

Staying Oriented with Software Terrain Maps

Robert DeLine
Microsoft Research, Microsoft Corporation, Redmond, USA

Abstract

Developers often find themselves lost as they navigate
around large programs, particularly when those pro-
grams are unfamiliar. This paper presents a new visu-
alization, called a software terrain map, intended to
keep a programmer oriented as she navigates around
source code in the editor. The design is based on the
metaphor of cartographic maps, which are continuous
(no wasted space), have enough visual landmarks to
allow the user to find her location perceptually rather
than cognitively, and lend themselves to overlaying
data. Although an optimal layout for software terrain
maps is computationally intractable, the paper presents
an efficient, heuristic algorithm that produces good
results.

1 Introduction

In our recent study in which experienced developers
attempted to enhance an unfamiliar program, the par-
ticipants consistently got lost in the source code. [1]
They typically explored the code by opening and scan-
ning many documents, by jumping back and forth
among related definitions, and by iterating over the
result sets of text searches. Despite their years of ex-
perience and their familiarity with the programming
language, development environment, and problem do-
main, these navigation steps would quickly leave them
disoriented. Many times, a participant would issue a
new query to find a previously visited definition, and in
a few cases, a participant would even inspect a previ-
ously visited definition and not recognize it.

Such disorientation is easy to understand. A typical
program is very uniform in visual appearance and relies
heavily on names to distinguish its parts. A typical de-
velopment environment, like Visual Studio or Eclipse,
also relies on names in its overview displays, like the
tree of project files and the type hierarchy. Hence, stay-
ing oriented while navigating a program requires famili-
arity with its names, which places a large burden on
both short- and long-term memory. In this paper, I de-
scribe a new display, intended to allow the programmer
to use her spatial memory to stay oriented while navi-
gating the source code.

To keep the user oriented during code navigation, I
propose supplementing the development environment

with an overview diagram to show the programmer’s
current location in the program (“you are here”) and
recent navigation steps (a vapor trail). In addition to
reflecting the user’s navigation in the editor, the over-
view would also allow navigation. For instance, clicking
on the overview would also cause the editor to show the
corresponding part of the code. The intent is to allow
the programmer to use spatial memory to navigate to
sought parts of the program. To realize this intent, sev-
eral desiderata seem reasonable:
1. The display should show the entire program. That

is, whatever definition the programmer navigates to
in the editor should have a representation at a rea-
sonable level of detail in the display. Hence, the use
of elision or abstraction to scale to large programs
would not be appropriate. Elision would cause
some navigation steps to be “off the map,” while
abstraction would cause a navigation step within an
abstracted part of the program to appear as non-
movement in the overview display.

2. The display should contain enough visual land-
marks to allow the developer to find parts of the
program perceptually, rather than relying on names
or other cognitive cues. For instance, to find Rome
on a map of Europe, I scan for Italy’s famous boot
shape rather than reading for the word Italy. An
overview display of software should have similar
visual landmarks.

3. The display should remain visually stable as the
user navigates. If the display’s content were to
change as much as the editor’s while the user navi-
gates around the program text, it would provide lit-
tle help in keeping the user oriented. Further, edit-
ing the program text should cause proportional
changes to the display.

4. Finally, to justify the additional screen space
needed for the display, the display should be capa-
ble of showing global program information other
than navigation steps. For instance, we might use
the display to show program execution paths, like
the call stack when an exception is raised or the hot
path that a profiler reports, or to show team aware-
ness data, like which developers are currently
working on which parts of the program.

These desiderata mean that several popular technologies
are not suitable for such a display. UML class diagram

Figure 1. The software terrain map of a library for analyzing .NET bytecode. Each of the 3800 regions is a
method, whose size is proportional to the method’s textual size (one tile for every two lines of code). Each
class has its own shade of green. The highlighted (yellow) method is the one that the user is currently read-
ing in the editor. The arrows show the program’s execution path up to the current debugger breakpoint.

and other box-and-line architectural diagrams, for in-
stance, are not good candidates. First, they are often
drawn at an inappropriately high level of abstraction or
elide parts of the program to keep the diagrams small. A
developer working on an object-oriented program navi-
gates among and edits individual class members. Hence,

to provide a location marker while remaining visually
stable, the display must show every member in the pro-
gram all at once. This would be difficult to do with a
UML class diagram. Second, such diagrams are visually
uniform, particularly when they include many boxes.
Distinguishing the boxes is more easily accomplished

by reading their labels than by relying on visual cues
like box position or the topology of edges between
boxes.

A popular technique for scaling complex informa-
tion to fit the screen is to use a detail-within-context
display, like fisheye views.[2] Such a display gives
more screen space and provides more detail about the
user’s current focus, diminishing and abstracting the
other parts of the information. For instance, SHriMP
uses this technique on box-and-line displays of software
structure.[4] Using this technique for a navigation dis-
play would mean that the display would change every
time the developer moved in the text editor. The use of
animated transitions diminishes the disorientation
caused by changing the display, but only when the
user’s attention is on the animation (and not on the
editor, for instance). Even if the navigation display and
editor occupy the same window, changing both simulta-
neously is confusing and unlikely to keep the user ori-
ented.

2 Software Terrain Maps

To satisfy the desiderata above, I am designing a new
software visualization called a software terrain map,
based on the metaphor of cartographic maps. An exam-
ple is shown in Figure 1. Cartographic maps have many
nice properties: they are continuous (no wasted space)
and stable (except perhaps at a geological time scale);
they contain obvious and memorable visual landmarks
(e.g. the shapes of boundaries, the positions of natural
features); they lend themselves to overlaying data, both
for easing navigation (e.g. names, roads, icons for fea-
tures) and for conveying information in context (e.g.
political, demographic, or economic patterns); and they
are very familiar. A software terrain map is designed to
show all of a software’s parts, either behind the text in
the editor window or on a second monitor. A highlight
on the map continuously updates to show the part that
the programmer is currently editing.

To mimic the continuous nature of cartographic
maps, I partition the screen into tiles and assign tiles to
the software parts. An algorithmically inexpensive ap-
proach is to choose locations for the parts and then to
draw a Voronoi diagram around the locations to parti-
tion the screen. However, the shapes of the tiles consti-
tute the display’s major visual landmarks, and the use of
Voronoi diagrams provides only indirect control over
the tile shapes. Instead, I first partition the screen into
regularly shaped tiles and then assign tiles to the soft-
ware parts. As can be seen in Figure 1, the result gives
the map an overall tidy, regular appearance, while con-
taining enough irregularities to create visual landmarks.

Mathematicians, beginning with Golomb in the
1950s, have studied building shapes out of regularly
tilings of the plane.[3] In particular, they have studied
building shapes from squares, which they call polyomi-
noes (see Figure 2A); from triangles, which they call
polyiamonds (see Figure 2B); and from hexagons,
which they call polyhexes (see Figure 2C). Software
terrain maps can be drawn based on any of these three.

2.1 Layout Problem

To draw a software terrain map, we model the program
as a set of components described by two metrics, which
are parameters to the layout algorithm: Size(c) which
gives the number of contiguous tiles to assign to the
component c; and Affinity(c1, c2), which is the degree to
which components c1 and c2 are related. The problem,
then, is to locate components near each other in propor-
tion to their affinity, while assigning each component
the appropriate number of tiles. That is, computing the
layout is an constrained optimization problem to find
 min ∀(c1, c2) • Affinity(c1, c2) × Distance(c1, c2)
where Distance is a measure of screen distance between
components, for example the Euclidean distance be-
tween their centroids.

This formulation of the layout problem is intention-
ally generic to allow me to explore various useful no-
tions of size and affinity. For the terrain map in Figure

(A) (B) (C)

Figure 2. Three software terrain maps for the same library, built on three grid systems: (A) squares;
(B) equilateral triangles; and (C) hexagons.

1, the components are methods and the number of tiles
assigned to a method is proportional to its text size (in
this case, one tile for every two lines of code). The
intention is that methods that appear large in the editor
also appear large in the terrain map, helping the pro-
grammer to learn the correspondence between the two.

For this figure, affinity is an arbitrary score chosen
to reflect both control and data flow. In this case, to
compute the affinity between c1 and c2, I give 20 points
if c1 calls c2, 20 additional points if c2 calls c1, and one
point for each field read or written in both c1 and c2.
There is nothing “magical” about this formula. Part of
the research agenda is to find formulas for affinity that
have two nice properties: (1) the more often the devel-
oper navigates between two methods, the closer they
appear on screen; (2) paths overlaid on the map (such as
execution paths) are drawn as “snakes” rather than
“scribbles.” Ideally, a formula for affinity would in-
volve information only about the program’s static struc-
ture (since this is immediately available), but it may also
be useful to include measures from the program’s
source history, from traces of its execution behavior, or
even from the team’s bug database or communications.

2.2 Layout Algorithm

The layout problem, while conveniently generic, is also
computationally intractable, with clear relationships to
both bin packing and the traveling salesman problem.
Fortunately, there is a heuristic quadratic algorithm that
produces appealing results. (Here, quadratic time is a
lower bound for this problem since inspecting the N×N
affinity matrix alone requires quadratic time. The bound
could be lowered further by disregarding large portions
of the affinity matrix.) The gist of the algorithm is to
add each component to the map one at a time, spiraling
outward from the center, and to adjust the shape of
previously added components to improve their prox-
imities to high-affinity components. This shape adjust-
ment is limited to keep the overall algorithm quadratic.

The algorithm proceeds in two phases. First, we
choose an order in which to add the components to the
map. This order, perhaps even more than the size and
affinity metrics, affects the map’s final appearance, so I
am experimenting with several choices. The order used

to produce Figure 1 first sorts the methods by each
method’s total affinity for other methods. For each
method m in this sorted list, m is added to the final or-
dering, then we add all those methods reachable from m
through a depth-first traversal of the program’s call
graph. At each stage of the depth-first traversal, the
callees are explored in the order from highest to lowest
total affinity. Two other approaches are to use a
breadth-first search of the call graph and to ignore the
call graph altogether and simply use the list sorted by
total affinity. Of these three, the depth-first approach
produces execution path overlays that are less “scrib-
bly” than the other two approaches, at least in my initial
experiments.

The second phase of the algorithm adds the compo-
nents to the map in the order that the first phase deter-
mines. For each component to be added, we first com-
pute the previously added component with the highest
affinity for the new component, which I call the target.
The second phase attempts to get the new component as
close as possible to the target, without using more than
linear time to find a good position. The second phase of
the algorithm is parameterized by the grid to be used,
namely, one of the three shown in Figure 2. A grid, as
an abstract data type, supports a single operation: Coor-
dinatesAtDistance(d, (x,y)) returns the set of grid coor-
dinates at Manhattan distance d from coordinate (x,y).
I’ll use the expression Neighbors(x,y) to mean Coordi-
natesAtDistance (1, (x,y)).

To allow a component’s shape to be adjusted as
new components are added, each component is assigned
two types of coordinates: a component’s taken coordi-
nates are fixed (i.e. the taken coordinate belongs to the
component now and forever); a component’s claimed
coordinates can be exchanged for other coordinates. The
algorithm maintains the following invariants:
(1) the number of a component’s taken and claimed

coordinates equals the component’s size, i.e.
Taken(c) + Claimed(c) = Size(c);

(2) the component’s taken coordinates are all contigu-
ous, i.e. ∀(x,y) ∈ Taken(c) • ∃ (x′,y′) ∈ Taken(c) •
(x,y) ∈ Neighbors (x′,y′); and

Figure 3. The first six steps of the layout algorithm (left to right), showing the addition of components identi-
fied by numbers: component #7 has size 9; #4, size 1; #1, size 2; #9, size 2; #14, size 2; and #10, size 8. Each of
a component’s coordinates is labeled with the component’s number; taken coordinates are in boldface.

type Component :
 var grid : Grid;
 var layout : GridLayout;

 PlaceNear (target : Component) :
 for distance := 1 to ∞ :
 candidates := layout.CoordsAtDistance(distance, target);
 foreach coord in EmptyCoordinates(candidates, grid) :
 if this.PlaceAt(coord) : return;
 foreach coord in ClaimedCoordinates(candidates, grid) :
 if this.PlaceAt(coord) : return;
 end PlaceNear

 PlaceAt (start: Coord) : bool
 grid.BeginTransaction();
 if grid.Claimed(start) ∧ ¬ grid.Claimant(start).Renounce(start,{},MAX)
 grid.AbortTransaction()
 return false;
 grid.Take(this, start);
 placesToExpand := new Queue<Coord>;
 placesToExpand.Enqueue(start);
 while ¬ this.CompletelyInGrid(grid) ∧ placesToExpand.Count > 0
 placeToExpand := placesToExpand.Dequeue();
 expanded := false;
 foreach c in grid.Neighbors(placeToExpand)
 if grid.IsEmpty(c) ∨
 grid.IsClaimed(c) ∧ grid.Claimant(c).Renounce(c, {c}, MAX)
 expanded := true;
 grid.Claim(c, this);
 placesToExpand.Enqueue(c);
 if expanded ∧ this = grid.Claimant(placeToExpand)
 grid.Take (placeToExpand, this);
 if this.CompletelyInGrid(grid)
 grid.CommitTransaction();
 return true;
 else
 grid.AbortTransaction();
 return false;
 end Place

 Renounce (toRenounce: Coord, forbidden: Set<Coord>, limit: int) : bool
 if limit = 0 : return false;
 othersClaims := {};
 foreach takenCoord in grid.TakenSet(this)
 foreach c in layout.Neighbors(takenCoord) \ forbidden
 if grid.IsEmpty(c)
 grid.Unclaim(toRenounce, this);
 grid.Claim(c, this);
 return true;
 else if grid.IsClaimed(c) ∧ this ≠ grid.Claimant(c)
 othersClaims.Add(c);
 foreach c in othersClaims
 if grid.Claimant(c).Renounce(c, forbidden ∪ {c}, limit-1)
 grid.Unclaim(toRenounce, this);
 grid.Claim(c, this);
 return true;
 foreach cl in grid.Claimed(this) \ forbidden
 foreach c in layout.Neighbors(cl) \ forbidden
 if grid.IsEmpty(c) ∨
 grid.IsClaimed(c) ∧
 grid.Claimant(c).Renounce(c, forbidden ∪ {c,cl}, limit-1)
 grid.Take(cl, this);
 grid.Unclaim(toRenounce, this);
 grid.Claim(c, this);
 return true;
 return false;
 end Renounce
end Component

type Terrain :
 SolveLayout (comps: List<Component>, layout: GridLayout) :
 target := new Map<Component,Component>;
 for i := 0 to size(comps)-1 :
 target[comps[i]] := CompWithMaxAffinity(Sublist(comps,0,i));
 grid := new GridState
 foreach comp in comps :
 comp.layout := layout;
 comp.grid := grid;
 comp.PlaceNear(target[comp]);
 end SolveLayout
end Terrain

(3) every claimed coordinate is the neighbor of a taken
coordinate, i.e. ∀(x,y) ∈ Claimed(c) • ∃ (x′,y′) ∈
Taken(c) • (x,y) ∈ Neighbors (x′,y′).

Subject to these invariants, each component maintains
as few taken coordinates as possible, since the more
claimed coordinates a component has, the more flexible
its shape, due to a process called claim renouncing,
described below.

Pseudocode for the core of the algorithm is shown
at right. For each component to be added, the algorithm
begins looking at distance 1 from the target and pro-
ceeds to greater distances until enough room for the new
component has been found. For a given distance, we
first divide the coordinates at that distance into the
empty ones (the ones that no component has claimed or
taken) and the claimed ones. We first consider each
empty space in turn as a possible root for adding the
new component, turning to the claimed ones only if
there are no suitable empty ones. At each root, we
search for enough coordinates to assign to the compo-
nent to make up its size. If we cannot find enough coor-
dinates at that root, any state changes made to the grid
are abandoned and we try the next candidate root.

To search for coordinates from a root coordinate,
the component first takes the root coordinate. To find
each additional coordinate needed, we search among the
direct neighbors (coordinates at distance 1) of the com-
ponent’s taken and claimed coordinates. The component
can grow to include a neighboring coordinate either if
the coordinate is empty or if the coordinate is claimed
by another component willing to renounce its claim (as
described below). When the component finds a candi-
date neighboring coordinate, it claims it. If this newly
claimed coordinate is a direct neighbor of one of the
component’s taken coordinates, the invariants are main-
tained and the algorithm can continue the search. How-
ever, if the newly claimed coordinate is a direct
neighbor only of the component’s claimed coordinates,
then invariant (3) is violated. To re-establish the invari-
ant, we convert one of the claimed coordinates to a
taken coordinate and then continue the search.

For a component to renounce its claim on a coordi-
nate, it must find a replacement coordinate to claim
instead. The search for the replacement is exactly as
described in the previous paragraph, with two excep-
tions. First, we must keep track of the coordinate being
renounced so that the search for a replacement does not
end up finding the one we want to renounce. In fact,
since the search for a replacement can cause neighbor-
ing components to try to renounce their own claims, we
must track all coordinates being renounced. (Otherwise,
we can get cycles of neighboring components fruitlessly
swapping renounced coordinates.) Finally, this recursive
process of neighbors renouncing claimed is limited by a

constant bound to ensure the question of whether a
component may have a given coordinate can be an-
swered in constant time.

Figure 3 illustrates this process with six compo-
nents added to a grid. The components are identified by
a number, and the a component’s coordinates are la-
beled with its number. Claimed coordinates are shown
in lightface; taken coordinates, in boldface. The first
three components are added by taking empty coordi-
nates. To add component #9 (of size 2), which has the
highest affinity for component #4, component #7 re-
nounces one of its claimed coordinates, so that #9 may
have it. Similarly, in the sixth step, to add component
#10, component #7 renounces a claimed coordinate to
allow #9 to renounce one of its claimed coordinates so
that #10 may have it. As the figure shows, the ability to
renounce claimed coordinates allows components to get
closer to their targets than they would if we were to use
a pure greedy approach (all coordinates are taken).

3 Limitations and Next Steps

Although software terrain maps meet the desiderata
mentioned in the introduction, there are drawbacks.
First, basing the size of the methods on the size of the
methods’ text leads to many methods of size 1. The
distribution of the sizes of this library’s 3800 methods is
an exponential decay curve, which is typical of several
systems I measured:

0

50

100

150

200

250

300

350

400

450

500

The more size-1 methods there are in a software terrain
map, the fewer visual landmarks.

One way to address the problem is to overlay addi-
tional landmarks on top of the methods, based, for in-
stance, on the method’s control structure. For example,
one could add icons like the following, which are analo-
gous to the symbols for schools, campgrounds, etc.
found on cartographic maps:

These three are good candidates in that relatively few
methods contain them. Such icons, however, are not
useful at the scale of the map in Figure 1 since the indi-
vidual tiles are too small to contain the icons.

A more serious limitation is that the appearance of
the map is based on constraints which change as the
software evolves. For instance, when the developer adds
a new method, placing this method in the middle of the
map would cause a cascade of claim renouncing, which
would cause many methods to change shape. The result
could be very disorienting. One approach to the problem
is to keep all new methods off to the side, ignoring the
new methods’ affinities, until the developer (or perhaps
the whole team) is ready for a large, disorienting map
change. This solution does not apply to methods already
in the map that are gaining new code. These growing
methods would cause similar cascading changes. Ex-
perimenting with how visually disorienting users find
these cascades is future work. Note that method dele-
tions can be handled by leaving holes. The algorithm
described here already generates a few holes (visible
both in Figures 1 and 2), which I have allowed as an-
other form of visual landmark.

I have implemented a prototype version of software
terrain maps and have integrated it into Microsoft’s
Visual Studio development environment. The next step
is a formal user study to evaluate how well these maps
keep users oriented.

4 References

[1] R. DeLine, A. Khella, M. Czerwinski and G. Roberson, “To-
wards understanding programs through wear-based filtering,”
Proc. Symp. on Software Visualization, 2005.

[2] Furnas, G. “Generalized fisheye views,” CHI ’86.

[3] Golomb, S. Polyominoes, Princeton University Press, 1952.

[4] Storey, M.-A., “SHriMP views: an interactive environment for
exploring multiple hierarchical views of a Java program,” ICSE
2001 Workshop on Software Visualization, Toronto, Ontario,
Canada, May 12, 2001.

loop

nested loop

switch statement

