
VERIFYING CONCURRENT C 

PROGRAMS WITH

VCC, BOOGIE AND Z3



VCC

 VCC stands for Verifying C Compiler

 developed in cooperation between RiSE group at
MSR Redmond and EMIC

 a sound C verifier supporting:

 concurrency

 ownership

 typed memory model

 VCC translates annotated C code into BoogiePL

 Boogie translates BoogiePL into verification conditions

 Z3 (SMT solver) solves them or gives couterexamples

Research in Software 
Engineering

European Microsoft 
Innovation Center,

Aachen



HYPERVISOR

 current main client:

 verification in cooperation between EMIC, MSR 
and the Saarland University

 kernel of Microsoft Hyper-V platform

 60 000 lines of concurrent low-level C code 
(and 4 500 lines of assembly)

 own concurrency control primitives

 complex data structures



VCC WORKFLOW

Annotate C code

Compile with 
regular C compiler

Verify with 
VCC

erified ExecutableError

Inspect counterexample 
with Model Viewer

Fix code or specs
with VCC VS plugin

Timeout

Inspect Z3 log
with Z3 Visualizer



OVERVIEW

 naive modeling of flat C memory means 
annotation and prover overhead

 force a typed memory/object model

 information hiding, layering, scalability

 Spec#-style ownership

 + flexible invariants spanning ownership domains

 modular reasoning about concurrency

 two-state invariants



PARTIAL OVERLAP

When modeling memory as array of bytes,
those functions wouldn’t verify.

void bar(int *p, int *q)

requires(p != q) 

{

*p = 12;

*q = 42;

assert(*p == 12);

}

void foo(int *p, short *q)

{

*p = 12;

*q = 42;

assert(*p == 12);

}

p q



VCC-1: REGIONS

In VCC-1 you needed:

void bar(int *p, int *q)

requires(!overlaps(region(p, 4), region(q, 4))) 

{

*p = 12;

*q = 42;

assert(*p == 12);

}

 high annotation overhead, esp. in invariants

 high prover cost: disjointness proofs is something 
the prover does all the time



TYPED MEMORY

 keep a set of disjoint, top-level, typed objects

 check typedness at every access

 pointers = pairs of memory address and type

 state = map from pointers to values

struct A { 

int x;

int y;

};

struct B { 

struct A a; 

int z; 

};

x

y

z

⟨42, A⟩

⟨42, int⟩

⟨42, B⟩

⟨46, int⟩

⟨50, int⟩

a



REINTERPRETATION

 memory allocator and unions need to change
type assignment

 allow explicit reinterpretation only on top-level 
objects

 havoc new and old memory locations

 possibly say how to compute new value from old 
(byte-blasting) [needed for memzero, memcpy]

 cost of byte-blasting only at reinterpretation



DISJOINTNESS WITH

EMBEDDING AND PATH

if you compute field adress

the field is typed

the field is embedded
in the object (unique!)

the only way to get to 
that location is through 

the field

(within a 
typed object)



WRITES COMMUTE BY ...

int *p, *q;

short *r;

struct A { int x, y; } *a;

struct B { int z; } *b;

a->x a->y

b->z

*p

*q

*r

p != q

path(...)

emb(...)

type



BITFIELDS AND FLAT UNIONS

struct X64VirtualAddress {

i64 PageOffset:12; // <0:11>

u64 PtOffset : 9; // <12:20>

u64 PdOffset : 9; // <21:29>

u64 PdptOffset: 9; // <30:38>

u64 Pml4Offset: 9; // <39:47>

u64 SignExtend:16; // <48:64>

};

union X64VirtualAddressU {

X64VirtualAddress Address;

u64 AsUINT64;

};

union Register {

struct { 

u8 l;

u8 h;

} a;

u16 ax;

u32 eax; 

};

 bitfields axiomatized on integers

 select-of-store like axioms

 limited interaction with arithmetic



TYPED MEMORY: SUMMARY

 forces an object model on top of C

 disjointness largely for free

 for the annotator

 for the prover

 at the cost of explicit reinterpretation

 more efficient than the region-based model



VERIFICATION METHODOLOGY

 VCC-1 used dynamic frames

 nice bare-bone C-like solution, but...

 doesn’t scale (esp. when footprints depend on 
invariants)

 no idea about concurrency



invariants 
depend on 
ownership 

domain

SPEC#-STYLE OWNERSHIP

open object,
modification allowed

closed object
invariant holds

owner link

system invariant:

+ hierarchical 
opening



SEQUENTIAL OBJECT

LIFE-CYCLE

open

closed

mutable

wrapped nested

wrap

wrap owner

unwrap owner

wrap/unwrap
grand-owner

thread-owned

unwrap
object can be 

modified

invariant 
holds



PROBLEMS

 for concurrency we need to restrict changes to shared 
data

 two-state invariants (preserved on closed objects 
across steps of the system)

 updates on closed objects

 but how to check invariants without the hierarchical 
opening?

 even in sequential case invariants sometimes need to 
span natural ownership domains

 for example...



SYMBOL TABLE EXAMPLE

struct SYMBOL_TABLE {

volatile char *names[MAX_SYM];

invariant(forall(uint i; old(names[i]) != NULL ==>

old(names[i]) == names[i]))

};

struct EXPR {

uint id;

SYMBOL_TABLE *s;

invariant(s->names[id] != NULL)

};

Invariants of syntax tree nodes depend on the symbol table, but they 
cannot all own it!

But in reality they only depend on the symbol table growing, which is 
guaranteed by symbol table’s two-state invariant.

typical for 
concurrent 

objects



ADMISSIBILITY

The idea:

 check that all invariants are admissible 

 in separation from verifying code

 when updating closed object, check only its 
invariant

By admissibility we know that all other invariants are 
also preserved

An invariant is admissible if updates of other objects (that 
maintain their invariants) cannot break it.

generate 
proof 

obligation



SYSTEM INVARIANTS

Two-state invariants are OK across system transitions:

Things that you own are closed and have the owner set to you:



SEQUENTIAL ADMISSIBILITY

 non-volatile fields cannot change while the object 
is closed (implicitly in all invariants)

 if you are closed, objects that you own are closed 
(system invariant enforced with hierarchical 
opening)

 if everything is non-volatile, “changes” preserving 
its invariant are not possible and clearly cannot 
break your invariant

 the Spec# case is covered

An invariant is admissible if updates of other objects (that 
maintain their invariants) cannot break it.



HOW CAN EXPRESSION KNOW

THE SYMBOL TABLE IS CLOSED?

 expression cannot own symbol table (which is 
the usual way)

 expression can own a handle (a ghost object)

 handle to the symbol table has an invariant that 
the symbol table is closed

 the symbol table maintains a set of outstanding 
handles and doesn’t open without emptying it 
first 

 which makes the invariant of handle admissible



HANDLES

struct Handle {

obj_t obj;

invariant(obj->handles[this] && closed(obj))

};

struct Data {

bool handles[Handle*];

invariant(forall(Handle *h; closed(h) ==> 

(handles[h] <==> h->obj == this)))

invariant(old(closed(this)) && !closed(this) ==> 

!exists(Handle *h; handles[h]))

invariant(is_thread(owner(this)) || 

old(handles) == handles || 

inv2(owner(this)))

};



CLAIMS

 inline, built-in, generalized handle

 can claim (prevent from opening) zero or more objects

 can state additional property, much like an invariant

 subject to standard admissibility check (with added 
assumption that claimed objects are closed)

 checked initially when the claim is created

 allow for combining of invariants

 everything is an object! even formulas.



LOCK-FREE ALGORITHMS

struct LOCK {

volatile int locked;

spec( obj_t obj; )

invariant( locked == 0 ==> obj->owner == this )

};

int TryAcquire(LOCK *l spec(claim_t c))

requires(wrapped(c) && claims(c, closed(l)))

ensures(result == 0 ==> wrapped(l->obj))

{

int res, *ptr = &l->locked;

atomic(l, c) {

res = InterlockedCmpXchg(ptr, 0, 1);

// inline: res = *ptr; if (res == 0) *ptr = 1;

if (res) l->obj->owner = me;

}

return res;

}

havoc to simulate 
other threads; 

assume invariant 
of (closed!) lock

check two-state 
invariant of 

objects modified

pass claim to make sure 
the lock stays closed (valid)

Verified locks, 
rundowns, 

concurrent stacks, 
sequential lists...



Heap partitioned into:

 ownership 
domains of 
threads

 shared state

HEAP PARTITIONING

owns

x

y

owns

foo

bar

owns

owns

next

owns

baz

owns

x

y

owns

next

owns

next

owns

baz1

baz2

thread

owns

foo

threads are also 
considered objects

“owns” is inverse of the 
owner link and can be 

marked “volatile”

volatile

non-volatile



CONCURRENT MEETS

SEQUENTIAL

 operations on thread-local state only performed 
by and visible to that thread

 operations on shared state only in 
atomic(...){...} blocks

 effects of other threads simulated only at the 
beginning of such block

 their actions can be squeezed there because they 
cannot see our thread-local state and vice versa

 otherwise, Spec#-style sequential reasoning



SEQUENTIAL FRAMING

thread

havoc

possibly
modified

explicitly
in domain

writes

also for 
claims!



WHAT’S LEFT TO DO?

 superposition – injecting ghost code around an atomic 
operation performed by a function that you call

 we only went that low

 address manager/hardware <=> flat memory

 thread schedules <=> logical VCC threads

 annotation overhead

 performance!

 VC splitting, distribution

 axiomatization fine tuning, maybe decision procedures



THE END

 questions?


