
Virtualizing Traffic Shapers for Practical Resource Allocation

Gautam Kumar‡∨, Srikanth Kandula‡, Peter Bodik‡, Ishai Menache‡

Microsoft Research‡ and University of California, Berkeley∨

1 Introduction

Many network resource allocation scenarios would ben-
efit from the use of traffic shapers, such as weighted fair
queues (WFQs) [2], priority queues [10] and rate lim-
iters [11]. However, the number of such shapers imple-
mented in hardware in switches, routers, and network in-
terface cards (NICs) is very low; typically less than ten
(see Table 1). Instead of simple use of hardware traffic
shapers, network operators thus have to resort to more
complex solutions.

For example, public clouds such as Amazon Web Ser-
vices and Windows Azure want to limit the network
bandwidth that is allocated to each VM along each path
through their network. However, NICs only support a
small number of rate limiters in hardware [11]. So, the
cloud providers implement rate limits in software, forc-
ing all server traffic to go through the hypervisor. This re-
sults in both worse latency and lower throughput because
it requires more copying (between guest VM and hyper-
visor) and it disallows multi-core optimizations such as
SRIOV and Direct-IO which let VMs directly read and
write from NIC buffers. Dedicating more cores to the
hypervisor improves throughput but the cloud provider
now has fewer to allocate to customers.

As another example, major companies have an-
nounced centralized traffic engineering using SDN
switches [6]. To drive networks at high utilization, these
schemes solve a global optimization problem to map traf-
fic across all the network paths and allocate available
network bandwidth among hosts based on business re-
quirements. Here too, there is a need to ensure that hosts
adhere to their allocated rates along each path. Further,
there is a need to prioritize among traffic classes; e.g.,
customer-facing traffic where extra latency means lost
revenue should be prioritized over bulk data transfers that
only care about finishing within a deadline. However,
the number of traffic classes is several orders of magni-
tude larger than the number of available shapers in mod-

Data Path

Control

…Match Est. Demand Shaper
t 100MBps q0

… … …

Adaptation logic

Shapers
Packets

TCAM Rules

Figure 1: vShaper uses rules on the forwarding path to estimate
class’ demands and maps them to the shapers available at the switches.
Periodically, an adaptation logic changes the mapping from classes to
shapers.

ern switches (see Table 1 and [24]). And so, designers
rely on coarse prioritization and distributed rate limiters
where the (changing) rate limits are communicated by
the central scheduler to each of the end-hosts to be en-
forced in software [6].

A potential solution to this problem is to build hard-
ware support for many more shapers. Maintaining a
shaper requires some memory management (e.g., a sep-
arate queue for its packets) and some scheduling over-
head (e.g., to implement WFQ or priority queuing). To
support eight shapers per port, a switch with 64 I/O ports
(e.g., an Arista 7050) today uses 215 shapers internally–
per shaper, per output port, per input port, the last be-
cause of virtual-output queuing [22]. A few concerns
exist with trying to increase the number of shapers per
port. First the turn-around time to build new hardware is
large and application requirements can change quickly.
For example, Cisco and Broadcom refresh chassis hard-
ware once every two years whereas 25% of the users of
Amazon web services report using 3-70X more instances
within the last year [7], likely resulting in more traffic
classes. Second, more shapers in hardware means more
ASIC and more complex scheduling algorithms which
add costs, especially to verify correctness [13].

Here, we propose to virtualize traffic shapers. That
is, we present a technique called vShaper that uses few

1



physical shapers to mimic the traffic shaping behavior of
many more shapers. Given k physical shapers, n classes
of traffic (n � k), and an error function E that cap-
tures the quality of traffic shaping, our intent is to map
the traffic classes to the available shapers so as to min-
imize the error. An example error function could mea-
sure how close the bandwidth allocation across classes
comes to the ideal allocation achieved when n weighted
fair queues are available. At first blush, there are kn

k! po-
tential groupings of classes to shapers and hence evalu-
ating every one of these is computationally infeasible.

The intuition behind our approach is that traffic shap-
ing becomes substantially simpler if we could (roughly)
estimate the traffic demands of each class. For exam-
ple, priority queuing shapes traffic such that bandwidth
is allocated first to the highest priority class, then to the
second priority class and so on. Supposing that the de-
mands of each class is known, let x be the highest priority
class such that the sum of the traffic demands of classes
with priority higher than x is smaller than the link capac-
ity C, and the sum when including the demand of class x
exceeds C. Here, the rate allocation is simple – classes
with priority higher than x get rate equal to their demand,
those with lower priority get zero bandwidth and class
x gets some amount no more than its demand. Hence,
regardless of however many classes there may be, this
effective rate allocation can be enforced by simply map-
ping the classes into three priority queues.

In the general case, i.e., for other shapers and er-
ror functions, the mapping is not as simple even
when demands can be estimated. For weighted fair
queues (see §2), we identify similar lossless groups, i.e.,
traffic classes that can be mapped into the same shaper
without incurring any error. By formulating the map-
ping of classes to shapers as an optimization problem, we
present both an (optimal) dynamic program and a faster
greedy solution. Our experiments and analysis reveals
that the expected error in rate allocation reduces very
quickly with the number of available shapers and is not
affected much by the number of traffic classes, thereby
hinting at why virtualizing shapers is an effective idea.

How to estimate per-class traffic demands? And,
since predicting future demands accurately is impossi-
ble, so how to be robust to inaccuracies in demand es-
timates? Here, we make three observations. First, we
show that demands can be measured on the dataplane
with commodity (software-defined) switches. vShaper

installs ACL filters or OpenFlow rules at the ingress in-
terfaces to estimate traffic demands. Dataplane measure-
ment lets vShaper track changing traffic patterns quickly
and without additional software infrastructure. Open-
Flow rules and switch ACLs support fairly rich filters.
And, switches and NICs support a few orders of mag-
nitude more filters than shapers (Table 1). Optionally,

Switch Num. Shapers Num
WFQs Priority Qs Rules

A 7050S[1] 7, interchangeable 512
I G8264[8] 8, interchangeable 256

C Nexus3K[4, 3] 8 1 1000+
J EX3300[9] 8 5 7000
D S4810[5] 4 (3 usable as Priority Qs) 1024

C = Cisco, A = Arista, I = IBM, J = Juniper, D = Dell

Table 1: A survey of the support for shapers in popular commodity
top-of-rack switches. The numbers are per interface.

shims at the end-hosts or edge switches can tag packets,
e.g., using the DSCP field, to identify which traffic be-
longs to which class. Second, we note that most of the
inaccuracies in demand estimates have only a small im-
pact on shaping error. In the above priority queuing ex-
ample, the critical priority class x remains the same even
if the demands of individual classes change as long as
the sum of demands continues to satisfy the above prop-
erty. Further, vShaper periodically adapts the mapping
from classes to shapers based on recent demand esti-
mates. We show that such adaptation can be done of-
ten (e.g., once every 50ms on today’s switches). Figure 1
depicts a potential implementation where the adaptation
logic is built in software on the control processor at a
switch. The adaptation reduces the effects of error in de-
mand estimation. Finally, we note that there are multiple
switches along a path and multiple paths between racks
due to the current bushy nature of the datacenter network
cores (e.g., fat-trees, VL2). We leave exploiting multiple
paths to future work but observe that employing vShaper

at every switch along a path leads to lower error than us-
ing vShaper at just one (bottleneck) switch.

vShaper was motivated by the observation that re-
cent work in full bisection networks and software de-
fined switches has simplified management of the net-
works; servers can be placed anywhere in the datacen-
ter [14, 21], routing and traffic engineering have become
easier [6]. However, extracting good performance from
the dataplane especially with multiple tenants still re-
quires complicated software [19, 24] or new hardware
support [25]. We build upon the observation by Lam et.
al. [20] that using the shapers already available in the dat-
aplane at switches and NICs could be useful but take the
next step towards making the available shapers support
many more traffic classes by virtualizing them. It is pos-
sible that these ideas could help towards building cost-
effective middleboxes that offer dedicated traffic shaping
functionality.

Early experiments from a prototype on a merchant sil-
icon switch (an Arista 7048) and simulations that replay
traces from a few datacenter workloads demonstrate the

2



1 2 3 4 5 6
6Qs, ideal 0.0%

1Q, no shaping 12.7%
3Qs: {1,2}, {3,4}, {5,6} 9.1%
3Qs: {1,2}, {3,4,5}, {6} 2.1%

RMSE
bandwidth allocation to class

Figure 2: Example bandwidth allocation for 6 classes (horizontal
bars) under 4 different groupings and the corresponding root mean
square error. The classes have demands= 0.002, 0.04, 0.18, 0.36, 0.6,
and 0.9 (as fraction of capacity), weights= 0.02, 0.08, 0.1, 0.2, 0.3,
and 0.3, and have been sorted in decreasing order on w

d . Using three
queues is better that one. But, it is even more important to use the right
grouping.

feasibility of this approach. We show that we can change
the mapping for 40 shapers in 5.6 ms. In a simulation of
a network traffic from a production, data-parallel cluster
with hundreds of classes, vShaper achieves 2-3% error
with just 8 weighted-fair queues, which is much smaller
than existing approaches ( §3).

2 Design Principles of vShaper

In this section, we outline how vShaper virtualizes
shapers using the case of weighted fair queues to allo-
cate network bandwidth as an example. We discuss other
shapers briefly in §2.2.

The goal of fair queuing is: given traffic classes, each
with a demand rate di and a weight wi, allocate band-
width in a weighted max-min fair manner [19, 20, 23,
24]. That is, each class receives a rate proportional to its
weight and the unused bandwidth is allocated to classes
that can use them. A class can correspond to a TCP flow,
a network service, a VM or all the VMs of a tenant. Such
bandwidth shaping is important to restrict misbehaving
tenants and to offer premium services [19, 23, 24].

If switches had enough weighted fair queues (WFQs)
to map each class onto a WFQ, then we could achieve
weighted max-min allocation with just a little more sup-
port (e.g., with end-to-end flow control [20]). The
chief obstacle however is that there can be many fewer
WFQs per interface (see Table 1) than classes (100s-
1000s [24]).

Suppose that there are k WFQs and n classes with n�
k. How to map classes to shapers such that each class
achieves a rate close to what it would have in the ideal
case where there each class is mapped to a WFQ? To
build such mapping, note first that the rates achieved by
an ideal WFQ scheme is given by

ri = min(di,wiα), where α = arg max
∑ri≤C

∑ri. (1)

Here, α is the max-min share normalized by weight, and
C is the capacity of the outgoing link. Intuitively, classes
that demand less than their weighted share get rate equal

to their demand whereas the others get no more than their
share. We call the former classes underweight and the
latter overweight.

Simple observations. Suppose that the weight of each
queue is set as the sum of the weights of the classes
that are allocated to it. Observe first that if all under-
weight classes are mapped into a single queue (say q),
then

(
∑i∈q di

)
≤
(

∑i∈q wi
)
α , meaning that each class

gets its demand rate, exactly as in (1). Next, consider a
subset of overweight classes that have the same d

w ratio.
Assume that we map all these classes to a single queue
q. Because the cumulative rate of traffic ∑i∈q wiα is di-
vided proportionally to demand, each class obtains rate

di
∑ j∈q d j

∑ j∈q w jα = di
wi
di

α = wiα which is, again, identi-
cal to the ideal rate (1).

vShaper’s aggregation rules. The mappings described
above lead to “lossless” aggregation compared to ideal
WFQ. Inspired by these, vShaper applies three basic rules
for class aggregation: (i) The weight of each queue is set
as the sum of the weights of the classes that are allocated
to it; (ii) All underweight classes are aggregated into a
single queue; and (iii) Classes are grouped contiguously
based on their di

wi
ratio. We note that rule (iii) still re-

quires an algorithm to determine the d
w boundaries for

each queue. The specific algorithms that we propose are
in §2.1; here we reason about their properties.

Measuring quality of aggregation. Based on the above
rules, the rates obtained by vShaper (denoted r̂i) are

r̂i =

{
di if i is underweight
α̂

di
∑ j∈s d j

∑ j∈q(i) w j if i is overweight, (2)

where q(i) denotes the queue to which i is assigned. It
is easy to show that α̂ is equal to α in (1). Note that
(ii) immediately implies that r̂i = ri for all underweight
classes. However, r̂i could be different than ri for over-
weight classes.

vShaper aims to minimize the sum of squares dif-
ference between the fair-queue rate ri and the rate r̂i
achieved due to virtualization. Namely our measure for
the quality of aggregation is ∑i βi(ri− r̂i)

2. The βi’s are
class-specific weights, which can be set by the network
manager. For example, βi can be set inversely propor-
tional to the class’ demand to eliminate the bias towards
the elephant classes (high di). Using (1) and (2), the sum
of squares cost function (divided by α) is given by

∑
i

βi

(
wi−di

∑ j∈q(i) w j

∑ j∈q(i) d j

)2

. (3)

Fig. 2 shows a few example groupings and the corre-
sponding error for βi = 1.

3



Why contiguous grouping is reasonable? Recall that
there are up to kn

k! possible groupings of n (overweight)
classes into k queues. Here, we show that vShaper’s
choice to group based on d

w (rule (iii)) is optimal when
class-specific weights are such that βi =

1
di

. For gen-
eral weight assignments, the error is small and upper-
bounded.

Theorem 1. Consider the error (3) with βi =
1
di

. There
exists a minimizer of this error which assigns classes to
queues contiguously based on the wi

di
ratio. That is, this

assignment has the property that for any queue q and
class i, if argmin j∈q

w j
d j
≤ wi

di
≤ argmax j∈q

w j
d j

, then i is
assigned to q.

The proof, which we outline below, follows through a
reduction to a k-means problem in single dimension.
Proof. For βi =

1
di

, (3) can be equivalently written as

∑i di

(
wi
di
− ∑ j∈q(i) w j

∑ j∈q(i) d j

)2
. Consider the following transfor-

mation: for each class (wi,di) create di virtual points
having a scalar value of wi

di
each. Consider the k-means

clustering problem [17] over these virtual points, where
the number of desired clusters is the number of queues,
k. Suppose that all virtual points originating from a
class i are forced to be assigned to the same cluster,
denoted q(i). Then, the k-means cost function can be

written as ∑i di

(
wi
di
−

∑ j∈q(i) d j
w j
d j

∑ j∈q(i) d j

)2

, which is identical

to (3). Therefore, our original minimization problem can
be viewed as a k-means problem in single dimension,
with the constraint that all of the virtual points originat-
ing from a class lie in the same cluster.

Obviously, any solution of the unconstrained 1-d k-
means problem is contiguous w.r.t. the point values (i.e.,
wi
di

). We claim that imposing the additional constraint
that all virtual points belong to the same cluster does not
matter. Indeed, initiating from any solution to the uncon-
strained 1-d k-means problem, we perform a “k-means
iteration”, consisting of two steps: (i) assign all virtual
points of a class to their closest center; in case of a tie,
all such points are sent to the same cluster; (ii) update the
cluster centers based on the new assignment. Both steps
do not increase the cost; the former because points are
associated to a closest center, and the latter because the
overall error of a set of points is smallest when the center
is chosen as their average.

2.1 Algorithms for contiguous grouping

As discussed above, grouping classes based on their di
wi

ratio can lead to low errors. Here, we design algorithms
that minimize (3) under rules (i)-(iii). Since rule (iii) is

enforced, any such algorithm first orders the classes ac-
cording to their di

wi
(ties broken arbitrarily), and then has

to determine the “boundary points” in terms of d
w value,

which determine the allocation to the different queues.
We implemented several algorithms. We describe below
two algorithms which have led to notably good perfor-
mance in our experiments. Assume without loss of gen-
erality that w1

d1
≤ w2

d2
≤ ·· · ≤ wn

dn
.

1) DP-based algorithm. This Dynamic Programming
(DP)-based algorithm obtains the optimal error under
rules (i)-(iii). The DP-based algorithm updates an n× k
matrix A, where each entry A(i,k′) stands for the op-
timal cost for dividing classes i, i + 1, . . . ,n to the re-
maining k′ queues (assuming that the previous points
have been assigned to the first k′ − 1 queues). En-
tries are updated recursively via the equation A(i,k′) =
mini≤ j≤n

{
Bi, j +A( j+1,k′−1)

}
, where Bi, j is the total

squared error (in the sense of (3)) of the cluster consist-
ing of points {i, i+ 1, . . . , j}. It can be shown that the
running complexity of the algorithm is O(n2k), while the
space complexity can be reduced to O(nk) by optimizing
the order of updates. Importantly, the complexity values
do not depend on the spread of the d values.

2) Greedy algorithm. The greedy algorithm is an iter-
ative algorithm with lower complexity: O(n logn) time
and O(n) space. In each iteration, greedy identifies a
contiguous pair of classes which have the smallest er-
ror (in the sense of (3)) if combined, and constructs a
new combination class with demands (and weights) set
to the sum of demands (and weights) of the constituent
classes. Greedy then places this newly constructed class
back into the sorted list. Due to the contiguity constraint,
the sorted list begins with n−1 entries, one for each pair
of classes {i, i+ 1} for i = 1, . . . ,n. Each step, by com-
bining two entries, reduces the size of the list by one and
greedy terminates when there are k entries. Combining a
pair of classes is constant time. Inserting and removing
from the sorted list can be done in O(logn) time. As we
show in Section 3, the greedy algorithm exhibits close to
optimal performance.

2.2 Other shapers

As outlined in the introduction, when using priority
queues for bandwidth shaping, we only need three
queues; one for classes that are completely satisfied, one
for the partially satisfied class, and one for the unsatisfied
classes. We could further split these queues to protect
against inaccurate demand estimates. We leave grouping
of priority queues to achieve low latency for future work.

Approximating many rate limiters with few is similar,
but simpler than weighted fair queuing. Rate limiters,
unlike WFQs, are not work conserving; they hold each

4



Operation Latency Freq
Update shaper 2.2ms every adapt. intrvl

Update 40 shapers 5.6ms every adapt. intrvl
Point rule to diff. shaper 2.1ms every adapt. intrvl

Insert a new ACL 12.05ms once
Add new rule to an ACL 13.43ms once, classes arrive/ leave

Updating a rule 7.13ms once, classes arrive/ leave
Apply ACL to an i/f 4.72ms once

Table 2: Changing switch parameters on an Arista7048S using a
Python script on the EOS shell

 0

 100

 200

 300

 10000  20000  30000  40000  50000  60000

# Jobs

 0
 50

 100
 150

 10000  20000  30000  40000  50000  60000

Time (s)

# Flows(x1000)

Figure 3: vShaper’s ability to keep apart per-job traffic in a large
map-reduce cluster

class to a specified rate value whereas WFQs distribute
excess bandwidth among the classes that can use it. As-
sume each class has a rate limit Ri and demand di. Here
too, mapping under-rate classes (di ≤ Ri) into a single
rate limiter with limit ∑Ri does not impact the rates ob-
tained by these classes. Similarly, for over-rate classes,
mapping classes with the same di

Ri
into the same rate lim-

iter would result in the correct rate limits for all grouped
classes. With this intuition, we can use a similar greedy
algorithm to cluster many classes into a few rate limiters.

3 Evaluation

To verify the feasibility of vShaper, we micro-
benchmarked various aspects of vShaper on an Arista
7048S 48x10G switch. We used access-control
lists (ACLs) to specify the classes and to measure their
demands. The ACL counters were very accurate– less
than 1% error over the entire range of demands [0,
10Gbps]. We report the latency to modify different as-
pects of switch state in Table 2. The numbers are over-
estimates and could improve by optimizing the Python
script that runs on the switch (for e.g., by batching up-
dates, see time to update 1 and 40 shapers). We conclude
that it is possible to adapt switch state at least an order of
magnitude more often than end-to-end controllers.

We further evaluate vShaper in the context of large
data-parallel clusters to allocate bandwidth across hun-
dreds of concurrent jobs. We perform a fluid model sim-
ulation that replays traces from a several thousand node
production data-parallel cluster. Figures 3 (middle, bot-
tom) show the number of jobs and their flows that pass
through a typical link in the examined cluster. We see
that on average there are over 100 jobs and over 50K
flows on that link. Suppose that the goal of shaping is
to provide equal share across jobs independent of their
number of flows. Fig. 3 (top) shows the RMSE be-
tween rates achieved by vShaper when mapping jobs to 8
queues compared to those achieved by an “ideal” scheme
that maps each job to a separate queue. Whereas the
ideal scheme would require hundreds of WFQs, vShaper
achieves an error of about 3% with 8 queues, indicating
that vShaper’s mapping can be effective in practice.

To compare vShaper with several variants, we present
results on a simulated dataset that has thousands of traf-
fic samples. Each sample contains a number of classes
n sampled from an exponential distribution with mean
10. The demands and weights of each class are sampled
from a pareto distribution with shape parameter of 0.4.
Figure 4 compares vShaper with several alternatives – no
shaping (just 1 queue), a scheme that randomly assigns
classes to queues and sets the weight of the queue to be
the sum of the weights of classes assigned to that queue,
two schemes proposed by NetShare [20], the dynamic
programming based algorithm described in §2.1 and an-
other contiguous grouping scheme that partitions the
overweight classes geometrically on w

d . In other words,

given n classes and k queues, let γ =
(

maxi wi/di
mini wi/di

) 1
k , this

scheme assigns class i to the queue j for the smallest
value j that satisfies wi

di
≤ γ j mini

wi
di

. For details about
NetShare’s schemes, we refer the reader to [20]. We
see that using 8 queues, vShaper’s error, at the 90th per-
centile (across different traffic samples) is approximately
1%, compared to 15% of algorithms proposed by Net-
Share (see Fig. 4). Neither of the schemes proposed
by NetShare perform much better than random. Also,
vShaper’s greedy algorithm has error that is compara-
ble to that of the dynamic program. Recall that the DP
scheme has O(n2k) time complexity whereas the greedy
algorithm has O(n logn) time complexity. On the other
end, vShaper has better error than the geometric partition-
ing algorithm which has O(n) time complexity. Finally,
note that, as expected, the error reduces quickly with the
number of available shapers. The marginal reduction in
error when going from 2 to 4 queues is roughly 4X larger
than when going from 6 to 8 queues. This hints that a
small number of shapers may suffice.

5



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1  2  3  4  5  6  7  8  9

R
M

S
E
 /
 C

ap
ac

it
y

Number of Shapers (Weighted Fair Queues)

NetShare: High and Low + Random
NetShare: Random -> Equal Wt Qs 

Random
Geometric Partition on d/w

vShaper (greedy)
Dynamic Programming

Figure 4: On simulated data, we find that vShaper’s shaping leads
to much less error than alternatives. The lines are at the 90th percentile,
whereas the upper error bar is at the maximum. We see that vShaper,
with just eight queues, yields no worse than a couple percentage error
whereas the best previously known scheme has more than 15% error.
In fact, random mapping requires about 100 queues before it achieves
error that is similar to vShaper with eight queues.

4 Related Work and Final Remarks

There is a large body of work on network resource allo-
cation that vShaper could apply to. On sharing network
bandwidth, Seawall [24] provides a per-VM max-min
weighted fair share using TCP-style end-to-end conges-
tion feedback and rate adaptation; SecondNet [18] and
Oktopus [16] carve network-slices for tenants and en-
force them using rate limits per VM; FairCloud [23] de-
signs better policies for sharing bandwidth (e.g., those
that are strategy proof) and eyeQ [19] provides per-VM
max-min weighted fair shares in the context of a full bi-
section bandwidth datacenter topology where congestion
is limited to the first and the last hops. pFabric [15]
argues for a switch with very small buffers, extremely
granular priorities (e.g., based on remaining bytes in that
flow) and strict priority based packet deliver, i.e., switch
chooses packets to send (and drop) based on their prior-
ities; this achieves near-optimal flow completion times,
but could starve long flows with low priorities. By virtu-
alizing WFQs, rate limiters and priority queues, vShaper
can significantly simplify each of these solutions. In that
respect, vShaper is closest to NetShare [20] which also
observes that using WFQs on the data path simplifies
bandwidth sharing. However, vShaper uniquely offers
techniques to dynamically map many more classes onto
the few available shapers based on their estimated de-
mands. Finally, vShaper builds on the recent availability
of open switch software stacks (e.g., Arista EOS) and
OpenFlow [12] which allowed us to run Python scripts
on the switch and programmatically alter aspects along
the data plane (viz: demand estimation, mapping of
classes to WFQs).

In conclusion, vShaper shows that by dynamically
mapping traffic classes on to hardware shapers, based
on demand estimates, it can mimic the behavior of a hy-

pothetical entity that supports many more shapers. We
showed that such dynamic mapping can be implemented
along the data plane on today’s commodity switches.

References

[1] Arista 7050S Switch. http://goo.gl/JHwgW.
[2] Cisco: Configuring Weighted Fair Queuing. http://

bit.ly/g0PU2r.
[3] Cisco Nexus ACL Guide. http://goo.gl/tz7jh.
[4] Cisco Nexus QoS Guide. http://goo.gl/oicTM.
[5] Dell Force10 S4810 Switch. http://goo.gl/V1fq2.
[6] Google’s Secret Switch to the Next Wave of Networking.

http://bit.ly/Iup9s8.
[7] High Levels of AWS Growth. http://bit.ly/PRN7Fa.
[8] IBM RackSwitch G8264 Application Guide. http://

goo.gl/eZpRS.
[9] Juniper EX3300 Switch. http://goo.gl/vBC24.

[10] Juniper: Understanding CoS Priority Group Shaping and
Queue Shaping. http://juni.pr/Yd928A.

[11] Mellanox MLX4 Driver for VMware. http://bit.ly/
XQLhWB.

[12] OpenFlow. http://www.openflow.org/.
[13] Personal Communication with Nick McKeown.
[14] A. Greenberg, N. Jain, S. Kandula, C. Kim, P. Lahiri, D.

A. Maltz, P. Patel, and S. Sengupta. VL2: A Scalable and
Flexible Data Center Network. In SIGCOMM, 2009.

[15] M. Alizadeh et al. Deconstructing datacenter packet
transport. In HotNets, pages 133–138, 2012.

[16] H. Ballani et al. Towards Predictable Datacenter Net-
works. In ACM SIGCOMM, 2011.

[17] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classifi-
cation and scene analysis 2nd ed. 1995.

[18] C. Guo et al. SecondNet: A Data Center Network Vir-
tualization Architecture with Bandwidth Guarantees. In
CoNEXT, 2010.

[19] V. Jeyakumar et al. EyeQ: Practical Network Perfor-
mance Isolation for the Multi-tenant Cloud. In Usenix
HotCloud, 2012.

[20] V. T. Lam, S. Radhakrishnan, A. Vahdat, G. Varghese,
and R. Pan. Netshare and stochastic netshare: Predictable
bandwidth allocation for data centers. SIGCOMM CCR,
2012.

[21] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable,
Commodity Data Center Network Architecture. In SIG-
COMM, 2008.

[22] N. McKeown et al. Tiny tera: A packet switch core. In
Hot Interconnect, 1996.

[23] L. Popa et al. FairCloud: Sharing the Network in Cloud
Computing. In ACM SIGCOMM, 2012.

[24] A. Shieh et al. Sharing the Data Center Network. In
Usenix NSDI, 2011.

[25] C. Wilson et al. Better Never than Late: Meeting Dead-
lines in Datacenter Networks. In ACM SIGCOMM, 2011.

6

http://goo.gl/JHwgW
http://bit.ly/g0PU2r
http://bit.ly/g0PU2r
http://goo.gl/tz7jh
http://goo.gl/oicTM
http://goo.gl/V1fq2
http://bit.ly/Iup9s8
http://bit.ly/PRN7Fa
http://goo.gl/eZpRS
http://goo.gl/eZpRS
http://goo.gl/vBC24
http://juni.pr/Yd928A
http://bit.ly/XQLhWB
http://bit.ly/XQLhWB
http://www.openflow.org/

	Introduction
	Design Principles of vShaper
	Algorithms for contiguous grouping
	Other shapers

	Evaluation
	Related Work and Final Remarks

