
Addressing Email Loss with SureMail: Measurement, Design,and Evaluation

Sharad Agarwal Venkata N. Padmanabhan Dilip A. Joseph
Microsoft Research Microsoft Research U.C. Berkeley

Abstract— We consider the problem of silent email loss in the
Internet, where neither the sender nor the intended recipient is
notified of the loss. Our detailed measurement study over several
months shows a silent email loss rate of 0.71% to 1.02%. The silent
loss of an important email can impose a high cost on users. We
further show that spam filtering can be the significant cause of
silent email loss, but not the sole cause.

SureMail augments the existing SMTP-based email infrastruc-
ture with a notification system to make intended recipients aware
of email they are missing. A notification is a short, fixed-format
fingerprint of an email, constructed so as to preserve senderand
recipient privacy, and prevent spoofing by spammers. SureMail is
designed to be usable immediately by users without requiring the
cooperation of their email providers, so it leaves the existing email
infrastructure (including anti-spam infrastructure) unt ouched and
does not require a PKI for email users. It places minimal demands
on users, by automating the tasks of generating, retrieving, and
verifying notifications. It alerts users only when there is actual email
loss. Our prototype implementation demonstrates the effectiveness
of SureMail in notifying recipients upon email loss.

I. I NTRODUCTION

The Internet SMTP-based email system does not guar-
antee the timely or even eventual delivery of messages.
Email can sometimes be delayed by hours or days, or
even fail to be delivered to the recipient(s). Sometimes,
the users are not even notified that their email was
lost. Suchsilent email loss (i.e., the message is lost
without a trace, not merely bounced back or misrouted
to the junk mail folder), even if infrequent, imposes a
high cost on users in terms of missed opportunities, lost
productivity, or needless misunderstanding. Our SureMail
system addresses this problem. Our targeting of silent
loss is not fundamental. It is a trivial policy change to
consider emails sent to the junk folder as lost email.

Recent measurement studies [15, 26] have reported
email loss in the range of 0.5%-5%. We conducted a
more thorough measurement study spanning months and
find a silent loss rate of 0.71%-1.02%. While the lack of
direct information from the email infrastructure makes it
difficult to pin down the cause of email loss, we present
evidence from one popular email service that points to
spam filtering being the main cause.

From anecdotal evidence, we believe email loss also
occurs elsewhere on the Internet, beyond the 22 domains
in our experiment. Some users of EarthLink lost up to
90% of email silently in June 2006 [10]. AOL instructs
users on what to do when email goes missing [3]. There
are companies [8] that offer email monitoring services
for businesses concerned about email loss.

Our measurement findings suggest that the existing
SMTP-based email system works over 95% of the time.

So our approach is to augment the existing system rather
than replace it with a new one of uncertain reliability.
SureMail augments the existing SMTP-based email de-
livery system with a separatenotificationmechanism, to
notify intended recipients when they are missing email.
By notifying the intended recipient rather than the sender,
SureMail preserves the asynchronous operation of email,
together with the privacy it provides. By having small,
fixed-format notifications that are interpreted by email
clients rather than being presented to users, we avoid the
notification system from becoming a vehicle for malware
such as spam and viruses as the current email system is.

Unlike some prior work, a key goal is for SureMail to
be usable immediately by email users, without requiring
cooperation from email providers. By not modifying the
email infrastructure (including not altering spam filters),
SureMail ensures against any disruption to email deliv-
ery that its installation might otherwise cause. Further,
given its limited, albeit useful, functionality, a notification
system would likely need less frequent upgrades (often
disruptive) than a featureful email system.

We believe there is significant value in simply in-
forming users that email to them was lost (i.e., is in
neither their “inbox” nor “junk” folders). They can then
contact the identified sender in a variety of ways to obtain
the missing information (e.g., over email, different email
accounts, phone, instant messaging).

We present two complementary approaches to deliv-
ering notifications: in-band delivery using email headers
and out-of-band delivery using a web storage system. We
have implemented both approaches and plan to make a
SureMail add-in for Microsoft Outlook 2003 available.
As in most P2P systems, both senders and receivers
need to use it to benefit from SureMail. Our evaluation
of the out-of-band approach shows that over 99.9976%
of notifications are delivered successfully. We show that
the incremental cost of SureMail is orders of magnitude
lower than that of email, and thus we believe it is
reasonable to deploy it for the added benefit of reliability.

We first proposed SureMail in a HotNets 2005 position
paper[17]. Our design has since evolved considerably.
The novel contributions presented here include:

• Measurement of email loss designed to avoid the
shortcomings of prior studies.

• A redesign of SureMail to support in-band and/or
out-of-band notifications, and to allow posting of
notifications by legitimate first-time senders.

Internet

SMTP

Firewall
IP

Blacklist

Inbox

SMTP

Out
Queue

SMTP

Inbound

Outbound

SMTP

SMTP

Content
Filters

Content
Filters

Junk

POP3

Fig. 1. A Typical Large Email Service Provider : top refers toinbound
email, bottom to outbound email

• Implementation and evaluation of SureMail.

A. Outline

§ II describes a typical email service provider, various
email filtering components and likely culprits of loss.
This is followed by related work on email architectures
and spam filter improvements.§ III motivates the paper
with our email loss measurement study, designed to avoid
shortcomings of prior work [15, 26].

Given the significant amount of measured loss, we be-
gin our design by first describing theideal requirements
of a solution in§ IV. We strive to achieve these require-
ments in our design in§ V. There are several challenges
to be addressed within the security assumptions presented
early in the section.§ V-D presents a critical technique,
reply-based shared secret, to prevent spammers from
annoying users.§ V-F explains how we distinguish some
legitimate first-time senders from spammers.

SureMail allows notifications to be delivered in-band
or out-of-band from email, or both in conjunction (§ VI).
However, as with any new communication channel, the
out-of-band technique introduces several challenges -
our design is both low cost in terms of storage and
message overhead, and resistant to security and privacy
attacks. Our implementation and experimental evaluation
of SureMail appear in§ VII. We present a discussion of
various issues pertaining to SureMail in§ VIII.

II. P ROBLEM BACKGROUND AND RELATED WORK

A. Typical Email Components and Email Loss

The typical email user may have a very simple view of
their email system as that of their desktop client and the
email server. In reality, large email providers tend to have
complex architectures. Figure 1 provides a basic view of
a typical provider. Each component in the figure may be
replicated for load balancing, and some functionality may
even be split among multiple devices.

The email system may be protected from malicious
entities on the Internet by a firewall. It may block
attacks, including excessive SMTP connections, SMTP
connections with undesired options, connections with
source addresses without reverse DNS entries, etc. The

IP “blacklist” further blocks connections from certain
IP addresses. This may include IP addresses of known
spammers and open mail relays. Alternatively, a provider
may use a “whitelist” policy where a source address may
be automatically dropped if the volume of email sent
by it falls below a threshold [4]. These connections are
dropped withoutany inspection of the email content.

Any connections that pass through the firewall and IP
blacklist are accepted and their email payloads are then
processed by the content filters. These filters scan for
viruses, worms and spam. Spam content can identified by
a variety of techniques that involve comparing the text in
the email to text from typical spam. Email that passes
these filters will be stored in user inboxes. Email that is
suspicious may be stored in junk mail folders instead.
Email that is reliably identified as malware or spam may
be thrown away without hitting any storage.

In the figure, only emails going to the “Inbox” or
“Junk” folders are actually stored. Everything else is
shown as going to the trash, which indicates that those
emails are simply dropped. The major reason that not
all emails are stored is a matter of volume. A major
corporation’s IT staff told us that about90% of incoming
email is dropped before it reaches user mail stores. Only
the remaining10% reach the inbox or junk folder.

Note that SMTP is not an end-to-end reliable protocol.
Thus any of these components can temporarily fail due to
overload, upgrade or maintenance and cause even more
emails to be delayed or lost. Ever increasing volumes
of spam and virus attacks make the infrastructure more
susceptible to overload and failure.

In the outbound direction, email can also be lost.
Emails composed by the user are typically sent via
SMTP to the Internet. Some large email providers apply
content filtering on outbound emails before they go to
the Internet to filter out malware and spam that their
users may be sending. This is to deter spammers who
obtain email accounts on these providers in violation of
the user agreement. Also, if too much malware or spam
is sent by a particular provider, other providers may add
that provider to their IP blacklist (or remove from their
whitelist). Sometimes, email sent by travelers can be lost
if they are forced to use a hotel’s SMTP server that is
not on the whitelists of destination SMTP servers.

Given such extensive filtering, it is not surprising that
some legitimate email gets discarded entirely, not merely
misrouted to the recipient’s junk mail folder (we donot
consider the latter as email loss).

SMTP allows a server to generate non-delivery mes-
sages (“bouncebacks”) for emails it cannot deliver. This
would only occur for emails where the incoming SMTP
connection is accepted and parsed. In Figure 1, any
drops by the firewall or IP blacklist would not cause any
bouncebacks to be generated. For the emails dropped by

the content filters, several issues reduce the effectiveness
of bouncebacks in making email loss non-silent: (i) Typi-
cal content spam filters do not generate bouncebacks. (ii)
Bouncebacks may be sent to spoofed source addresses,
leading to user apathy toward such messages, or worse, to
their classification as spam. (iii) Bounceback generation
may be disallowed for privacy (e.g., to avoid leaking
information on the (in)validity of email addresses). (iv)
Servers sometimes (e.g., after a disk crash) do not
have enough information to generate bouncebacks. (v)
Bouncebacks cannot warn users about emails lost from a
email server to a client.

B. Prior Work on Email Unreliability

We are aware of two recent measurement studies of
silent email loss. Afergan et al. [15] measured silent
email loss by recording the absence of bouncebacks for
emails sent to non-existent addresses. 60 out of the 1468
servers measured exhibited a silent email loss rate of over
5%, with several others with more modest but still non-
negligible loss rates of 0.1-5%. However, a shortcoming
of their methodology is that bouncebacks may not reflect
the true health of the email system for normal emails and
many domains do not generate bouncebacks.

Lang [26] used a more direct methodology to measure
email delays and losses. 40 email accounts across 16
domains received emails over a 3-month period. Their
overall silent email loss rate is 0.69%, with it being over
4% in some cases. While that study does not depend on
bouncebacks, it may be biased by the use of a single
sender for all emails and the use of very atypical emails
(no email body; subject is a message sequence number)
that could significantly bias these being filtered as spam.
Our study addresses some of these shortcomings.

To put these findings in perspective, even a silent
loss rate around 0.5% (1 lost email among 200 sent, on
average) would be a serious problem, especially since a
user has little control over which emails are lost.

Prior proposals to address the email unreliability prob-
lem range from augmentating the current email system
to radical redesign. The message disposition notification
mechanism [21] (i.e. “read receipts”), enables senders to
request that the recipient send an acknowledgment when
an email has been downloaded or read. We believe that
most users do not enable this feature in their email clients
as it exposes too much private information — when
the user reads reads email, conflicting with the inherent
“asynchronous” use of email. Read receipts also enable
spammers to detect active email accounts.

While re-architecting the email delivery system to
enhance reliability (e.g., POST [5, 27]) is certainly desir-
able, that alone will not solve the problem because of loss
due to spam filters. Although a public key infrastructure
(PKI) for users, as assumed by POST, can help with the

spam problem, it can be an impediment for deployment.
In contrast, SureMail does not modify the underlying
email delivery system and keeps the notification layer
separate. This avoids the need to build (or modify) the
complex functionality of an email delivery system and
ensures that even in the worst case, SureMail does not
adversely affect email delivery.

C. Spam Filters and Whitelisting

Improved spam filtering techniques ([9, 11, 13]), re-
duce false positives while still doing effective filtering.
However, it is difficult to entirely eliminate false pos-
itives as spam constantly evolves to mimic legitimate
traffic. Very high spam volumes often necessitate content-
independent filtering (e.g., IP blacklisting) to reduce
processing load on email servers.

Whitelisting email senders (using social relationships
or otherwise [19, 23]) to bypass spam filters is comple-
mentary to SureMail. SureMail tries to notify recipients
upon email loss, regardless of the cause, without actually
preventing the loss. Whitelisting seeks to prevent email
loss specifically due to spam filtering. Thus it needs
to operate on email before it hits the spam filtering
infrastructure. This requires the cooperation of the email
administrators and convincing them that this modification
to their servers will not negatively impact email deliv-
ery. In contrast, SureMail leaves the email infrastructure
untouched, and allows individual users to start using
the system without involving their email administrators.
Finally, if a trusted sender’s computer is compromised,
potentially harmful emails may be whitelisted through
the filtering infrastructure. In SureMail, this compromise
only results in bogus notifications being delivered. We
rely on human involvement for conveying the missing
information, because email loss is relatively rare.

III. E MAIL L OSSM EASUREMENT

We begin by quantifying the extent of email loss in
the existing email system. Due to privacy issues and
the difficulties of monitoring disparate email servers, we
resort to a controlled experiment where we send all the
email, like [26]. However, we improve on their study
by using multiple sending accounts, more realistic email
content, and shedding light on the causes of email loss.

A. Experiment Setup

1) Email Accounts: To measure email loss on the
Internet, we obtained email accounts on several academic,
commercial and corporate domains (see Table IV). The
non-academic domains include free email providers, ones
that charge us for POP or IMAP access, and a private
corporation. The domains are spread across Australia,
Canada, New Zealand, UK and USA. In most cases, we
obtained two mailboxes to catch cases where accounts
on the same domain are configured differently or map

1) Seed random number generator
2) Pick a sender email address at random
3) Pick a receiver email address at random
4) Pick an email from corpus at random
5) Parse email and use the subject and body
6) With 30% probability, add an attachment, selected at random
7) If such an email (sender, receiver, subject, body, attachment)

has not been sent before, send
8) Log sent email and any SMTP error codes
9) Sleep for a random period under a few seconds

10) Go back to step 2

Fig. 2. Pseudo-code for Sending Process

to different servers. Most systems allowed us to retrieve
emails over POP3, IMAP, Microsoft Exchange, or RPC
over HTTP. Many allowed us to programmatically send
emails using SMTP. Overall, we have 46 email accounts:
44 allow receiving email, and 38 allow sending.

2) Email Content: We programmatically send and
receive emails across these 46 accounts. To mimic con-
tent sent by real legitimate users, we use the “Enron
corpus”, a large set of emails made public during the
legal proceedings against the Enron corporation. We
obtained a subset of this corpus [12] containing about
1700 messages manually selected for business-related
content, while avoiding spam. Of these, we use a subset
of 1266 emails with unique subjects, which facilitates the
subsequent matching of sent emails with received emails.
We use only the body and subject from the corpus and
ignore the rest of the header.

We do not use any attachments from the corpus for
fear that sending malware might bias our findings. To
understand the impact, if any, of attachments on email
loss, we picked 16 files of 7 different formats and various
content : marketing, technical, and humorous materials
(see Table III). The largest is about 105 KB since we
do not want to overburden the hosting email domains.
We did not include executables and scripts, since they
increase loss due to virus and trojan scanners – at least
one of the domains drops all emails with executable
attachments. We do not attempt an exhaustive study of
email loss due to attachments, but instead estimate if
typical attachments influence the observed loss rate.

3) System Setup:We use the sending process in
Figure 2. It is codified in a Perl program which uses
separate C programs that handle SMTP connections for
sending emails. We bias the sleep period in step 9 to not
violate the daily volume limits in most account agree-
ments. While most accounts have very similar limits, the
msn.com and microsoft.com accounts allow us to send
and retrieve almost 10 times more emails. Thus steps 2
and 3 are appropriately biased to more frequently send
to and from these 6 accounts.

To retrieve emails, we configured Mozilla Thunderbird
1.5 to download emails from all receiving accounts.
We download emails from the inbox of each account,

as well as any junk mail or spam folders. Whenever
allowed, we configured the accounts to disable junk mail
filtering and/or created a whitelist with all 46 account
addresses. We use Windows XP SP2 machines located
on Microsoft’s network to send and retrieve email.

Once an experiment has completed running, we use a
Perl program to parse the sending logs and feed them
into a Microsoft SQL Server 2005 database. A second
Perl program parses the Thunderbird mail files and feeds
the retrieved emails into the same database. The program
also attempts to parse the contents of any bouncebacks
to determine which original email bounced. However, in
some cases, not enough information is present in the
bounceback to uniquely identify the lost email or the
format of the bounceback is atypical and difficult to parse.
We issue SQL queries to match sent emails with received
emails, and calculate email loss statistics. The matching is
done based on the following fields: sender email address,
receiver email address, subject, attachment name. We do
not use the body of the email for matching, because some
email providers (e.g. Yahoo) insert advertisements. Hence
our corpus consists of emails with unique subjects.

B. Email Loss Findings

We conducted three separate email loss experiments,
summarized in Table I. The setup for experiments #1 and
#2 is slightly different and is described in a technical
report [16]. In this paper, we focus on the latest study,
#3. We received more emails than we sent, primarily
due to spam and domain announcements. Our SQL
queries for matching sent emails with received emails
ignore these extraneous emails. The overall loss rate is
about 1.79%. We received about 1216 bouncebacks, with
various status codes and reasons, not all of which we
could accurately match to the sent email. 10 pairs of
senders and receivers were unable to exchange any email
during our experiment. These constitute the 363 “hard
failures”. If we remove these unusual hard failures, and
count all bouncebacks as successful notifications of delay
or loss, we have a conservativesilent loss rate of 1.02%.
It is difficult to pin down the exact cause of each loss
due to the opacity of so many email domains. However,
we later attempt to identify the possible causes.

The silent loss rate appears to have increased slightly
over time across the three experiments. We speculate
that spam filters have had to more aggressively adapt to
increasing volumes of spam. In private communication,
two of the email providers confirmed that they updated
spam filters almost continuously during this period.

Our experiment was biased toward sending and re-
ceiving more emails via the msn.com and microsoft.com
accounts due to the higher allowed limits. If we remove
these 6 accounts completely from our analysis, we have
the results shown in Table II. This overall loss rate of

Exp. 1 Exp. 2 Exp. 3
Sending accounts 36 36 38
Receiving accounts 42 42 44
Emails in corpus 1266 1266 1266
Attachment probability 0.3 0.3 0.3
Start date 11/18/05 01/11/06 09/06/06
End date 01/11/06 02/08/06 10/04/06
Days 54 29 29
Emails sent 138944 19435 203454
Emails received 144949 21015 213043
Emails lost 2530 653 3648
Total loss rate (lost/sent) 1.82% 3.36% 1.79%
Bouncebacks received 982 406 1216
Hard failures 565 70 363
Conservative silent loss rate 0.71% 0.91% 1.02%

TABLE I. Email Loss Statistics
Emails sent 88711
Emails lost 1653
Total loss rate 1653/88711 = 1.86%

TABLE II. Loss Statistics w/o msn.com and microsoft.com

1.86% is very similar to the 1.79% rate from Table I.
So we believe our findings are not biased by the higher
sending and receiving rates for these 6 accounts.

C. Detailed Findings

We now present detailed loss statistics for experiment
3, broken down by attachment, email body and email ac-
count. We only consider overall loss rates since matching
bouncebacks to the specific email sent is difficult.

1) Loss by Attachment:Table III presents the loss by
attachment. We want to estimate if the type of attachment
or its content dramatically influences loss. We had 16
attachments of 7 types. For instance, we had 2 GIFs
– homemain.gif and phd050305s.gif – and emails that
included them suffered loss rates of 1.68% and 1.99%,
respectively. While we do not observe a significant devi-
ation from the overall loss of 1.79%, HTML attachments
did suffer higher loss. We speculate that since HTML is
becoming a more popular email body format, content-
based spam filters are more actively parsing HTML.

2) Loss by Email Subject / Body:Figure 3 plots
the loss rates, sorted from high to low, for our 1266
distinct email subjects/bodies. We see that some emails
have significantly higher loss rates than others. Most of
the email bodies with loss rates above 10% appear to
contain business proposals, Enron-related news, and stock
details. Even if we ignore these email bodies, most of the
rest of the corpus does have a non-negligible loss rate.
Thus, our findings are not a result of a few “bad apples”
in our corpus, but due to a more general problem.

3) Loss by Account: Table IV shows the total loss
rates for each account on each domain. Column 4 lists the
aggregate number of emails sent to each account from all
of the 38 sending accounts. Column 4 lists the loss rates
experienced by these set of emails. Column 5 presents
the aggregate number of emails sent from each of these
accounts to all of the 44 receiving accounts. The last

Attachment Type Emails Sent Loss %
(none) 133198 1.56
2 * JPEG 2322, 4656 1.55, 2.10
2 * GIF 4597, 4532 1.68, 1.99
3 * HTML 4808, 4733, 4768 4.53, 3.53, 4.28
3 * MS DOC 4658, 4582, 4716 2.36, 1.88, 1.68
2 * MS PPT 4596, 2363 1.59, 1.78
2 * PDF 4670, 4808 1.56, 1.71
2 * ZIP 4749, 4698 1.41, 1.43

TABLE III. Email Loss Statistics by Attachment

0

5

10

15

20

25

30

35

1 211 421 631 841 1051 1261
Corpus Subject/Body

L
o

ss
 %

Fig. 3. Loss Statistics by Email Subject and Body

column is the loss experienced by these emails. We make
two observations here. First, our overall loss rates are not
influenced by a few bad domains or accounts — although
a few accounts experienced no email loss, there is loss
across most domains and accounts. Second, within each
domain, both accounts tend to suffer similar loss rates1.

4) Cause of Email Loss: In general, it is difficult
to exactly determine the cause of each instance of loss
because of the complexities of the myriad of email
systems and our lack of access to the innards of these
systems. We speculate that the likely causes of loss are
aggressive spam filters and errors in the forwarding or
storage software and hardware.

We focus here on the4 msn.com accounts, for which
we obtained special access. We disabled the content
filters (see Figure 1) forc@msn.com andd@msn.com.
Any incoming emails that the content filters would have
thrown away are “tagged”, and the number of such emails
are shown in column 4 of Table V. Thea@msn.com and
b@msn.com accounts are regular accounts2. The “Loss
%” column shows the overall loss rate, while the last
column shows what the rate would have been had the
“tagged” emails been lost. The regular loss rates for c
and d are relatively small, but the “tagged loss” rates for
c and d are similar to the regular loss rate for a and b.
So we hypothesize that content-based spam filters are the
main cause for email loss for msn.com. However, they
are not the sole cause, as indicated by the non-zero “Loss
%” column for c and d. Due to this and the lack of perfect

1The second account at fusemail.com suffered a high receive loss
rate. No emails were delivered between 09/30/2006 and 10/02/2006.
Technical support was unable to determine the cause of the loss. We
suspect server failure or loss between the server and our client.

2Note that we still treat any emails sent to the “Junk” folder for any
account as though they were delivered to the Inbox and not lost.

Domain T Sent to Recvr loss% Sent from Sendr loss %
A B A B A B A B

aim.com I 2306 2370 3.82 4.35 568 174 0.70 0.00
bluebottle.com P 2336 2454 0.04 0.08 2446 2452 1.59 1.39
cs.columbia.edu I 2338 2387 7.83 8.09
cs.princeton.edu P 2416 2341 0.29 0.04
cs.ucla.edu P 2346 2320 0.94 1.03
cs.utexas.edu P 2387 2395 1.01 1.29 3669 3628 2.89 3.03
cs.wisc.edu I 2386 2350 0.54 0.21 3754 3592 2.08 2.31
cubinlab.ee.mu.oz.au P 2341 2408 0.04 0.08
eecs.berkeley.edu I 1193 2321 4.36 3.62 1893 3688 2.11 2.03
fusemail.com I 2425 2350 0.00 20.26 3740 3525 2.65 1.53
gawab.com P 3652 3666 9.94 9.36
gmail.com P 2313 2369 3.59 3.29 3680 3595 2.20 1.81
microsoft.com E 19330 18504 1.77 1.62 35079 35157 0.62 0.65
msn.com H 19465 18932 3.25 3.02 6757 6775 0.92 1.05
msn.com H 19122 19390 0.37 0.41 6807 6793 1.23 1.06
nerdshack.com P 2387 2305 0.00 0.17 3651 3588 4.14 4.26
nms.lcs.mit.edu P 2421 2389 0.00 0.00 3649 3657 1.12 1.12
ulmail.net P 2378 2360 0.00 0.00 3715 3697 5.49 5.63
usc.edu P 2314 2371 0.04 0.00 3608 3731 1.36 1.07
yahoo.com P 2324 2355 2.54 1.10 3835 3630 0.81 0.94
yahoo.co.uk P 2442 2323 0.00 0.00 3474 3577 1.07 1.06
cs.uwaterloo.ca P 2464 2323 1.87 1.89 3667 3602 1.77 1.30

TABLE IV. Loss by Email Account; numbers missing where

programmatic sending/retrieving not allowed; T=Protocoltype:

E:Exchange,H:RPC/HTTP,I:IMAP,P:POP3; A=1st account, B=2nd
Receiver Sent Matched Tagged Loss Tagged

% loss %
a@msn.com 19465 18833 3.25
b@msn.com 18932 18361 3.02
c@msn.com 19122 19052 503 0.37 3.00
d@msn.com 19390 19311 531 0.41 3.15

TABLE V. Loss Statistics to msn.com

spam filters, there is value in email loss notification.
To summarize our experiment, we found significant

total loss rates of 1.79% to 3.36%, with silent loss rates of
0.71% to 1.02%. That is, if a user sends about 30 emails
a day, over the course of a year, over 3 days worth of
emails get silently dropped. Based on our detailed results,
we believe our findings were not biased significantly by
the choice of attachments, message bodies and subjects,
email domains, and individual accounts within the do-
mains. Thus we believe that a system for addressing
lost email will be of significant benefit to users. Our
measured loss may not correspond exactly to the typical
user experience, because:

– The 46 accounts on 22 domains in our experiment
represent a small fraction of the worldwide email system.

– Our mix of intra- and inter-domain emails, the
sending and receiving rates per account, and even the
content (despite being derived from a real corpus), may
not match user workload.

– In our experiments, all email addresses had previ-
ously emailed each other, and thus none was a “first-time
sender” to any. First-time senders may experience higher
loss, but despite that we found significant loss.

– A user may not be aware that their email was lost.
Our experiment avoids this uncertainty by controlling
both the senders and the receivers.

IV. D ESIGN REQUIREMENTS

We believe the following properties of a solution to
email loss will lead to rapid adoption and deployment.

1) Cause minimal disruption: Rather than replace
the current system, which works for the vast majority of

email, with a new system of uncertain reliability, augment
it to improve reliability. It should inter-operate seamlessly
with the existing email infrastructure (unmodified servers,
mail relays, etc.), with additions restricted to software
running outside it (e.g. on end-hosts). Users should
benefit from the system without requiring cooperation
from their email domain administrators.

2) Place minimal demands on the user:Ideally, user
interaction should be limited only to actual instances of
email loss; otherwise, he/she should not be involved any
more than in the current email system.

3) Preserve asynchronous operation:Email main-
tains a loose coupling between senders and recipients,
providing a useful “social cushion” between them. The
sender does not know whether or when an email is
downloaded or read. Recipients do not know whether a
sender is “online”. Such asynchronous operation should
be preserved, unlike in other forms of communication
such as telephony, IM, and email “read receipts”.

4) Preserve privacy: The solution should not reveal
any more about a user’s email communication behavior
than the current system does. For instance, it should
not be possible for a user to determine the volume
or content of emails sent/received by another user, the
recipients/senders of those emails, how often that user
checks email, etc. However, as it stands today, email is
vulnerable to snooping, whether on the wire or at the
servers. We donot seek to rectify this issue.

5) Preserve repudiability: Repudiability is a key ele-
ment of email and other forms of casual communication
such as IM [14, 18]. In the current email infrastructure,
a receiver can identify the sender from the header, but
cannotprove the authorship of the email to a third-party,
unless the sender chose to digitally sign it. Any solution
to email loss should notforce senders to sign emails or
facilitate receivers in proving authorship. As an analogy,
people are often more comfortable identifying themselves
and communicating sensitive information in person than
in written communication, since the latter leaves a paper
trail with proof of authorship to a third party. Note
that PKI or PGP based authentication of email users, is
unsuitable from the viewpoint of providing repudiability.

6) Maintain defenses against spam and viruses:It
should be no easier for spam or viruses to circumvent
existing defenses or tell if an email address is valid.

7) Minimize overhead: The solution should minimize
network and compute overheads from additional mes-
saging (e.g. sendingall emails twice would significantly
overload some email servers and network pipes).

V. SUREM AIL DESIGN

SureMail is designed to satisfy the requirements listed
above. We continue to use the current email system for
message delivery, but augment it with a separate, low-
cost notification system. When a client sends an email,

it also sends a notification, which is a short, fixed-format
fingerprint of the email. We consider various notification
delivery vehicles in Section VI, including email headers
and a web service. If email loss occurs, the receiving
client gets a notification for the email but not the email
itself. After waiting long enough for missing email to
appear (Section VIII-A), it alerts the recipient user,
informing him/her about email loss from the sending user
specified in the notification. SureMail does not dictate
what action the recipient user should take at this point.
The user may ignore it or contact the sender via email,
IM, or phone, presenting the fingerprint in the notification
to help the sender find the lost email.

The bulk of the work (creating, posting, checking,
and retrieving notifications) is done automatically by
the SureMail software. The user is involved only when
a lost email is detected. SureMail allows a user to
determine if he/she is missing any emails sent to him/her.
It does not notify the sender about the status of email
delivery. Thus SureMail assures senders that either email
is delivered or the intended recipients will discover that it
is missing. While the concept is simple, there are several
key challenges that SureMail must address:

1) Prevent notifications themselves from being used
as a vehicle for spam or malware: We use very short,
64-byte, fixed-format notifications (Figure 5), which are
interpreted by the SureMail client rather than being
presented directly to the user. Section V-C has the details.

2) Avoid the need to apply spam filters on notifications:
Unlike email spam, notification spam does not directly
benefit the spammer because of the restrictive nature of
notifications noted above. However, to block bogus noti-
fications, which could annoy users (e.g., by alerting them
to the “loss” of non-existent email or spam), we present
our reply-based shared secret technique in Section V-D.

3) Prevent or minimize information leakage from no-
tifications: Information such as the fact that a particular
email address is active or that userx has emailed usery
could be sensitive even if the email content itself is not
revealed. Section VI addresses these problems.

A. Security Assumptions

1) We assume that when a recipient chooses to reply
to an email, they are implicitly indicating that the sender
of the email is legitimate. I.e., users are very unlikely to
reply to spam. We consider this unlikely possibility of a
user being tricked into replying to spam in Section V-E.

2) We assume that the attacker cannot mount a man-
in-the-middle attack (intercept and modify emails ex-
changed by a user). While we do not rule out the
possibility of eavesdropping, we believe that in practice
even this would be hard: an attacker would require access
to the path of (remote) users’ email. Furthermore, if an
attacker does gain access to user email, that compromises
user privacy more directly than subverting notifications.

3) If a separate infrastructure is used to deliver notifica-
tions, it may not be entirely trustworthy. The notification
infrastructure maytry to spy on users’ email activity (e.g.,
who is emailing whom) or generate bogus notifications.
Bogus notifications are a more serious problem than
dropped notifications (which the notification infrastruc-
ture can always cause), since the former imposes a
cognitive load on users while the latter leaves users no
worse off than with the current email system.

B. Notation

Unless otherwise stated,S andR represent the sender
and the recipient clients (and users) of an email. We
assume that all nodes agree on:(i) a cryptographic hash
function H(X) that operates on stringX to produce
a short, fixed-length digest (e.g., a 20-byte digest with
SHA1), and is pre-image and collision resistant;(ii) a
message authentication code (i.e., a keyed hash function),
MACk(X), that operates on stringX and key k to
produce a short, fixed-length digest (e.g., a 20-byte digest
with HMAC-SHA1). A MAC can be used with various
well-known keys (e.g.,k′) to generate new hash functions
(e.g.,H ′(X) = MACk′ (X)); (iii) a symmetric encryp-
tion function,Ek(X); (iv) a digital signature scheme to
produce a signed messageSIGk[X] using private keyk.

C. Notification Basics

A notification is a short, 64-byte, fixed-format structure
interpreted by software (not read by humans). This is in
contrast to rich and extensible email (e.g. attachments,
embedded HTML) that is often orders of magnitude
larger. Consequently, it is hard for an attacker to send
malware or spam in notifications. This makes it easier to
reliably deliver notifications compared to email.

To identify an email in its notification, we cannot use
theMessage-ID field contained in some email headers
because it may be set or reset beyond the sending client
(e.g., by a Microsoft Exchange server), making it inacces-
sible to the sender. So we embed a newX-SureMailID
header with a 20-byte SureMail message ID (smID),
which is unique with high likelihood.

D. Reply-based Shared Secret

A notification also needs to identify the senderS, so
that R knows who to contact for the missing email.
However, we cannot simply insertS’s email address
into the notification since that can be easily spoofed.
We instead use our reply-based shared secret scheme
which blocks spoofed or bogus notifications, protects
the identity of S, and needs no user involvement. It
automatically establishes a shared secret between two
users who have emailed each other before. We consider
the first-time sender (FTS) case in Section V-F.

Say S sends an emailM1 to R and receives a reply
M

′

1 from R. The SureMail client software atS and R

uses the corresponding SureMail message IDs,smIDM1

andsmID
M

′

1

, to perform a Diffie-Hellman exchange and
set up a shared secret,smSS1, known only toS andR.
smSS1 is computed and remembered byR’s SureMail
client automatically when userR replies to the email
(recall assumption 1 from Section V-A) and byS’s client
when it receives the reply.S can then usesmSS1 to
authenticate notifications it posts toR and to securely
convey its identity toR (and R alone). Note thatR
would have to establish a separate shared secret withS,
based on an email exchange in the opposite direction, for
notifications thatR posts toS. The notification for a new
message,Mnew from S to R is constructed as follows:

N = {T, H(smIDMnew
), H(smSS1),

MACsmSS1
(T, H(smIDMnew

))}
T is a timestamp.H(smIDMnew

) identifies the new
message.H(smSS1) implicitly identifiesS to R, andR

alone.MACsmSS1
(T, H(smIDMnew

)) proves toR that
this is a genuine notification fromS with an untampered
timestamp, since onlyS andR know smSS1.

Upon retrieving a notification, the SureMail client at
R checks to see if it is recent (based onT) and genuine
(i.e., corresponds to a known shared secret). If it is and
the corresponding email is not received soon enough (see
Section VIII-A), it alerts userR and presents S’s email
address. Old and invalid notifications are ignored.

When an email is sent to multiple recipients, a separate
notification is constructed and posted for each using the
respective reply-based shared secrets.

1) Shared Secret Maintenance:The SureMail clients
at S andR perform a Diffie-Hellman exchange to estab-
lish a shared secret only if each was the sole addressee in
an email exchange. So emails sent to multiple recipients
and those send to mailing lists are excluded.

Each node remembers two sets of shared secrets for
each correspondent: one for posting notifications and
the other for validating received notifications. These are
updated with each new email exchange.S remembers the
smIDs of all messages sent by it since the most recent
one replied to byR. Likewise,R remembers the smIDs
of all emails fromS that it had replied to (or just the
smSSs derived from such emails), since the most recent
one thatS used as a shared secret in a notification.3

This constant renewal allows the shared secret to be
reestablished if the user starts afresh, say after a disk
crash. It also helps purge a bogus shared secret, such as
when a spammer tricksR into responding to a forged
email spoofed to be fromS (see Section V-E).

2) Reply Detection:To help a client determine that
an incoming email is a reply to a prior outgoing email,

3R could instead remember a few older smSSs as well to ac-
commodate the possibility of an old notification, constructed using
an older smSS, being reordered and delivered late. Given the(slow)
human timescale of the email-reply cycle that generates a new smSS,
remembering just a few recent smSSs should be sufficient.

we include anX-SureMailInReplyTo (smIRT)
header to echo the smID of the original email. While

similar, we cannot use the “In-Reply-To” header included
by most email clients because the message ID of the
original email may not be available (see Section V-C).

E. Security Properties

The Diffie-Hellman exchange ensures that the shared
secret,smSS, betweenS and R is not known to an
attackerA that eavesdrops on the email exchange or on
the notification.A cannot learn who posted a notification
(thereby preserving privacy) or post fake notifications
deemed as valid.

However, consider a more difficult attack.A sendsR
a spoofed email that appears to be fromS and is also
realistic enough that userR is tricked into replying, thus
making R remember a bogus shared secret. IfA also
eavesdrops on the reply, it can learn this shared secret
and then post bogus notifications. However, even ifA

manages to pull off this attack once, the bogus shared
secret gets flushed out with renewals (Section V-D.1).

Unlike PKI/PGP-based systems, our reply-based
shared secret scheme does not require any human in-
volvement to set up keys. Our system also preserves the
repudiability of email (see Section IV). The shared secret
betweenS andR is not meaningful to a third party. So
althoughR can satisfy itself with the authenticity ofN
from S, it cannot useN to prove to a third party that
Mnew was sent byS. In contrast, if SureMail required
PKI/PGP,Mnew ’s author could be proved to anyone.

F. First-time Sender (FTS)

While the experiment in Section III showed email loss
in the non-FTS case, it is desirable to address the FTS
case as well. In our reply-based shared secret scheme,
a legitimate FTS, who has not exchanged email with
the recipient previously, cannot construct an authentic
notification. Although it might seem that a legitimate FTS
is indistinguishable from a spammer, in practice, there are
social or business4 links that may set apart the legitimate
FTS from a spammer. [20] shows that email networks
exhibit small-world properties and RE: [23] leverages it
to create effective whitelists. So, although the FTSF may
never have communicated with the intended recipientR,
it is likely thatF has communicated with an intermediary
I who has in turn communicated withR. For example,
I may be a colleague atR’s institution. I is thus in a
position to “introduce”F to R.

We wantF to be able post a notification thatR would
treat as authentic. In leveragingF and R’s relationship
with I, we seek to preserve privacy by preventing:(a)
I from learning thatF intends to communicate with

4Enterprise networks typically have authentication mechanisms such
as Kerberos that can validate legitimate employees.

R, (b) F from learning thatI and R have previously
communicated, and(c) R from learning thatF andI have
previously communicated. In the event that (c) cannot be
satisfied, we consider a diluted goal,(c’), which is to
preventR from learning about any ofF ’s correspondents
other than those it shares in common withF .

There has been prior work on similar problems in the
context of exchanging email whitelists. In LOAF [19],
users exchange address book information with their cor-
respondents using Bloom filters. This scheme satisfies
property (a), but not (b), (c) or (c’). RE: [23] uses a novel
friend-of-friend (FoF) approach. Using a homomorphic
encryption-based private matching protocol [22], RE:
ensures properties (a), (b), and (c’), but not (c). (However,
RE: may permit a maliciousR to violate (c’) and learn
about friends ofF that it doesn’t share in common,
per Section 6 of [23]). Our introduction mechanism also
satisfies (a), (b), and (c’), but not (c).

1) SureMail Introduction Mechanism: In our intro-
duction mechanism, every nodeI generates a public-
private key pair,(SI , PI). It shares the public (“shared”)
key, SI , with its correspondents to establish acommon
secret known only to its correspondents (the public key is
not shared with others — there is no PKI). In addition,I

generates a public-private key pair,(SIF , PIF), for each
new correspondent, sayF , which it hands toF along with
a signed token containing theF ’s email address and the
newly generated public key,SIF . So when it becomes
a correspondent ofI, F learns the common secretSI ,
the key pair(SIF , PIF) generated for it, and the token
XSF = SIGPI

[F, SIF] signed withI ’s private key,PI .
F can useSI and XSF to authenticate notifications

it posts forR, which is another correspondent ofI. A
notification fromF for an emailM sent toR is :

NFTS = {T, H(SI), EH′(SI)(T, XSF , R),
SIGPIF

[H(smIDM)], SIGPIF
[EH′(SI)(T, XSF , R)]}

H(SI) allows R to look upSI from its store of com-
mon secrets obtained from its correspondents (and dis-
card the notification if the lookup fails). It can then com-
pute the keyH ′(SI) and decryptEH′(SI)(T, XSF , R).
Note that unlike in the non-FTS construction from Sec-
tion V-D, F andR need to be identified explicitly since
there is no pairwise shared context between them. Also,
the signed tokenXSF preventsF from assuming an arbi-
trary identity, which helps defend against certain attacks
(see the security properties discussion in Section V-F.3).

After verifying the signed tokenXSF , R usesF ’s
public key to validateSIGPIF

[H(smIDM)], preventing
an attacker from tampering with the message ID. The
encrypted token,EH′(SI)(T, XSF , R), is also signed,
which among other things ties the notification down to
recipient R. This preventsR from turning around and
reusing it in a fake notification purporting to be fromF

and destined to another correspondent ofI, sayZ.
If the introduction is deemed as valid per the above

procedure,R honors the notification. Otherwise,R ig-
nores it. Of course, as a side-effect of processing a valid
notification, R also learns that bothF and itself share
I as a correspondent, which violates property (c) noted
above but is consistent with (c’).

2) Picking an Intermediary: F needs to pick an
intermediaryI whose shared secret (SI) it should use
for the introduction. We believe that it is appropriate
to rely on human input, since the FTS scenario would
occur relatively infrequently and the user atF is in
the best position to decide whichI would likely have
communicated withR and whose identity it is allowed
to leak toR. So when the SureMail client atF detects
that it is an FTS with respect toR, it prompts the user
for a recommendation of one or more intermediaries
from among F ’s correspondents. The client aids the
process by automatically listing correspondents who are
in the same email domain asR and hence are likely to
be suitable intermediaries. If the user picks more than
one intermediary, a separate notification (constructed as
NFTS above) would be posted corresponding to each.

As an alternative, we can avoid user involvement by
having F ’s client automatically post multiple notifica-
tions constructed with the shared secrets obtained from
each of its correspondents.R could then determine if any
match with its list of correspondents, and if so, deem
the introduction as valid. Since the shared secrets are
opaque tokens,R does not learn anything from the shared
secrets that originated from correspondents ofF that
are not common toR. Thus property (c’) is satisfied.
However, note that this extreme procedure generates a
notification traffic volume proportional to the number of
correspondents, as in schemes such as RE:.

3) Security Properties:The notification construction
prevents an attacker (other than a correspondent ofI),
who seesNFTS , from learning the secretSI , or iden-
tifying F or R. Furthermore, even a correspondent of
I is prevented from constructing a fake notifications
purporting to be fromF . Also, note that repudiability is
also preserved sinceF only signs the message ID using
PIF , not the message content itself.

In terms of privacy, property (a) is satisfied sinceI

is oblivious to the communication betweenF and R.
Property (c’) is also satisfied as noted above. While
property (b) is also satisfied by the protocol as described,
there is the possibility of a subtle social engineering
attack:F could post a notification forR (with I as the
intermediary) butnotsend the corresponding email. If (an
anxious)R inquires withF about the “missing” email,F
can conclude thatI and R must be correspondents (for
otherwiseR would have just ignored the notification).

However, we believe that this social engineering attack

SM Service

Client

ST Service

Front End

Scalable Backend
Storage

put get
1. Register

0. Initialize

3. Create
Queue

2. Email
handshake

4. Credentials

5. Change
Credentials

6. Post/Retrieve notifications

Fig. 4. Interaction between a client, SM, and ST. The various
operations are numbered in the order in which they are invoked. The
dashed-dotted line operation (#0) is invoked at system initialization
time. The dashed line operations (#1-#5) are invoked at the time of
client registration. The solid line operation (#6) is invoked during
normal operation, i.e., posting and retrieval of notifications.

would be hard to employ in practice. Note that for the
attack to succeed,F would have to be in a position to
receiveR’s inquiry about the missing email. However,F

cannot use a fake email identity, sayF ′, since it wouldn’t
have the correspondingXIF ′ signed byI. So F would
likely have to identify itself and run the risk of being
caught if it repeats the trick over time.

VI. D ELIVERING SUREM AIL NOTIFICATIONS

We now present two complementary approaches to
delivering notifications: in-band and out-of-band.

A. In-band Notifications

In-band notifications are embedded within emails
themselves — the notification for an email is embed-
ded later emails between the same sender-recipient pair.
SupposeS sendsR three emails:M1, M2, M3. M2

will contain the notification forM1. M3 will contain the
notifications for bothM1 and M2. If R did not receive
M1, it will find out when it receives eitherM2 or M3.
This is akin to how TCP detects a missing packet via a
sequence “hole”. Since these notifications are confined to
the email system, privacy concerns are avoided. We use
a simpler notification construction than in Section V-D.

We include an X-SureMailRecentIDs header
containing the smIDs of a small number (say 3) of emails
sent recently, allowing theR to determine if it is missing
any of those emails. Each recent smID is repeated in
more than one subsequent email, which provides some
tolerance to the loss of consecutive emails.

S also includes anX-SureMailSharedID header
containing a reply-based shared secret (the smID
of an earlier email it had sent and thatR had
replied to). Upon receiving a new email,R uses the
X-SureMailSharedID field to check its validity and
thenX-SureMailRecentIDs to check if it is missing
any email. This prevents a spammer from subverting loss
detection. For an FTS,X-SureMailSharedID instead
containsH(SI) (Section V-F.1).

Despite its ease of deployment and simplicity, in-band
notifications have a disadvantage. Loss detection can only
be as fast as the frequency of email exchange betweenS

and R. Furthermore, consecutive email loss can further
delay loss notification.

B. Out-of-band Notifications

In contrast,out-of-band(OOB) notifications are deliv-
ered via a channel that is separate from the SMTP-based
email system. This decouples notification delivery from
the vagaries of the email system. The detection of email
loss does not have to wait for the receipt of a later email.

The OOB channel can be viewed as a storage system
to which notifications are posted and from which they are
retrieved using a (synchronous) put/get interface. Such a
channel could be realized using, for example:

• A distributed hash table (DHT) overlaid on clients.
• A storage service such as OpenDHT [28] or com-

mercial services such as Amazon’s SQS [1].
• Dedicated notification servers for each domain to

receive notifications intended for the domain’s users.

We choose a design that builds on cheap, large-scale
Internet-accessible storage services since these are in-
creasingly becoming available (e.g., Amazon’s SQS [1]).
The simplicity of notifications and the synchronous post-
ing of notifications (both in contrast to email) mean that
the sender has a very high degree of assurance (equal
to the reliability of the storage system itself) that its
notification will be delivered to the recipient.

We decompose the OOB notification system into two
components: a SureMail-specific service (SM) for the
control path (e.g., handling the registration of new Sure-
Mail users) and a relatively generic storage service (ST)
for the data path (e.g., handling the posting and retrieval
of notifications). Figure 4 shows how they interact. We
assume that SM and ST are operated by separate, non-
colluding entities. ST can directly leverage a generic stor-
age service. However, for full functionality, we identify
a few additional capabilities and APIs we need beyond
the standard put/get interface of existing storage systems.
We believe they are useful for other applications as well.

The separation of SM and ST has several benefits.
All of the relatively heavyweight data path workload
is confined to ST, which leverages existing scalable
storage services built for Internet-scale applications. The
SureMail-specific SM handles the relatively lightweight
control path workload, which makes it easier to build
and operate. Furthermore, SM holds minimal state and
is thus easy to scale with increasing load. Administra-
tive separation between SM and ST means that neither
component is in a position to learn much about the
email behavior of users, even if individually they are
not entirely trustworthy (Section V-A). SM knows user
identities but does not see their notification workload.
The converse is true for ST.

1) SureMail Service (SM):SM handles the registra-
tion of new SureMail users. This is needed to(a) prevent

users from accessing notifications posted for others (e.g.,
to monitor their volume), and(b) detect and block DoS
attacks. Except where noted, operations on a user’s behalf
are performedautomaticallyby their SureMail client.

As the first step, a new SureMail user’s client contacts
SM, giving the email address of the registering user
(U). SM performs an email-based handshake (i.e., sends
back an email to this address) to verify that the client
“owns” the email address it is trying to register. (This
is a commonly-used procedure for authenticating users,
e.g., when they sign up for online services [24].) Note
that this relatively heavy-weight email-based handshake
is invoked just once, at the time of initial registration. If
the challenge-email itself is lost, the client can retry.

To block registration attempts by automated bots, SM
also returns a human-interactive proof (HIP) [6] to the
new user and verifies the answer before proceeding. In
this process, SM and the client establish a key,kU , that
is unique to the email address being registered and serves
as the user’s credentials. SM then contacts ST to create
a queue to hold notifications sent to userU .

For reasons given in Section VI-B.2,kU is constructed
to be self-certifying — it is of the form(x, MACz(x)),
where the keyz used in the MAC is known only to
ST, but not to SM or the clients. ST supplies new, valid
credentials to SM, as needed, to pass on to new clients.

As explained further below, the notification queue for
userU is set up to allow other users to post notifications
for U but requires a key for reading these notifications.
SM sets this key tokU at the time it creates the queue
for U . Possession of this key enables userU ’s client to
directly talk to ST to change the key associated with its
queue tok

′

U
. Doing so prevents SM from snooping on

its notifications (described in Section VI-D).
Clients renew their registrations periodically, say once

a month. Renewal requires solving a new HIP. The email-
based handshake and queue creation are not repeated.
Renewal serves two purposes. First, it allows the system
to “forget” users who have stopped using it, thereby
reclaiming the corresponding resources (their storage
queue). Second, it is harder for an attacker to steadily
build up a large set of bogus registrations; the attacker
would have to do work (solve a HIP) each time a
registration expires. We believe that solving a HIP, say
once a month, would not be a burden for legitimate users.

2) Storage Service (ST):ST manages the notification
queues for users. It is oblivious of notifications them-
selves and treats them as opaque objects. It allows users
to post and retrieve notifications using an interface similar
to standard put/get interfaces, but with a few extensions.

First, it supports an administrative interface, which (in
SureMail) only allows SM to create queues for new users.
It also allows the admin to specify workload limits to
block DoS attacks, as we explain below. Second, the

queues provided by ST support authenticated read but
allow unauthenticated writes. This is in contrast to the
usual practice of authenticating writes alone or both reads
and writes. ST also allows the read-key associated with
a queue to be changed by presenting the current key.

We now turn to the construction and operation of ST.
This service has a front end (FE) that communicates with
clients and a back end (BE) that provides storage service.
When it receives a client request, the FE typically invokes
one or more operations on the BE. The FE only holds
soft state, so it easy to scale out to keep up with load.

At user registration, SM calls on ST to create a
notification queue for the user. The read-key for this
queue is initially set tokU . The user’s client then contacts
ST to change the key tok

′

U
. This completes registration

and the user is then in a position to receive notifications
from others and post notifications for others. When a
client posts or retrieves notifications for/toU , the FE
invokes aput() or get() operation on the corresponding
queue in the BE. The client identifies the queue using
H(U), so ST does not directly learnU ’s identity.

Despite the small size and lightweight processing of
notifications, a DoS attack aimed at overwhelming the
computational or storage resources of ST remains a possi-
bility. To defend against this, SM, at system initialization
time, specifies a limit on the rate of notification postings
by a sender (e.g., the maximum number that can be
posted in a day) and the maximum storage allowed for
notifications posted by the sender (e.g., the sum of the
time-to-live (TTL) values of posted notifications). It also
specifies a limit on the frequency of notification retrievals
by a recipient, which is enforced using a procedure
analogous to the case of notification posting discussed
here. ST does not enforce these limits under normal
(i.e., non-attack) conditions. However, if it suspects an
attack (e.g., its load is high or its storage resources are
being depleted rapidly), ST enforces the per-sender limit
by dropping any excess notifications. We discuss the
implications of such dropping in Section VI-B.3.

To enforce per-sender limits, ST needs to identify
senders in a way that is resilient to cheating. We require
any client,U , that is posting or retrieving notifications
to include, with its request, the original key (kU) that it
had obtained from SM at the time of registration. The
HIP mechanism presents a barrier to bogus registrations
on a large scale. When a client request arrives, the FE of
ST first performs a quick stateless check to verify that
the key is well-formed (recall from Section VI-B.1 that
kU is self-certifying), discarding the request if it isn’t.
Otherwise, the FE queries and updates workload/resource
usage information forU in the BE and checks if any
limits have been exceeded. If any have been,U ’s identity
is pushed out to all FE nodes (as soft state, say for the
rest of the day), to block further requests fromU without

the need for the more expensive BE lookups.
3) DoS Defense and System Scalability:First, we

consider the load placed on ST as notifications are posted
and retrieved, assuming the quota checks are being per-
formed. The posting or retrieval of a notification involves:

a) Verifying that the presented key is well-formed and,
if appropriate, filtering notification postings from senders
who have exceeded workload limits.

b) Retrieving the workload information for the re-
quester, checking whether any limits have been exceeded,
and storing back the updated workload information. If
any limits have been exceeded, the sender is blocked and
its identity is pushed out to all FE servers.

c) Storing the new notification in the case of a posting,
or fetching notifications in the case of a retrieval.

Under normal operation, only step #c is performed,
which involves a singleput() for a posting or a single
get() for a retrieval. When the system is under heavy
load or attack, steps #a and #b are also invoked. However,
we expect much of the attack traffic to be filtered in #a,
either because the keys are not well-formed or because
the sender has already been blocked. Note that #a is
performed at the FE and does not require accessing the
storage layer itself. While #b does require an additional
get() and put(), we could reduce the load significantly
by performing it infrequently, say once every 10 post-
ing/retrievals picked at random, and scaling the workload
limits accordingly. Thus even when the system is under
attack, the load on ST is not much more than oneput()
or get() per posting/retrieval.

A second issue is what the notification workload limits
should be set to. If we set a (generous) limit of 1000
notifications per sender per day and an average TTL
of 10 days, then at any point in time, ST would have
up to 10,000 notifications posted by a sender. Each
notification is 64 bytes in size (Section VII). This is a
maximum storage of 625 KB per sender. So an ST with
1 TB of storage would support 1.72 million users. Using
Amazon’s S3 pricing [1] (storage rate is US $0.15 per GB
per month and transfer rate of $0.20 per GB), it would
cost a modest $1383 per month ($154 for storage, $1229
for transfer), or about US $0.0008 per user per month.
In practice, most users may generate far fewer than 1000
notifications per day, driving costs down even further.

These calculations also suggest that it would be chal-
lenging for an attacker to consume a significant fraction
of the storage resources. For instance, to consume 50%
of the storage resources, the attacker would have to
masquerade as over 0.8 million different senders, each
of which would have had to register with the SM service
and get past the HIPs.

Since the workload limits are only enforced when the
system is under attack, the system is flexible in terms of
the volume and the TTL of notifications under normal

operation. For instance, the relatively small number of
legitimate high-volume senders (such as credit card com-
panies emailing monthly bills) can each post well over
1000 notifications per day without impacting the overall
system load. Likewise, a client could choose to set the
TTL for a notification to much longer than 10 days.

However, when the system is under attack and starts
enforcing the limits, high-volume senders will have their
attempts to post notifications temporarily blocked. To get
around this, such senders would have to set up multiple
registrations with SM. In any case, notifications from
typical (i.e., low-volume) senders, who presumably con-
stitute the overwhelming majority, would be unaffected
even when workload limits are being enforced. Bogus
notifications that are part of the attack are still not
presented to the user due to our shared secret scheme.

C. Combining In-band and Out-of-Band Notifications

Since both in-band and out-of-band notifications have
their advantages, our design incorporates both. In-band
notifications are cheap and do not expose any information
beyond the email system. Thus, we use these as the first
line of defense. If an email is replied to (i.e., implicitly
ACKed), there would be no reason to post an OOB
notification for it. Likewise, if a NACK is received for
an email (e.g., a bounceback is received or the recipient
has already complained about the email being missing,
say based on an in-band notification), again there isn’t
the need to post an OOB notification for the original
email. If neither has occurred after some duration, we
need to post an OOB notification, which is likely to be
more reliable than an in-band notification. Analysis of the
email behavior of 15 users at Microsoft suggests holding
off for about 10 hours (to accommodate 75% of email
replies (i.e., ACKs) for this set of users).

D. Privacy Implications of SureMail Notifications

In-band notifications do not impact privacy by design,
so we focus here on OOB notifications. Our design
prevents users from accessing the notification queues of
other users because they do not have access to the read
key for the corresponding queue (Section VI-B.2).

SM is similarly also blocked because it does not
possess the read key after the user has updated it (i.e.,
changed it fromkU to k

′

U
per Section VI-B.2). Recall also

from Section VI-B that SM and ST are assumed to be
non-colluding. SM could try to cheat by changingkU to
a k

′

U
of its own choosing at the time of initial registration

(or by doing so for arbitrary users who may have not even
tried to register). However, doing so would prevent the
legitimateU from successfully completing its registration
and hence it would opt out of SureMail, leaving SM with
access to an unused notification queue.

ST has access to the notifications. However, since it
does not possess the reply-based shared secret between a

pair of users, it is unable to interpret them. Furthermore,
notifications forU are posted toH(U), so ST does not
have direct access toU ’s identity. While, ST could try to
reverse the one-way hash for users in its dictionary, this
would only allow it to learn the volume of notifications
posted to those users, not who posted them or what
the corresponding email content is. We believe that
volume information alone is not very sensitive because
of notification spam or the user themselves posting fake
notifications to “pad” their queue, without ST being any
the wiser. Also, ST can be prevented from gleaning
information from client IP addresses using anonymous
communication (e.g., Crowds), if a client so desires.

VII. I MPLEMENTATION AND EVALUATION

We discuss ST & SM services to support OOB notifica-
tions and a client that also supports in-band notifications.

A. Storage Service (ST)

ST comprises a front-end that implements the exten-
sions from Section VI-B.2, and Amazon’s S3 & SQS web
services as the backend. SQS [1] allows multiple values
to be posted for a key and so is used for the notification
queues. The simpler hash table like interface of S3 [2] is
used for other persistent information (e.g., usage stats.).

1) Front-end Shim (FE): Our FE is a multi-threaded
C++ program that processes requests from SM (to create
queues for new users) as well as clients (to update
their credentials and to post/retrieve notifications). Upon
receiving a request, FE validates the credentials pre-
sented, updates usage statistics in S3 and checks against
workload limits, and posts/retrieves information to/from
S3 or SQS, as needed. Communication with the storage
backend is secured with an access key known only to FE.

FE processing involves low overhead operations to
receive/send client messages, unpack/pack the messages,
and perform keyed SHA1 hashes (to check that creden-
tials are well-formed). Ignoring the high network latency
to the BE (since the FE and BE were not co-located in
our setup), our prototype performed over 9000 operations
per sec. of notification posts/retrievals, while saturating
one core on a dual-core 3.0 GHz Pentium D with 2 GB
of RAM. The FE does not hold any hard state and can
easily be replicated to support higher request rates, so
the scalability and reliability of the storage backend is
not hampered by the additional functionality of the FE.

2) Storage Backend (BE):Based on a conversation
with the designers of Amazon’s S3 and SQS, we learned
that both systems replicate data across storage nodes
within the same data center as well as across different
data centers. Upon failure of any node or data center,
the data is re-replicated. The system is designed to meet
99.99% availability. However, the designers did indicate
the reliability target other than to “never lose data”.

Queues 44
Notifications posted 207752
Notifications retrieved 207747
Reliability 99.9976%

TABLE VI. Notification Storage Experiment Results

During email loss experiment 3 in Table I, we eval-
uated the suitability of SQS as the notification storage
backend. For each email sent, we pushed a corresponding
notification onto the SQS queue for the recipient. We
did not route requests via the FE prototype during this
experiment. We periodically retrieved the notifications
from each queue, clearing out the queue in the process.
Our findings are summarized in Table VI. The 4-nines
reliability achieved is 500x better than that of email itself
in the same experiment (Table I). So we conclude that the
SQS storage backend available today is quite reliable for
our purposes. (The 5 notifications lost had been posted
to 4 different queues within a 30-minute window.)

B. SureMail Service (SM)

SM is a multi-threaded C++ program that processes
SureMail client registrations. On receiving a registration
request, SM returns a HIP to the client over the same TCP
connection. It also emails a randomly generated password
string to the email address the client is attempting to
register. At a later time, when the client returns this pass-
word and the HIP answer in a registration confirmation
message over a new TCP connection, SM creates a queue
for the user by contacting ST and returns the well-formed
user credentials (obtained from ST) to the client.

C. SureMail Client

We have implemented a standalone C++ client that
interacts with both SM and ST as noted above. We have
used this for testing and for benchmarking. Figure 5
shows the binary format of a post notification message.
The notification itself (which is what is stored by ST) is
64 bytes long but is embedded in a 124-byte message.

We have also implemented a C#-based add-in for
Microsoft Outlook 2003 to enable real use of SureMail.
Our add-in uses the Outlook Object Model (OOM) [7]
interface to intercept various events (e.g., email send,
receipt, reply) and the Messaging API (MAPI) [25]
to add x-headers. For compactness, we coalesce the
various x-headers from Section VI-A into a single
X-SureMailheader that includes the message ID, re-
cent IDs, in-reply-to ID, and shared secret. As of publica-
tion, the add-in implements the reply-based shared secret
scheme and supports in-band notifications. Support for
OOB notifications in this add-in is in progress.

VIII. D ISCUSSION

A. When Should the Recipient be Alerted to Loss?

A SureMail notification could arrive a few moments
before the respective email. During that time, the email

Byte 0 Byte 1 Byte 2 Byte 3
Version PktType PktSize TTL

CredX (4 rows = 16 bytes)
CredY (5 rows = 20 bytes)
H(RecptEmailAddr) (5rows)

Timestamp (T)
H(smIDMnew

) (5 rows)
H(smSS1) (5 rows)

MACsmSS1
(T, H(smIDMnew

)) (5 rows)

Fig. 5. Post Notification Message Format: The top half contains the
credentials and the key under which the notification (bottomhalf) is to
be stored (see Sections V-D and VII-A).

is merely delayed and not lost, and thus the receiver
should not be falsely alerted to email loss. For each of
the 138,944 emails sent in Experiment 1 (Section III), we
calculate the end-to-end delay from when it was sent by
our program to the timestamp inserted by the receiving
account’s email server. Almost a third of the non-lost
emails have slightly negative delays, due to the lack of
clock synchronization between our sender and recipient
MTAs. Of the rest, the median delay is 26 seconds, mean
is 276 seconds, standard deviation is 55 minutes, and
maximum is 36.6 hours. Thus we believe 2 hours is an
appropriate duration to wait before alerting the user.

B. Should Emails also be Delivered via SureMail?

Emails themselves shouldnot be delivered via the
SureMail OOB channel because doing so would funda-
mentally alter the nature of the channel. The rich and
extensible nature of email would necessitate filtering to
block malware, which is not needed with our tiny, fixed-
format notifications. Emails also tend to be much larger
and so would impose a far greater overhead on the OOB
channel. The median email size (including attachments)
across 15 user mailboxes we analyzed at Microsoft was
4 KB and the 95th percentile was 44 KB. In contrast,
our notification payload is 64 bytes (Section VII).

C. Supporting Email Lists, One-Way Communication

There are cases such as mailing lists and one-way
communication (e.g., email bank statements) where the
normal reply-based handshake may not work. Instead,
we could have a shared secret be set up, say via the
usual email address validation handshake at sign-up. For
a mailing list, this shared secret could be shared across all
members and a common list-wide queue used for posting
and retrieving notifications. In the bank case, the shared
secret would be unique for each user and notifications
would be posted to the individual user queues.

IX. C ONCLUSION

Our measurement study shows that on average, 0.71%
to 1.02% of email is lost silently. We have designed
and prototyped SureMail. It complements the current
email infrastructure and increases reliability by notifying
recipients about email loss. This notification provides sig-
nificant user value because the informed user can contact

the identified sender for the missing information, say
over phone or IM. SureMail supports in-band and out-of-
band notifications with no changes to the existing email
infrastructure and without PKI/PGP. It places minimal
cognitive load on users. It includes mechanisms to defend
against notification spam and breaches to user privacy. In
our evaluation, SureMail ensured that silent email loss
was detected with99.9976% reliability.

ACKNOWLEDGEMENTS

We thank H. Balakrishnan (MIT), P. Barford (Wisconsin), C.
Dovrolis (GaTech), R. Govindan (USC), S. Keshav (Waterloo), L. Qiu
(UT Austin), J. Rexford (Princeton), H. Schulzrinne (Columbia), D.
Veitch (Melbourne), and L. Zhang (UCLA) for helping us obtain email
accounts for our experiments.

REFERENCES

[1] Amazon Simple Queue Service.http://aws.amazon.com/sqs.
[2] Amazon Simple Storage Service.http://aws.amazon.com/s3.
[3] AOL Missing Email Self Help.

http://postmaster.info.aol.com/selfhelp/mbrmissing.html.
[4] AOL Whitelist Information.http://postmaster.info.aol.com/whitelist.
[5] ePOST Serverless Email System.http://www.epostmail.org/.
[6] Human Interactive Proofs.http://www.aladdin.cs.cmu.edu/hips/.
[7] Outlook Object Model. http://msdn2.microsoft.com/en-

us/library/ms268893.aspx.
[8] Pivotal Veracity. http://www.pivotalveracity.com/.
[9] Sender policy framework (SPF).http://www.openspf.org/.

[10] Silent Email Loss by EarthLink.
http://www.pbsf/cringely/pulpit/2006/pulpit20061201001274.html.

[11] Spamassassin.http://spamassassin.apache.org/.
[12] U.C. Berkeley Enron Email Analysis Project.

http://bailando.sims.berkeley.edu/enronemail.html.
[13] Vipul’s razor. http://razor.sourceforge.net/.
[14] B. Adida, S. Hohenberger, and R. Rivest. Fighting phishing

attacks: A lightweight trust architecture for detecting spoofed
emails. InDIMACS Wkshp on Theft in E-Commerce, April 2005.

[15] M. Afergan and R. Beverly. The State of the Email Address. ACM
CCR, Jan 2005.

[16] S. Agarwal, D. A. Joseph, and V. N. Padmanabhan. Addressing
email loss with SureMail: Measurement, design and evaluation.
In Microsoft Research Tech. Report MSR-TR-2006-67, May 2006.

[17] S. Agarwal, V. N. Padmanabhan, and D. A. Joseph. SureMail:
Notification overlay for email reliability. InACM HotNets-IV
Workshop, Nov 2005.

[18] N. Borisov, I. Goldberg, and E. Brewer. Off-the-recordcommu-
nication, or, why not to use PGP. InACM WPES, 2004.

[19] M. Ceglowski and J. Schachter. Loaf.http://loaf.cantbedone.org/.
[20] H. Ebel, L.-I. Mielsch, and S. Bornholdt. Scale-free topology of

e-mail networks.Physical Review E66, Feb 2002.
[21] R. Fajman. An Extensible Message Format for Message Dispo-

sition Notifications.RFC 2298, IETF, Mar 1998.
[22] M. Freedman, K. Nissim, and B. Pinkas. Efficient private

matching and set intersection.EUROCRYPT, 2004.
[23] M. J. Freedman, S. Garriss, M. Kaminsky, B. Karp, D. Mazieres,

and H. Yu. Re: Reliable email.USENIX/ACM NSDI, May 2006.
[24] S. L. Garfinkel. Email-based identification and authentication: An

alternative to PKI?j-IEEE-SEC-PRIV, Nov/Dec 2003.
[25] I. D. la Cruz and L. Thaler.Inside MAPI. Microsoft Press, 1996.
[26] A. Lang. Email Dependability. Bachelor of EngineeringThe-

sis, The University of New South Wales, Australia, Nov 2004.
http://uluru.ee.unsw.edu.au/

˜
tim/dependableemail/thesis.pdf.

[27] A. Mislove, A. Post, C. Reis, P. Willmann, P. Druschel, D. Wal-
lach, X. Bonnaire, P. Sens, and J. Busca. POST: A Secure,
Resilient, Cooperative Messaging System.HotOS, May 2003.

[28] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy,
S. Shenker, I. Stoica, and H. Yu. OpenDHT: A Public DHT
Service and Its Uses.SIGCOMM, Aug 2005.

