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Abstract 

Developers often find themselves lost as they navigate 
around large programs, particularly when those pro-
grams are unfamiliar. This paper presents a new visu-
alization, called a software terrain map, intended to 
keep a programmer oriented as she navigates around 
source code in the editor. The design is based on the 
metaphor of cartographic maps, which are continuous 
(no wasted space), have enough visual landmarks to 
allow the user to find her location perceptually rather 
than cognitively, and lend themselves to overlaying 
data. Although an optimal layout for software terrain 
maps is computationally intractable, the paper presents 
an efficient, heuristic algorithm that produces good 
results. 

1 Introduction 

In our recent study in which experienced developers 
attempted to enhance an unfamiliar program, the par-
ticipants consistently got lost in the source code. [1] 
They typically explored the code by opening and scan-
ning many documents, by jumping back and forth 
among related definitions, and by iterating over the 
result sets of text searches. Despite their years of ex-
perience and their familiarity with the programming 
language, development environment, and problem do-
main, these navigation steps would quickly leave them 
disoriented. Many times, a participant would issue a 
new query to find a previously visited definition, and in 
a few cases, a participant would even inspect a previ-
ously visited definition and not recognize it. 

Such disorientation is easy to understand. A typical 
program is very uniform in visual appearance and relies 
heavily on names to distinguish its parts. A typical de-
velopment environment, like Visual Studio or Eclipse, 
also relies on names in its overview displays, like the 
tree of project files and the type hierarchy. Hence, stay-
ing oriented while navigating a program requires famili-
arity with its names, which places a large burden on 
both short- and long-term memory. In this paper, I de-
scribe a new display, intended to allow the programmer 
to use her spatial memory to stay oriented while navi-
gating the source code. 

To keep the user oriented during code navigation, I 
propose supplementing the development environment 

with an overview diagram to show the programmer’s 
current location in the program (“you are here”) and 
recent navigation steps (a vapor trail). In addition to 
reflecting the user’s navigation in the editor, the over-
view would also allow navigation. For instance, clicking 
on the overview would also cause the editor to show the 
corresponding part of the code. The intent is to allow 
the programmer to use spatial memory to navigate to 
sought parts of the program. To realize this intent, sev-
eral desiderata seem reasonable: 
1. The display should show the entire program. That 

is, whatever definition the programmer navigates to 
in the editor should have a representation at a rea-
sonable level of detail in the display. Hence, the use 
of elision or abstraction to scale to large programs 
would not be appropriate. Elision would cause 
some navigation steps to be “off the map,” while 
abstraction would cause a navigation step within an 
abstracted part of the program to appear as non-
movement in the overview display. 

2. The display should contain enough visual land-
marks to allow the developer to find parts of the 
program perceptually, rather than relying on names 
or other cognitive cues. For instance, to find Rome 
on a map of Europe, I scan for Italy’s famous boot 
shape rather than reading for the word Italy. An 
overview display of software should have similar 
visual landmarks. 

3. The display should remain visually stable as the 
user navigates. If the display’s content were to 
change as much as the editor’s while the user navi-
gates around the program text, it would provide lit-
tle help in keeping the user oriented. Further, edit-
ing the program text should cause proportional 
changes to the display. 

4. Finally, to justify the additional screen space 
needed for the display, the display should be capa-
ble of showing global program information other 
than navigation steps. For instance, we might use 
the display to show program execution paths, like 
the call stack when an exception is raised or the hot 
path that a profiler reports, or to show team aware-
ness data, like which developers are currently 
working on which parts of the program. 

 
These desiderata mean that several popular technologies 
are not suitable for such a display. UML class diagram 



  

 

Figure 1. The software terrain map of a library for analyzing .NET bytecode. Each of the 3800 regions is a 
method, whose size is proportional to the method’s textual size (one tile for every two lines of code). Each 
class has its own shade of green. The highlighted (yellow) method is the one that the user is currently read-
ing in the editor. The arrows show the program’s execution path up to the current debugger breakpoint. 
 

and other box-and-line architectural diagrams, for in-
stance, are not good candidates. First, they are often 
drawn at an inappropriately high level of abstraction or 
elide parts of the program to keep the diagrams small. A 
developer working on an object-oriented program navi-
gates among and edits individual class members. Hence, 

to provide a location marker while remaining visually 
stable, the display must show every member in the pro-
gram all at once. This would be difficult to do with a 
UML class diagram. Second, such diagrams are visually 
uniform, particularly when they include many boxes. 
Distinguishing the boxes is more easily accomplished 



  

by reading their labels than by relying on visual cues 
like box position or the topology of edges between 
boxes. 

A popular technique for scaling complex informa-
tion to fit the screen is to use a detail-within-context 
display, like fisheye views.[2] Such a display gives 
more screen space and provides more detail about the 
user’s current focus, diminishing and abstracting the 
other parts of the information. For instance, SHriMP 
uses this technique on box-and-line displays of software 
structure.[4] Using this technique for a navigation dis-
play would mean that the display would change every 
time the developer moved in the text editor. The use of 
animated transitions diminishes the disorientation 
caused by changing the display, but only when the 
user’s attention is on the animation (and not on the 
editor, for instance). Even if the navigation display and 
editor occupy the same window, changing both simulta-
neously is confusing and unlikely to keep the user ori-
ented. 

2 Software Terrain Maps 

To satisfy the desiderata above, I am designing a new 
software visualization called a software terrain map, 
based on the metaphor of cartographic maps. An exam-
ple is shown in Figure 1. Cartographic maps have many 
nice properties: they are continuous (no wasted space) 
and stable (except perhaps at a geological time scale); 
they contain obvious and memorable visual landmarks 
(e.g. the shapes of boundaries, the positions of natural 
features); they lend themselves to overlaying data, both 
for easing navigation (e.g. names, roads, icons for fea-
tures) and for conveying information in context (e.g. 
political, demographic, or economic patterns); and they 
are very familiar. A software terrain map is designed to 
show all of a software’s parts, either behind the text in 
the editor window or on a second monitor. A highlight 
on the map continuously updates to show the part that 
the programmer is currently editing. 

To mimic the continuous nature of cartographic 
maps, I partition the screen into tiles and assign tiles to 
the software parts. An algorithmically inexpensive ap-
proach is to choose locations for the parts and then to 
draw a Voronoi diagram around the locations to parti-
tion the screen. However, the shapes of the tiles consti-
tute the display’s major visual landmarks, and the use of 
Voronoi diagrams provides only indirect control over 
the tile shapes. Instead, I first partition the screen into 
regularly shaped tiles and then assign tiles to the soft-
ware parts. As can be seen in Figure 1, the result gives 
the map an overall tidy, regular appearance, while con-
taining enough irregularities to create visual landmarks. 

Mathematicians, beginning with Golomb in the 
1950s, have studied building shapes out of regularly 
tilings of the plane.[3] In particular, they have studied 
building shapes from squares, which they call polyomi-
noes (see Figure 2A); from triangles, which they call 
polyiamonds (see Figure 2B); and from hexagons, 
which they call polyhexes (see Figure 2C). Software 
terrain maps can be drawn based on any of these three. 

2.1 Layout Problem 

To draw a software terrain map, we model the program 
as a set of components described by two metrics, which 
are parameters to the layout algorithm: Size(c) which 
gives the number of contiguous tiles to assign to the 
component c; and Affinity(c1, c2), which is the degree to 
which components c1 and c2 are related. The problem, 
then, is to locate components near each other in propor-
tion to their affinity, while assigning each component 
the appropriate number of tiles. That is, computing the 
layout is an constrained optimization problem to find 
 min ∀(c1, c2) • Affinity(c1, c2) × Distance(c1, c2) 
where Distance is a measure of screen distance between 
components, for example the Euclidean distance be-
tween their centroids. 

This formulation of the layout problem is intention-
ally generic to allow me to explore various useful no-
tions of size and affinity. For the terrain map in Figure 

(A)         (B)         (C)  

Figure 2. Three software terrain maps for the same library, built on three grid systems: (A) squares; 
(B) equilateral triangles; and (C) hexagons. 
 



  

1, the components are methods and the number of tiles 
assigned to a method is proportional to its text size (in 
this case, one tile for every two lines of code). The 
intention is that methods that appear large in the editor 
also appear large in the terrain map, helping the pro-
grammer to learn the correspondence between the two.  

For this figure, affinity is an arbitrary score chosen 
to reflect both control and data flow. In this case, to 
compute the affinity between c1 and c2, I give 20 points 
if c1 calls c2, 20 additional points if c2 calls c1, and one 
point for each field read or written in both c1 and c2. 
There is nothing “magical” about this formula. Part of 
the research agenda is to find formulas for affinity that 
have two nice properties: (1) the more often the devel-
oper navigates between two methods, the closer they 
appear on screen; (2) paths overlaid on the map (such as 
execution paths) are drawn as “snakes” rather than 
“scribbles.” Ideally, a formula for affinity would in-
volve information only about the program’s static struc-
ture (since this is immediately available), but it may also 
be useful to include measures from the program’s 
source history, from traces of its execution behavior, or 
even from the team’s bug database or communications. 

2.2 Layout Algorithm 

The layout problem, while conveniently generic, is also 
computationally intractable, with clear relationships to 
both bin packing and the traveling salesman problem. 
Fortunately, there is a heuristic quadratic algorithm that 
produces appealing results. (Here, quadratic time is a 
lower bound for this problem since inspecting the N×N 
affinity matrix alone requires quadratic time. The bound 
could be lowered further by disregarding large portions 
of the affinity matrix.) The gist of the algorithm is to 
add each component to the map one at a time, spiraling 
outward from the center, and to adjust the shape of 
previously added components to improve their prox-
imities to high-affinity components. This shape adjust-
ment is limited to keep the overall algorithm quadratic. 

The algorithm proceeds in two phases. First, we 
choose an order in which to add the components to the 
map. This order, perhaps even more than the size and 
affinity metrics, affects the map’s final appearance, so I 
am experimenting with several choices. The order used 

to produce Figure 1 first sorts the methods by each 
method’s total affinity for other methods. For each 
method m in this sorted list, m is added to the final or-
dering, then we add all those methods reachable from m 
through a depth-first traversal of the program’s call 
graph. At each stage of the depth-first traversal, the 
callees are explored in the order from highest to lowest 
total affinity. Two other approaches are to use a 
breadth-first search of the call graph and to ignore the 
call graph altogether and simply use the list sorted by 
total affinity. Of these three, the depth-first approach 
produces execution path overlays that are less “scrib-
bly” than the other two approaches, at least in my initial 
experiments. 

The second phase of the algorithm adds the compo-
nents to the map in the order that the first phase deter-
mines. For each component to be added, we first com-
pute the previously added component with the highest 
affinity for the new component, which I call the target. 
The second phase attempts to get the new component as 
close as possible to the target, without using more than 
linear time to find a good position. The second phase of 
the algorithm is parameterized by the grid to be used, 
namely, one of the three shown in Figure 2. A grid, as 
an abstract data type, supports a single operation: Coor-
dinatesAtDistance(d, (x,y)) returns the set of grid coor-
dinates at Manhattan distance d from coordinate (x,y). 
I’ll use the expression Neighbors(x,y) to mean Coordi-
natesAtDistance (1, (x,y)). 

To allow a component’s shape to be adjusted as 
new components are added, each component is assigned 
two types of coordinates: a component’s taken coordi-
nates are fixed (i.e. the taken coordinate belongs to the 
component now and forever); a component’s claimed 
coordinates can be exchanged for other coordinates. The 
algorithm maintains the following invariants:  
(1) the number of a component’s taken and claimed 

coordinates equals the component’s size, i.e. 
Taken(c) + Claimed(c) = Size(c);  

(2) the component’s taken coordinates are all contigu-
ous, i.e. ∀(x,y) ∈ Taken(c) • ∃ (x′,y′) ∈ Taken(c) • 
(x,y) ∈ Neighbors (x′,y′); and 

          

Figure 3. The first six steps of the layout algorithm (left to right), showing the addition of components identi-
fied by numbers: component #7 has size 9; #4, size 1; #1, size 2; #9, size 2; #14, size 2; and #10, size 8. Each of 
a component’s coordinates is labeled with the component’s number; taken coordinates are in boldface. 



  

type Component : 
 var grid : Grid;  
 var layout : GridLayout; 
 
 PlaceNear (target : Component) : 
  for distance := 1 to ∞ : 
   candidates := layout.CoordsAtDistance(distance, target); 
   foreach coord in EmptyCoordinates(candidates, grid) : 
    if this.PlaceAt(coord) : return; 
   foreach coord in ClaimedCoordinates(candidates, grid) : 
    if this.PlaceAt(coord) : return; 
 end PlaceNear 
    
 PlaceAt (start: Coord) : bool 
  grid.BeginTransaction(); 
  if grid.Claimed(start) ∧ ¬ grid.Claimant(start).Renounce(start,{},MAX) 
    grid.AbortTransaction() 
    return false; 
     grid.Take(this, start); 
  placesToExpand := new Queue<Coord>; 
  placesToExpand.Enqueue(start); 
  while ¬ this.CompletelyInGrid(grid) ∧ placesToExpand.Count > 0 
   placeToExpand := placesToExpand.Dequeue(); 
   expanded := false; 
   foreach c in grid.Neighbors(placeToExpand)  
    if grid.IsEmpty(c) ∨ 
     grid.IsClaimed(c) ∧ grid.Claimant(c).Renounce(c, {c}, MAX) 
     expanded := true; 
     grid.Claim(c, this); 
     placesToExpand.Enqueue(c); 
   if expanded ∧ this = grid.Claimant(placeToExpand) 
    grid.Take (placeToExpand, this); 
     if this.CompletelyInGrid(grid)  
   grid.CommitTransaction(); 
   return true;  
  else 
   grid.AbortTransaction(); 
   return false;  
 end Place 
    
 Renounce (toRenounce: Coord, forbidden: Set<Coord>, limit: int) : bool 
  if limit = 0 : return false; 
  othersClaims := {}; 
  foreach takenCoord in grid.TakenSet(this)  
   foreach c in layout.Neighbors(takenCoord) \ forbidden  
    if grid.IsEmpty(c)  
     grid.Unclaim(toRenounce, this); 
     grid.Claim(c, this); 
     return true; 
    else if grid.IsClaimed(c) ∧ this ≠ grid.Claimant(c) 
     othersClaims.Add(c); 
  foreach c in othersClaims  
   if grid.Claimant(c).Renounce(c, forbidden ∪ {c}, limit-1) 
    grid.Unclaim(toRenounce, this); 
    grid.Claim(c, this); 
    return true;  
  foreach cl in grid.Claimed(this) \ forbidden  
   foreach c in layout.Neighbors(cl) \ forbidden  
    if grid.IsEmpty(c) ∨ 
     grid.IsClaimed(c) ∧  
      grid.Claimant(c).Renounce(c, forbidden ∪ {c,cl}, limit-1) 
     grid.Take(cl, this); 
     grid.Unclaim(toRenounce, this); 
     grid.Claim(c, this); 
     return true;  
  return false; 
 end Renounce 
end Component 
 
type Terrain : 
 SolveLayout (comps: List<Component>, layout: GridLayout) : 
  target := new Map<Component,Component>; 
  for i := 0 to size(comps)-1 : 
   target[comps[i]] := CompWithMaxAffinity(Sublist(comps,0,i)); 
  grid := new GridState 
  foreach comp in comps : 
   comp.layout := layout;  
   comp.grid := grid; 
   comp.PlaceNear(target[comp]); 
  end SolveLayout 
end Terrain 
 

(3) every claimed coordinate is the neighbor of a taken 
coordinate, i.e. ∀(x,y) ∈ Claimed(c) • ∃ (x′,y′) ∈ 
Taken(c) • (x,y) ∈ Neighbors (x′,y′). 

Subject to these invariants, each component maintains 
as few taken coordinates as possible, since the more 
claimed coordinates a component has, the more flexible 
its shape, due to a process called claim renouncing, 
described below. 

Pseudocode for the core of the algorithm is shown 
at right. For each component to be added, the algorithm 
begins looking at distance 1 from the target and pro-
ceeds to greater distances until enough room for the new 
component has been found. For a given distance, we 
first divide the coordinates at that distance into the 
empty ones (the ones that no component has claimed or 
taken) and the claimed ones. We first consider each 
empty space in turn as a possible root for adding the 
new component, turning to the claimed ones only if 
there are no suitable empty ones. At each root, we 
search for enough coordinates to assign to the compo-
nent to make up its size. If we cannot find enough coor-
dinates at that root, any state changes made to the grid 
are abandoned and we try the next candidate root. 

To search for coordinates from a root coordinate, 
the component first takes the root coordinate. To find 
each additional coordinate needed, we search among the 
direct neighbors (coordinates at distance 1) of the com-
ponent’s taken and claimed coordinates. The component 
can grow to include a neighboring coordinate either if 
the coordinate is empty or if the coordinate is claimed 
by another component willing to renounce its claim (as 
described below). When the component finds a candi-
date neighboring coordinate, it claims it. If this newly 
claimed coordinate is a direct neighbor of one of the 
component’s taken coordinates, the invariants are main-
tained and the algorithm can continue the search. How-
ever, if the newly claimed coordinate is a direct 
neighbor only of the component’s claimed coordinates, 
then invariant (3) is violated. To re-establish the invari-
ant, we convert one of the claimed coordinates to a 
taken coordinate and then continue the search. 

For a component to renounce its claim on a coordi-
nate, it must find a replacement coordinate to claim 
instead. The search for the replacement is exactly as 
described in the previous paragraph, with two excep-
tions. First, we must keep track of the coordinate being 
renounced so that the search for a replacement does not 
end up finding the one we want to renounce. In fact, 
since the search for a replacement can cause neighbor-
ing components to try to renounce their own claims, we 
must track all coordinates being renounced. (Otherwise, 
we can get cycles of neighboring components fruitlessly 
swapping renounced coordinates.) Finally, this recursive 
process of neighbors renouncing claimed is limited by a 



  

constant bound to ensure the question of whether a 
component may have a given coordinate can be an-
swered in constant time. 

Figure 3 illustrates this process with six compo-
nents added to a grid. The components are identified by 
a number, and the a component’s coordinates are la-
beled with its number. Claimed coordinates are shown 
in lightface; taken coordinates, in boldface. The first 
three components are added by taking empty coordi-
nates. To add component #9 (of size 2), which has the 
highest affinity for component #4, component #7 re-
nounces one of its claimed coordinates, so that #9 may 
have it. Similarly, in the sixth step, to add component 
#10, component #7 renounces a claimed coordinate to 
allow #9 to renounce one of its claimed coordinates so 
that #10 may have it. As the figure shows, the ability to 
renounce claimed coordinates allows components to get 
closer to their targets than they would if we were to use 
a pure greedy approach (all coordinates are taken). 

3 Limitations and Next Steps 

Although software terrain maps meet the desiderata 
mentioned in the introduction, there are drawbacks. 
First, basing the size of the methods on the size of the 
methods’ text leads to many methods of size 1. The 
distribution of the sizes of this library’s 3800 methods is 
an exponential decay curve, which is typical of several 
systems I measured: 
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The more size-1 methods there are in a software terrain 
map, the fewer visual landmarks.  

One way to address the problem is to overlay addi-
tional landmarks on top of the methods, based, for in-
stance, on the method’s control structure. For example, 
one could add icons like the following, which are analo-
gous to the symbols for schools, campgrounds, etc. 
found on cartographic maps: 

 
These three are good candidates in that relatively few 
methods contain them. Such icons, however, are not 
useful at the scale of the map in Figure 1 since the indi-
vidual tiles are too small to contain the icons. 

A more serious limitation is that the appearance of 
the map is based on constraints which change as the 
software evolves. For instance, when the developer adds 
a new method, placing this method in the middle of the 
map would cause a cascade of claim renouncing, which 
would cause many methods to change shape. The result 
could be very disorienting. One approach to the problem 
is to keep all new methods off to the side, ignoring the 
new methods’ affinities, until the developer (or perhaps 
the whole team) is ready for a large, disorienting map 
change. This solution does not apply to methods already 
in the map that are gaining new code. These growing 
methods would cause similar cascading changes. Ex-
perimenting with how visually disorienting users find 
these cascades is future work. Note that method dele-
tions can be handled by leaving holes. The algorithm 
described here already generates a few holes (visible 
both in Figures 1 and 2), which I have allowed as an-
other form of visual landmark. 

I have implemented a prototype version of software 
terrain maps and have integrated it into Microsoft’s 
Visual Studio development environment. The next step 
is a formal user study to evaluate how well these maps 
keep users oriented. 
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