The nonemptiness problem of DTAs is basically the problem of \generabil-ity" of �nitely presented algebras. The latter problem is P-complete [29] andthus, by a very simple reduction, also the former problem [47].2 In generalthe following holds.Theorem 5 (Veanes) The nonemptiness problem of TAs is in P and P-hard already for DTAs.For bounded SREU with one variable we get the following result.Theorem 6 Bounded SREU with one variable is P-complete.2The book of Greenlaw, Hoover and Ruzzo [25] includes an excellent up-to-date surveyof around 150 P-complete problems, including generability.
11



Proof. Let the number of rigid equtions be bounded by some �xed positiveinteger n. P-hardness follows immediately from Theorem 2. Without lossof generality consider a systemS(x) = fSi(x) j 1 � i � n gof exactly n rigid equations. For each Si construct a DTA Ai in polyno-mial time, like in Lemma 5. Let A be the DTA that recognizes Tni=1 T (Ai).For example, A can be the direct product of fAi j 1 � i � n g (G�ecsegand Steinby [23]). It is straightforward to construct A in time that is pro-portional to the product of the sizes of the Ai's. Hence A is obtained inpolynomial time (because n is �xed) and T (A) is nonempty i� S(x) is solv-able. �4.4 Monadic SREU with One VariableWhen we restrict the signature to consist of function symbols of arity � 1,i.e., when we consider the so-called monadic SREU then the complexitybounds are di�erent. We can note that DTAs restricted to signatures withjust unary function symbols correspond to classical deterministic �nite au-tomata or DFAs. It was proved by Kozen that the computational complexityof the intersection nonemptiness problem of DFAs is PSPACE-complete [30].So, by using this fact we can see that Theorem 4 proves that monadic SREUwith one variable is PSPACE-complete.Monadic SREU is studied in detail elsewhere [27]. We can note that, ingeneral, the decidability of monadic SREU is still an open problem. Thereis also a very close connection between monadic SREU and the prenex frag-ment of intuitionistic logic with equality restricted to function symbols ofarity � 1 [13].5 Implications to the Prenex Fragment of Intuitionistic LogicThe prenex fragment of intuitionistic logic is the collection of all intuition-istically provable prenex formulas. Many new decidability results aboutthe prenex fragment have been obtained quite recently by Degtyarev andVoronkov [13, 14, 15] and Voronkov [49]. Some of these results are:1. Decidability, and in particular PSPACE-completeness, of the prenexfragment of intuitionistic logic without equality [49].2. Prenex fragment of intuitionistic logic with equality but without func-tion symbols is PSPACE-complete [13]. Decidability of this fragmentwas proved in Orevkov [39].3. Prenex fragment of intuitionistic logic with equality in the languagewith one unary function symbol is decidable [13].12



4. 9�-fragment of intuitionistic logic with equality is undecidable [14, 15].In some of the above results, the corresponding result has �rst been obtainedfor a fragment of SREU with similar restrictions. For example, the proofof the last statement is based on the undecidability of SREU. The undecid-ability of the 9�-fragment is improved in Veanes [46] where it is proved that,already the5. 99-fragment of intuitionistic logic with equality is undecidable.With the following result we obtain a complete characterization of decidabil-ity of the prenex fragment of intutionistic logic with equality with respectto quanti�er pre�x.Theorem 7 The 8�98�-fragment of intuitionistic logic with equality is de-cidable and EXPTIME-hard.Proof. Intuitionistic provability of any formula in the 8�98�-fragment canbe reduced to solvability of SREU with one variable [13]. Conversely, solv-ability of a system of rigid equations with one variable reduces trivially toprovability of a corresponding formula in the 9-fragment [13]. The statementfollows by Theorem 4. �Remark The undecidability of the 99-fragment holds if there is one binaryfunction symbol in the signature. The reduction in Theorem 7 from a 8�98�-formula to SREU with one variable may take exponential time, so the precisecomputational complexity for this fragment is unkown at this moment.Other fragments Decidability problems for other fragments of intuition-istic logic have been studied by Orevkov [38, 39], Mints [37], Statman [44]and Lifschitz [33]. Orevkov proves that the ::89-fragment of intuitionis-tic logic with function symbols is undecidable [38]. Lifschitz proves thatintuitionistic logic with equality and without function symbols is undecid-able, i.e., that the pure constructive theory of equality is undecidable [33].Orevkov shows decidability of some fragments (that are close to the prenexfragment) of intuitionistic logic with equality [39]. Statman proves that theintuitionistic propositional logic is PSPACE-complete [44].6 Current Status of SREUHere we briey summarize the current status of SREU. The �rst decidabilityproof of rigid E-uni�cation is given in Gallier, Narendran, Plaisted andSnyder [21]. Recently a simpler proof, without computational complexityconsiderations, has been given by de Kogel [8]. We start with the solvedcases: 13



� Rigid E-uni�cation with ground left-hand side is NP-complete [31].Rigid E-uni�cation in general is NP-complete and there exist �nitecomplete sets of uni�ers [21, 20].� Rigid E-uni�cation with one variable is P-complete (Theorem 2). Or,more generally, SREU with one variable and a bounded number ofrigid equations is P-complete (Theorem 6).� If all function symbols have arity� 1 (themonadic case) then it followsthat SREU is PSPACE-hard [24]. If only one unary function symbolis allowed then the problem is decidable [11, 10]. If only constants areallowed then the problem is NP-complete [11] if there are at least twoconstants.� About the monadic case it is known that SREU with more than twounary function symbols is decidable i� it is decidable with just twounary function symbols [11].� If the left-hand sides are ground then the monadic case is decid-able [27]. Monadic SREU with one variable is PSPACE-complete [27].� The word equation solving [35] (uni�cation under associativity), whichis an extremely hard problem with no interesting known computationalcomplexity bounds, can be reduced to monadic SREU [10].� Monadic SREU is equivalent to a non-trivial extension of word equa-tions [27].� Monadic SREU is equivalent to the provability problem of the prenexfragment of intuitionistic logic with equality with function symbols ofarity � 1 [13].� In general SREU is undecidable [12]. Moreover, it is undecidable withground left-hand sides [40]. Furthermore, SREU is undecidable withthree rigid equations with ground left-hand sides and two variables [48,26].� SREU with one variable is decidable, in fact EXPTIME-complete(Theorem 4).Note also that SREU is decidable when there are no variables, since eachrigid equation can be decided for example by using any congruence closurealgorithm or ground term rewriting technique. Actually, the problem isthen P-complete because the uniform word problem for ground equations isP-complete [29]. The unsolved cases are:? Decidability of monadic SREU [27].14
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