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In this paper, we study incentive mechanisms for retrieving information from networked agents. Following

the model in [Kleinberg and Raghavan 2005], the agents are represented as nodes in an infinite tree, which is

generated by a random branching process. A query is issued by the root, and each node possesses an answer
with an independent probability p = 1/n. Further, each node in the tree acts strategically to maximize

its own payoff. In order to encourage the agents to participate in the information acquisition process, an
incentive mechanism is needed to reward agents who provide the information as well as agents who help to

facilitate such acquisition.

We focus on designing efficient sybil-proof incentive mechanisms, i.e., which are robust to fake identity
attacks. We propose a family of mechanisms, called the direct referral (DR) mechanisms, which allocate

most reward to the information holder as well as its direct parent (or direct referral). We show that, when

designed properly, the direct referral mechanism is sybil-proof and efficient. In particular, we show that we
may achieve an expected cost of O(h2) for propagating the query down h levels for any branching factor

b > 1. This result exponentially improves on previous work when requiring to find an answer with high

probability. When the underlying network is a deterministic chain, our mechanism is optimal under some
mild assumptions. In addition, due to its simple reward structure, the DR mechanism might have good

chance to be adopted in practice.

Categories and Subject Descriptors: G.2 [Mathematics of Computing]: Discrete Mathematics; G.3
[Mathematics of Computing]: Probability and Statistics; F.2.0 [Analysis of Algorithms and Prob-

lem Complexity]: General; J.4 [Social and Behavioral Sciences]: Economics

General Terms: Economics, Theory

Additional Key Words and Phrases: query incentive networks; query incentive mechanisms; sybil-proof
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1. INTRODUCTION

Many information systems, e.g., peer-to-peer networks or social networks, are designed such
that queries are answered by networked agents instead of a centralized authority. In such
a system, the query propagates in the network with the hope that it will eventually reach
some agents which hold (and return) an answer. For such query models, it is important to
design an incentive mechanism to encourage the query propagation and the return of the
answer. In addition, we would like the mechanism to be efficient, with low expected cost
for the root, and sybil-proof, discouraging the agents to disrupt or delay the query process
by producing fake identities. In this paper, we will present a family of mechanisms which
can achieve these two goals simultaneously.

We mainly follow the query incentive network model invented by Kleinberg and Raghavan
[2005]. Under the model, each agent is represented as a node in a fixed infinite d-ary tree.
A query is issued by the root, where each node in the tree may have an answer with a fixed
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probability p. Information, query or answer, can propagate along the edges in the tree which
are “turned on” according to a random branching process. Each node, with a local view of
the tree, can decide if it continues to propagate the query to its children and to forward
back an answer to its parent. The nodes are self-interested and risk-neutral so they choose
the actions that maximize their expected payoff. In the model, there is a fixed unit cost in
forwarding a selected answer along each edge. On the other hand, it is free to propagate
the queries.

In [Kleinberg and Raghavan 2005], the authors considered incentive mechanisms in the
form of fixed-payment contract, where each node offers a fixed amount of reward, which is
in turn a part of the reward promised by its parent, to its children, under the condition
that the child propagates back an answer (and accepted by the root). In the paper, the
authors obtain the lowest possible cost (or reward) needed for such mechanisms to retrieve
an answer with a constant probability. The cost depends on the rarity of the answer, defined
as n = 1/p, and the branching factor b, the expected number of edges to children that are
“turned on” by the random process. The paper showed a phase transition phenomenon at
b = 2: when b > 2, the mechanism can achieve low cost of O(log n); when b < 2, the cost
explodes to nΩ(1), which is exponential to the number of levels needed to explore.

The work of Kleinberg and Raghavan [2005] motivated many subsequent works. In par-
ticular, Arcaute et al. [2007] extended the results to more general random processes, and
observed the similar phase transition phenomenon. Cebrian et al. [2012] analyzed a differ-
ent type of mechanism, called split contract, which models a successful scheme used by the
winner [Pickard et al. 2011] of the DARPA Network Challenge (also known as Red Balloon
Challenge) [DARPA 2009]. Roughly speaking, in the split contract mechanism, the answer
holder receives the specified reward, while each “referral” on the path to the root receives a
fraction of its child’s reward. Cebrian et al. [2012] showed that the split contract can achieve
low cost even when b < 2. However, unlike the fixed-payment contract scheme, the split
contract is not sybil-proof, as one can produce fake identities in the tree to obtain higher
expected payoff.

In our paper, we propose a new family of mechanisms which distribute most reward to,
in addition to the agent who provides the answer, the direct referral, i.e., its parent. We call
such query incentive mechanisms as Direct Referral (DR) mechanisms. We show that the
direct referral mechanism, when designed properly, can discourage sybils, i.e., it is not to the
agents’ interest to create fake identities, as well as obtain a low cost to retrieve an answer
for any b > 1. In particular, the scheme still has a low cost when the success probability is
close to 1 − ζ, e.g., with probability 1 − ζ − O(1/n), where ζ is the extinction probability
of the branching process. Both fixed-payment contracts and split contracts incur high cost
when the success probability approaches 1− ζ.

The following two theorems summarize the main results.

Theorem 1.1. If the underlying branching process is a deterministic chain, there exists
a sybil-proof direct referral incentive mechanism with expected cost O(nh2), where h is the
desired level of agents the root wants to propagate the query and n is the answer rarity.

Furthermore, the direct referral mechanism is optimal on the chain among all the sybil-
proof query incentive mechanisms which satisfy some mild assumptions (Section 4.3). Due
to space limitation, the proof of the optimality is presented in the full version [Chen et al.
2013].

Theorem 1.2. For any branching process with branching factor b > 1, there is a
constant pb > 0 such that for any answer rarity n with 0 < 1/n < pb, there exists a sybil-
proof direct referral query incentive mechanism with expected cost O(h2), where h is the
desired level of agents the root wants to propagate the query.
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Notice that the above bound holds for b > 1 so the direct referral mechanism, com-
pared to the fixed-payment contract mechanism, can achieve low cost for a larger family of
branching processes. In addition, the cost (when b > 1) has a polynomial dependence on
the level h instead of the rarity n. Therefore, in the case of retrieving an answer with high
probability, i.e., a probability which is close to the extinction probability of the branching
process, the expected cost is still polynomial in h, rather than polynomial in n (in this
case, n is exponential in h). In contrast, query incentive networks with either fixed-payment
contracts [Arcaute et al. 2007] or split contracts [Cebrian et al. 2012] have cost polynomial
of n in the high probability case.

The direct referral mechanism has the natural structure of rewarding the answer holder
and the direct referral while the others only receive minimum compensation for routing
the answer. Such simplicity might be highly desirable for practical adoption. On the other
hand, despite the simplicity of the direct referral scheme, we show that the mechanism can
be quite robust, i.e., sybil-proof, and efficient. Actually, in the case of the infinite chain, we
can show that such scheme is optimal among all the sybil-proof mechanisms with some mild
assumptions.

Intuitively, by rewarding the direct referral, the DR mechanism encourages any agent
who does not have an answer to propagate the query as there is a chance that one of its
children may have an answer (and get selected by the root) so the agent can win the direct
referral reward. In addition, for any agent, no matter how many sybils it creates, at most
one of them receives the “direct referral” reward. Therefore, if we design the direct referral
rewards such that they decrease rapidly enough as the depth increases, the potential gain of
the sybils may be offset by the gap between the direct referral rewards in the two different
levels. Of course, the gap cannot be too large for it would increase the expected cost for
the root. Indeed, we will show that with mildly decreasing direct referral rewards, we can
achieve both sybil-proofness and low cost at the same time.

1.1. Related Work

The model of query incentive networks was introduced by Kleinberg and Raghavan [2005],
where they considered a simple branching process in an underlying d-ary tree, i.e., each
edge exists with an independent probability b

d with branching factor b > 1. Kleinberg
and Raghavan observed an interesting phase-transition phenomenon with fixed-payment
contracts. Specifically, when b > 2, in order to retrieve the answer with constant probability,
the reward needed for the root to offer is O(log n) which is asymptotically optimal. However,
when 1 < b < 2, the cost grows to nΘ(1), i.e., the root needs to pay a reward that is
exponentially larger than the expected distance for finding an answer in this case.

Arcaute et al. [2007] generalized the simple branching process in [Kleinberg and Raghavan
2005] to an arbitrary GW branching process in which the number of children of a node
is determined by a fixed offspring distribution. They observed that the phase transition
phenomenon at branching factor b = 2 still exists in this general case. Furthermore, they
also observed that when it requires to find the answer with high probability, e.g., with
probability 1−ζ− 1

n , where ζ is the extinction probability of the branching process, the phase
transition phenomenon vanishes. In particular, for any branching process with branching
factor b > 1, to retrieve an answer with high probability, the required reward is nΘ(1). They
also showed that in a deterministic chain (b = 1), the cost of the root is Ω(n!) for finding
an answer with constant probability.

Kota and Narahari [2010] analyzed the reward for such fixed-payment contracts when
the degree distribution follows power-law. Dikshit and Yadati [2009] considered the quality
of the answers in query incentive networks. Both models exhibit similar phase transition
phenomena at b = 2 as in [Arcaute et al. 2007; Kleinberg and Raghavan 2005].



Proceedings Article

Cebrian et al. [2012] presented a split contract based mechanism motivated by the success
of the winning team of the DARPA challenge. In this mechanism, the root provides a reward
r to the answer holder. A “shortest path” based answer selection scheme is adopted in case of
multiple reachable answers. See Section 2.3.1. Each node in the path to the selected answer
will receive a fraction of the reward received by its child. With the split contract mechanism,
it is shown that the phase transition phenomenon vanishes at b = 2. In particular, for any
GW branching process with branching factor b > 1, the cost to retrieve an answer with
constant probability is O(log n) in a Nash equilibrium which is asymptotically optimal.
Therefore, split contract based query incentive networks are more efficient. However, if we
want to retrieve an answer with high probability, split contracts also need reward of nΩ(1).

In the previous studies on the query incentive networks, generating fake identities is not
part of the agents’ strategy. In other words, sybil-proofness is not explicitly explored. In fact,
we show that the fixed contract based mechanisms are “sybil-proof” while split contract
mechanisms are clearly not.

How to prevent sybil attacks [Douceur 2002] has been studied in many aspects of computer
networks. Babaioff et al. [2012] presented a sybil-proof scheme for the Bitcoin system. There
are several major differences between the Bitcoin system and a query incentive network.
Most notably, instead of a branching process, the network in the Bitcoin system can be
intentionally constructed, which gives the mechanism designer an additional freedom to
address the sybil-proofness. Therefore, the results in [Babaioff et al. 2012] cannot be directly
applied to a query incentive network. They adopted the iterated removal of dominated
strategy, which is a stronger solution concept than the Nash equilibrium used in this paper.

Sybil-proofness mechanisms for multi-level marketing is studied in [Emek et al. 2011;
Drucker and Fleischer 2012]. In the multi-level marketing, there is a fixed cost (price) for a
sybil to purchase the product. Therefore, to enforce sybil-proofness, the mechanisms try to
cap the referral fees. Douceur and Moscibroda [Douceur and Moscibroda 2007] gave a sybil-
proof lottery tree mechanism for motivating people to install and run a distributed service in
a peer-to-peer system. The issue of sybil-attacks have also appeared in many other contexts
such as reputation mechanisms [Cheng and Friedman 2005], combinatorial auctions [Todo
et al. 2009], social choice [Wagman and Conitzer 2008; Conitzer and Yokoo 2010], and
cost-sharing games [Penna et al. 2009]. One major difference between our problem (as well
as Babaioff et al. [2012]) with these problems is they are dealing with static configurations,
which make sybil-proofness hard to achieve. In our results, we punish sybils by reducing
their probability of winning in a probabilistic environment. In particular, our mechanism is
not sybil-proof if the agents know the outcome of the environment. Such trade-off for sybils,
i.e., more reward conditioned on winning with smaller winning probability, is not available
with static inputs. Nevertheless, we believe the results in this paper may be of interest in
other settings.

2. QUERY INCENTIVE NETWORKS: A NORMAL FORM

In this section, we describe the problem and the model formally. In particular, we provide
formal definition for the random branching process for information propagation and the
various components that constitute an incentive mechanism.

2.1. The branching process

Following previous works, the underlying network is generated by a Galton-Watson (GW)
branching process on an infinite d-ary tree. In the branching process, each node v samples
its number of children C(v) independently according to a given distribution D. Afterwards,
v selects C(v) children, out of its d children uniformly at random, and connects to them.
The final tree Tr in the branching process is the connected component containing the root.
We call an agent u active if u ∈ Tr and non-active otherwise.
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Formally, given an offspring distribution D = {ci}di=0, where
∑d
i=0 ci = 1 and ci ≥ 0 is the

probability to have i children, define the probability generating function of the branching
process as

Ψ(x) =

d∑
i=0

cix
i. (1)

A basic parameter for the branching process is the branching factor b =
∑d
i=0 ici, defined

as the expectation of D. The extinction probability ζ of the branching process is the prob-
ability that the branching process dies out, i.e., the final tree Tr is finite. A well known fact
is that ζ = 1 if and only if b < 1 or b = 1 with c0 > 0, and 0 ≤ ζ < 1 otherwise.

For the query issued from the root, each node in the underlying tree has an answer
with an independent probability p = 1/n, where n represents the rarity of the answer. So in
expectation, we should reach out Θ(n) nodes to obtain an answer with constant probability.

2.2. Query model

Given the above process for generating the network, the query process works as follows:

(1) The root announces the incentive mechanism, which stipulates rules for selecting the
answer and for rewarding the involved agents.

(2) The query is propagated, starting from the root, down the tree as generated by the
above branching process.

(3) Each node (agent) in the tree, when receiving the query, may decide whether to continue
to propagate the query, and whether, in case it has an answer, to report the answer
back to its parent,

(4) When an agent has an answer and/or receives reports of answers from its subtree, it
chooses to report a subset (can be empty) of the answers to its parent. After the root
receives all reports, a winning answer is selected.

(5) The holder of the winning answer forwards the answer to the root through the path in
the tree. If any node on the path decides not to forward, no payment will be made.

(6) Once the root receives the answer, the rewards are paid to the nodes according to the
rule announced in Step (1).

One significant difference between our model and the previous work is that in our model
the incentive mechanism is determined by the root but the previous work allows a mixture of
global and local contracts. For example, in the fixed-payment contract or the split contract
schemes, the type of contracts as well as the process for selecting an answer are fixed globally,
but each node can decide locally how to enter into a contract with its parent or children.

In our model, the incentive mechanism announced by the root contains a global reward
allocation scheme, which maps any final configuration to a set of rewards to the agents.
While such a global reward scheme may seem limiting as it takes away the freedom enjoyed
by the nodes in the fixed-payment contract and split contract mechanisms, it is still non-
trivial to address the new challenge of sybil attacks. On the other hand, we show later in
this section that it is possible to describe the equilibrium of a local contract-based scheme
by a global reward allocation scheme.

2.3. Query incentive mechanism

We call an answer (or the agent who has the answer) reachable from the root if all the
agents on the path from the root to the answer are active in the branching process and
decide to propagate the query. The query incentive mechanism determines how an answer is
selected when there are multiple reachable answers, and how the rewards are allocated. To
prevent arbitrarily complex mechanisms, we focus on mechanisms that satisfy the following
properties.
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(1) Complete: If there exist reachable answers, the mechanism will select one.
(2) Unique: Only one answer is selected if multiple answers are presented.
(3) Anonymous: Agents are not treated preferentially a prior.

Such properties have been implicit in the previous work. In addition, by requiring these
properties, it makes the analysis easier. For example, the anonymity is helpful in addressing
sybil-proofness since the identities of the agents can be manipulated. We now describe
families of mechanisms that achieve the above properties. We divide the query incentive
mechanism into two steps: the answer selection step and the reward allocation step.

2.3.1. Answer selection. The answer selection step chooses one answer when multiple answers
are reachable from the root. We consider two answer selection schemes, both appeared in
the literature, that satisfy the above properties.

— Random Walk (RW): In RW scheme, starting from the root, at each step, we select
one child uniformaly at random from those children who have reported the existence of
answers in its subtree. We continue the random walk until we reach an answer, which is
selected.

— Shortest Path (SP): Among all the reachable answers, we exclude those that are not the
closest to the root. We then perform the above RW process for the remaining answers.

Both schemes have very natural interpretation. In the RW scheme, after the formation
of the network, each node that has an answer reports its answer to its parent. If a node,
who does not have an answer itself, receives reports of multiple answers from all children, it
randomly selects one and reports it to its parent. In particular, if one node has an answer,
it will not report answers from its subtree. The process continues until the root selects one
of the answers reported to it uniform at random.

The SP scheme on the other hand can be viewed as the RW scheme for impatient agents.
One node reports back to its parent as soon as it receives the query, in the case it has
an answer. When the node does not have an answer, it immediately reports back when it
receives reports of answers. In case of multiple answers reported simultaneously, it will select
one uniform at random. However, unlike RW scheme, the node will not wait the responses
from all children. We will use the SP answer selection scheme in our mechanisms.1

2.3.2. Reward allocation. Once an answer is selected, the reward allocation step determines
how the rewards are assigned to the nodes on the answer path P , i.e., the path from the
root to the selected answer. To achieve anonymity, we require the reward allocation scheme
to be oblivious.

Definition 2.1. Oblivious Reward Allocation Scheme. A reward allocation scheme
maps any particular answer path P in a resulting branching process Tr to a set of payments
to the agents in P :

f : Tr, P ∈ Tr → [1,∞]|P |.

The reward scheme f is oblivious if ∀P ∈ Tr, P ′ ∈ T ′r such that |P | = |P ′|, we have

f(Tr, P ) = f(T ′r, P
′).

For a node u ∈ P , we denote its reward as fu(P ).

In particular, an oblivious reward allocation scheme only cares about the length of the answer
path. It does not consider the identities of the agents in the path and the structure of the
resulting branching process. Although this is a restriction on the space of reward allocations,

1The reporting strategy described above is only for interpretation. In a Nash equilibrium, we assume an
agent will report all answers it is aware of. The tie-breaking is handled by the root after receiving all reports.
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oblivious reward allocation schemes are convenient in case of sybil-attacks, since both the
identities and the structure of the branching process can be manipulated unexpected. In
fact, we will show that the equilibria studied in the fixed-payment contract and split contract
based query incentive networks imply oblivious reward allocation schemes.
Remark: In our model, we assume there is no cost for the agents. To avoid trivial reward

allocations, we require all rewards are normalized to be at least one. This is slightly different
with previous literature on query incentive networks where a fixed unit cost is assumed in
forwarding the final selected answer. We choose the reward normalization instead of the
forwarding cost to avoid defining the answer forwarding cost for sybils. Nevertheless, it is
straightforward to generalize our results to the unit forwarding cost case as long as the cost
for sybils is properly defined.

For a query incentive mechanism with an oblivious reward allocation scheme, the expected
cost of the mechanism is defined as

EP [
∑
u∈P

fu(P )],

where P is the answer path selected and f(·) is the reward allocation scheme. If there is
no reachable answer, P is empty. The expectation is taken over the randomness of the
branching process, the answer distribution and the answer selection scheme.

2.4. Sybil attack

Once the incentive mechanism is announced, an agent which is reachable from the root can
choose the action to maximize its (expected) payoff. The agent can choose to propagate the
query or not. When it has answers either from itself or reported from its children, it can
choose to report a (possibly empty) subset of them to its parent. One important action we
consider is the creation of fake identities (or sybil attack). We allow the following type of
sybil attacks.

— Tree augmentation with sybils. One agent is allowed to generate a possibly infinite
tree of sybils attaching to its parent. Its original children can be attached to one particular
sybil in the tree.2 The reward of the agent is the total rewards that are received by all
its sybils.

— Answer placement. If the agent have an answer, it is allowed to place its answer to
any subset of the sybils.

— Decision timeframe. We always assume an agent knows whether it has an answer or
not before its strategic decision. We can also assume the action taken by the agent is
conditioned on the event that it is active in the branching process.

With the above definition of sybil-attack, we call a query incentive mechanism is sybil-
proof if the strategy profile in which no agent generates any sybil is a Nash equilibrium.

Definition 2.2 (Sybil-proof query incentive mechanisms). A query incentive mechanism,
consisting of an answer selection scheme and a reward allocation scheme, is sybil-proof with
level h if the following strategy profile is a Nash equilibrium:

— All agents in the underlying d-aray tree in level 1 to h−1: If the agent contains an answer,
it directly reports back to its parent and does not propagate the query. Otherwise, the
agent chooses to propagate the query to its children. After it receives reports of answers
from the children, it reports all answers to its parent. It chooses to forward the answer
to its parent if one answer is selected from its subtree.

2It would be interesting to consider the case that different children can be attached to different sybils in
the tree. Our analysis unfortunately cannot handle this case.
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— The agents at level h: If the agent has an answer, it directly reports back to its parent.
If the answer is selected, it chooses to forward the answer to its parent. The agent will
not propagate the query further.

Although we assume the decision of the agent is conditioned on the event that it is active
in the branching process, such condition is in fact not necessary, i.e., the agent should take
the same strategy independent of whether it is active. This can be easily seen since if the
agent is not active, all strategies will have utility zero. In what follows, we will analyze our
mechanisms without conditioning on the activeness of the agents.

2.5. Formulating contract-based mechanisms by global reward allocation schemes

To illustrate the connection between the global reward allocation scheme studied in the
paper and the previous work, we describe how one would formulate an equilibrium of a
contract-based mechanism as a global reward allocation scheme. We will mainly discuss the
case for the fixed-payment contracts. The case for the split contracts is similar.

In a fixed-payment contract query incentive network, the root provides a total reward r0

for an answer of the query. In particular, the root enters a contract with its child u, i.e., if
one answer from u is selected, the root will pay r0 to u. Then query is propagated down
the tree, during which each node v determines the reward to its children. Finally, if there
are multiple answers reported, the root will select an answer using the RW answer selection
scheme. The agents on the path from the root to the selected answer holder are offered the
reward based on the fixed-payment contracts determined. In particular, the utility of an
agent v in the path is rpv − rcv − 1, where rpv is the reward offered by its parent and rcv is the
reward v offered to its children. If v is holding the selected answer, rcv = 0. Notice that all
agents in the path except the root will pay a unit cost to forward the answer.

The strategy of each participating node v is a function fv(·), i.e., if the offer from its
parent u is ru, it will offer a reward of rv = fv(ru) to its children. Then an equilibrium
in the query incentive network is defined by the set of functions {fv} for all participating
nodes. (For simplicity, we omit the discussion on the strategy that the nodes decide to
participate in this section.)

For any given equilibrium in the fixed-payment contract query incentive network, we can
construct a reward allocation scheme as follows. Let P = {v1, v2, . . . , v`} be the sequence of
nodes in the path from the root (excluded) to the selected answer holder. We will reward
node vi by amount of fvi−1

(fvi−2
(· · · fv1(r))), where r is the total reward offered by the root.

(It ` = 1, the first node receives a reward of r.) Clearly, this is a valid reward allocation
scheme. Furthermore, if the equilibrium is symmetric, i.e., all nodes in the i-th level play
the same strategy f i(·), the corresponding reward allocation scheme is in fact oblivious.

For an equilibrium in the split contract query incentive network, we can construct such
a reward allocation scheme as well. However, it is clear that such an equilibrium does not
lead to a sybil-proof query incentive mechanism. Consider the case with a single chain with
branching factor b = 1. The first agent who has the answer can create a sybil and sign a
split contract with ratio 0 with it. In this way, the agent gets all the initial reward, which
is much more than its fair share in the equilibrium.

For query incentive networks with fixed-payment contracts, it is shown that there exits
a best-interest Nash equilibrium [Cebrian et al. 2012] with a unique strategy function f(·)
for all participating agents [Kleinberg and Raghavan 2005]. Notice that if one agent has an
answer, it will report truthfully and pocket all the reward offered because creating sybils
will not increase the total reward in this case while it could reduce the probability that its
answer is selected in either RW or SP schemes. In fact, we have the following result.

Theorem 2.3. The best-interest Nash equilibrium in the fixed-payment contract query
incentive network with the RW answer selection scheme defines a sybil-proof query incentive
mechanism.
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Proof. Let the best interest Nash equilibrium in the fixed-payment contracts be {f(·)}
with initial reward r0. We have shown that if one agent has the answer, it has no incentive to
attack with sybils. It is sufficient to consider agents that do not have answers. Now assume
the reward allocation scheme defined by f(·) is not sybil-proof, i.e., one agent at level i has
incentive to attack with k additional sybils between itself and its children in the normal
form.

Correspondingly, consider the original game with fixed-payment contracts. We show that
the same agent at level i would benefit by not following f(·) in the equilibrium. In particular,
in receiving offer ri−1, the agent will offer its children ri+k = f (k+1)(ri−1) instead of ri =
f(ri−1), where f (k+1)(·) is the function to iteratively apply f(·) for k + 1 times.

In both cases, i.e., the normal form with k sybils and the fixed-payment contract game
with offer f (k+1)(ri−1), all the (real) descendants will react as if they are lower in the tree.
Notice that the two trees in the two cases are slightly different. However, the RW answer
selection scheme will not be impacted by the sybils. Therefore, for the attacking agent, the
probabilities that it is on the answer path are the same in both cases.

Let p1 and p2 be the probability that the agent is on the answer path if it does not
attack and does attack with k sybils respectively. With answer selection scheme RW, we
have p1 ≥ p2. By the assumption of the non-sybil-proofness in the normal form without
forwarding cost, we have

p2 · (ri−1 − ri+k) > p1 · (ri−1 − ri). (2)

Notice that in the fixed-payment contract game, the expected utility if this agent plays
truthfully is p1 · (ri−1 − ri − 1). The expected utility if this agent plays ri+k is p2 · (ri−1 −
ri+k − 1). Since p2 ≤ p1, by Eqn. (2), we have

p2 · (ri−1 − ri+k − 1) > p1 · (ri−1 − ri)− p2 ≥ p1 · (ri−1 − ri − 1).

In other words, f(·) is not an equilibrium of the game with fixed-payment contracts. It is a
contraction.

Remark: We showed the sybil-proofness with the RW answer selection scheme. Our proof
does not directly apply to the SP answer selection scheme, which we leave as an interesting
problem.

Although fixed-payment contracts already imply a sybil-proof query incentive mechanism,
it is not cost-effective for the case of b < 2 [Kleinberg and Raghavan 2005] or if one wants
to find an answer with probability 1− ζ − 1

n [Arcaute et al. 2007]. In the rest of the paper,
we will propose a new mechanism that is more cost-effective in these two cases.

3. TECHNICAL PREPARATIONS

One main complexity of our analysis comes from the branching process. In this section, we
summarize and develop some technical results regarding the branching process which will
be needed in the analysis.

Define φi as the probability that there is no answer in the nodes of the first i levels of
the branching process. Then the probability that the first answer in our branching process
is at level i ≥ 1 is λi = φi−1 − φi, with φ0 = 1.

Some crucial properties of the sequence of {λi} are summarized in Lemma 3.1. One
essential property is that {λi} is single-peaked: it first increases approximately geometrically
with a constant ratio. Then it stays at nearly maximum value for a constant number of levels
until it starts to decrease geometrically. This property might be of independent interest.

Lemma 3.1. Consider a branching process with branching factor b > 1. There exist
levels 1 ≤ `1 ≤ `∗ such that
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(1 ) {λi} is a single-peaked sequence, peaking at level `∗, i.e., ∀i ≤ `∗, λi−1 ≤ λi and ∀j ≥ `∗,
λj > λj+1.

(2 ) There exists constant ρ > 1, such that ∀i < `1, λi+1 ≥ ρ · λi.
(3 ) λ`1 = Ω(1) and consequently `∗ − `1 = O(1).
(4 ) There exists constant γ > 1, such that ∀i ≥ `∗ + 2,

∑
j≥i λj ≤ γ · λi.

Following the analysis in the literature, we fix the branching factor b as a constant but
we allow n to grow.

Define function

t(x) =

d∑
j=0

cjx
j(1− 1

n
)j .

Notice that φi = t(φi−1) = t(t(φi−2)) = t(i)(1). This is because, if the root has j children,
then the event that there is no answer at the first i levels (with probability φi) is the same
as the event that none of its j children has the answer (with probability (1− 1

n )j) and none

of the i− 1 level subtrees rooted at its children has the answer (with probability φji−1). The
following result studies the growth rate of λi.

Proposition 3.2. For all i ≥ 1,

λi+1

λi
∈ [t′(φi), t

′(φi−1)]. (3)

Proof. Notice that φ(i) = t(φi−1). Therefore, λi+1 = φi − φi+1 = t(φi−1) − t(φi).
As t(·) is continuous, by mean value theorem, there exists y ∈ [φi, φi−1] such that λi+1 =
t′(y)(φi−1−φi) = t′(y) ·λi. Finally, the result comes by the fact that t′(x) is a monotonically
increasing function for x > 0.

We will also utilize the following two results from previous works.

Lemma 3.3 ([Arcaute et al. 2007]). Given constant ε > 0, ∀x ∈ [1 − ε, 1], we have
t′(x) ∈ [(1− 1

n ) · b · (1− 5εd), (1− 1
n ) · b].

Lemma 3.4 ([Cebrian et al. 2012]). Consider any GW branching process with
branching factor b > 1. Then, for every i such that ζ < φi ≤ 1, it holds that

1− φi
λi+1

≤ max{ 1

b− 1
,

1

φi − ζ
· 1

1−Ψ′(ζ)
}, (4)

where Ψ(x) is the generation function of the branching process and ζ is the extinction
probability.

Now we are ready to prove the main result in this section.

Proof of Lemma 3.1. When b > 1, notice that {φi} is a strictly decreasing sequence
while t′(x) is increasing for x > 0. Proposition 3.2 indicates that the ratio of λi+1/λi is de-
creasing, which implies that {λi} is a single-peaked sequence. This proves (1) of Lemma 3.1.

Now we proceed to the second property. Let ε ∈ (0, 1) be some constant we will specify
later. Define `(ε) = max{i | φi ≥ 1− ε}.

By Proposition 3.2, we have λi+1

λi
≥ t′(φi). Let

ρ = (1− 1

n
) · b · (1− 5εd) > 1, (5)

which holds for sufficiently small ε. By Lemma 3.3 and the definition of `(ε), we have for

any 1 ≤ i ≤ `(ε), λi+1

λi
≥ t′(φi) ≥ ρ. Therefore, property (2) holds by setting `1 = `(ε)− 1.
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For the third property, we show that λ`(ε)+1 = Ω(1) for some carefully chosen ε. Since
λi+1

λi
≤ t′(1) ≤ b, λ`1 ≥ λ`(ε)+1/b

2. Let ζ be the extinction probability of the branching
process. Assume

0 < ε < 1− ζ. (6)

By definition of `(ε), we have φ`(ε) ≥ 1−ε and φ`(ε)+1 < 1−ε. Define c(ε) = max{ 1
b−1 ,

1
1−ζ−ε ·

1
1−Ψ′(ζ)}. Notice that c(ε) is non-decreasing for ε ∈ (0, 1− ζ). By Lemma 3.4, we have

1− φ`(ε)
λ`(ε)+1

≤ c(1− φ`(ε)) ≤ c(ε). (7)

Since λ`(ε)+1 = φ`(ε) − φ`(ε)+1, we have

λ`(ε)+1 ≥
1− φ`(ε)
c(ε)

=
1− φ`(ε)+1 − λ`(ε)+1

c(ε)
>
ε− λ`(ε)+1

c(ε)
.

Therefore, λ`(ε)+1 >
ε

c(ε)+1 = Ω(1), as both ε and c(ε) are constants independent of n. In

other words, for any constant ε satisfies Eqn. (5) and Eqn. (6), we can set `1 = `(ε) − 1
and both property (2) and (3) hold. Since λi is growing from `1 to `∗, we must have
`∗ − `1 = O(1). (The total probability is at most 1.)

Finally, we consider property (4) regarding the sequence of {λi} after `∗. By the definition
of `∗ and Proposition 3.2,

t′(φ`∗+1) ≤ λ`∗+2

λ`∗+1
≤ t′(φ`∗) ≤

λ`∗+1

λ`∗
< 1. (8)

If we can assume t′(φ`∗) is a constant less than 1, we are done. However, it is not clear
whether t′(φ`∗) is bounded away from 1 or not. (For example, if t′(φ`∗) = 1 − 1/n, we
cannot directly conclude on property (4). ) We consider two cases:

(1)
λ`∗+2

λ`∗+1
< 1/2. This case is trivial, since for i ≥ `∗+ 1, λi+1 < λi/2 by the monotonicity

of t′(·) and Proposition 3.2. Therefore, property (4) holds with γ = 2.

(2)
λ`∗+2

λ`∗+1
≥ 1/2. This case implies λ`∗+2 ≥ λ`∗+1/2 ≥ λ`∗/4 = Ω(1). Therefore, φ`∗+1 ≥

λ`∗+2 = Ω(1).
Notice that for any constant x ∈ (0, 1), t′′(x) ≥ xd

∑
i≥2 ci = Ω(1). (b > 1 implies∑

i≥2 ci > 0.) Hence, in case (2), we have t′′(φ`∗+1) = Ω(1).

Because t′(·) is continuous, by the mean value theorem, there exists y ∈ [φ`∗+1, φ`∗ ], such
that

t′(φ`∗)− t′(φ`∗+1) = t′′(y) · (φ`∗ − φ`∗+1) ≥ t′′(φ`∗+1) · λ`∗+1 = Ω(1).

Now since t′(φ`∗) < 1 by Eqn. (8), we can conclude γ′ = t′(φ`∗+1) is bounded away from
1, i.e., γ′ is a constant smaller than 1. Then for any i ≥ `∗ + 2, we have λi+1 < γ′ · λi. By
setting γ = 1

1−γ′ , we prove property (4).

4. OPTIMAL SYBIL-PROOF DR MECHANISM ON CHAINS

In this section, we discuss the case that the underlying tree is simply an infinite chain. Each
node in the chain has an answer with an independent probability 1/n. We design a direct
referral mechanism which is sybil-proof in this case. We also show that, in fact, the DR
mechanism is optimal, up to some mild assumptions.
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4.1. The direct referral reward scheme

Let h be the level of the chain that we want to propagate the query to. Notice that any
oblivious reward scheme can be written as a function r(i, s) for i ≥ 1, s ≥ 0 and i+ s ≤ h,
where r(i, s) is the reward to the i-th agent on an answer path with length i + s ≤ h, i.e.
the first answer appears at level i+ s. Since we discuss DR mechanisms, we have r(i, s) = 1
for any s /∈ {0, 1} and i+ s ≤ h.

Let p = 1/n be the probability that one agent has an answer. Define Ri =∑h−i
s=1 r(i, s)p(1 − p)s−1, i.e., Ri is the expected reward of the i-th agent conditioned on

the event that the first i agents do not have any answer. Let Pi =
∑i
j=1 p(1− p)j−1 be the

probability that there is an answer in i consecutive nodes. We consider the following reward
allocation scheme in the direct referral mechanism.

Definition 4.1. DR reward allocation scheme on chains. Define r(i, s) as:

r(i, s) =


n ·Ri+1 + Ph−i−1. if i ≤ h− 1 ∧ s = 1,∑h−1
t=i r(t, 1) + 1, if 1 ≤ i ≤ h ∧ s = 0,

1 i+ s ≤ h ∧ s > 1,

0, otherwise.

(9)

Notice that Ri = p · r(i, 1) + (1− p)Ph−i−1. Therefore, by definition of r(i, 1), we have

Ri = Ri+1 + Ph−i−1. (10)

For what follows, we show that several properties of the direct referral mechanism (a) it is
sybil-proof; (b) the expected cost is O(h2n); and (c) it is the optimal sybil-proof mechanism,
i.e., with the optimal cost.

To show the sybil-proofness, we only need to prove that the following strategy profile is a
Nash equilibrium: for each node v with distance less than h from the root, if v does not have
an answer, the strategy of v is to propagate the query and does not create sybils; if it has
an answer, the strategy of v is to report the answer without creating sybils. For the node
at distance h, the node will return the answer if it has one; otherwise, it will not propagate
further and will not create sybils.

Lemma 4.2. The DR mechanism with above defined reward allocation scheme is sybil-
proof on chains.

Proof. For the node v with distance smaller than h from the root, if it does not hold
an answer, the expected reward for propagating the query is always larger than 0. Thus, it
will choose to propagate. If v has an answer, v does not need to propagate the query, since
it can fake any possible path from itself to a node. Furthermore, since the DR scheme only
rewards nodes of the first h levels, the node at depth h from the root will not propagate
the query.

Based on the above discussion, for the sybil-proofness, we only need to rule out the
strategy that one node create sybils. For the node at distance h from the root, it is not
beneficial to generate fake nodes as the scheme only rewards the first h nodes in the chain.
So it is sufficient to consider the nodes with distance less than h to the root.

Consider an agent v with distance i < h to the root. We first assume that v does not have
an answer. Denote D(i, k) as the expected reward of v if v duplicates k ≤ h− i additional
sybils conditioned on the event that no node from the root to v has an answer. Then we
have

D(i, k) = Ri+k + k · Ph−i−k = Ri+k−1 − Ph−i−k + k · Ph−i−k
≤ Ri+k−1 + (k − 1) · Ph−i−k+1 = D(i, k − 1).
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The second equality is by Eqn. (10). One can then inductively show D(i, k) ≤ D(i, 0). In
other words, node v will not benefit by generating sybils if it does not have an answer.

Next we consider the case that v has an answer and all previous nodes do not, i.e., v is
the first answer holder. Assume that v generates k sybils, where k ≤ h − i. Since the DR
scheme only rewards the first answer, v will place the answer at the last sybil. (Otherwise,
it may just generate less sybils.) Then the reward v gets in this case is

k−1∑
s=0

r(i+ s, k − s) + r(i+ k, 0) ≤
k−1∑
s=0

r(i+ s, 1) + r(i+ k, 0)

=

k−1∑
s=0

r(i+ s, 1) +

h−1∑
s=i+k

r(s, 1) + 1 =

h−1∑
t=i

r(t, 1) + 1 = r(i, 0)

The inequality comes from the fact that r(i, 1) ≥ 1. By the above inequality, v gets the
highest reward without duplication. Combining all above together, we have shown that the
DR mechanism is sybil-proof.

4.2. Efficiency of the DR mechanism

Next we upper bound the expected total reward of the DR mechanism on chains. We first
compute the values of r(i, 1) in the following lemma.

Proposition 4.3. For i ≤ h− 1, r(i, 1) ≤ nhPh + 1, and r(i, 0) ≤ nh2Ph + h.

Proof. By Eqn. (10), Ri ≤ Ri+1 +Ph, which implies Ri ≤ hPh. By definition, r(i, 1) =
nRi+1 + Ph−i−1 ≤ nhPh + 1. The result on r(i, 0) directly follows.

Lemma 4.4. The expected cost of the DR scheme is Θ(P 2
hnh

2).

Proof. We first consider the upper bound. Clearly, the cost is dominated by the r(i, 0)s,
which is at most Ph ·maxi{r(i, 0)} = O(P 2

hnh
2).

Now consider the lower bound. By Eqn. (10), for i ≤ h/4, Ri =
∑h−i−1
j=1 Pj ≥ h

4 · Ph/2.

By definition of r(·), for i ≤ h/4 − 1, r(i, 1) ≥ nRi+1 ≥ nh
4 · Ph/2. Then for all i ≤ h/8,

r(i, 0) ≥
∑h/4
j=i r(j, 1) ≥ h

8 ·
nh
4 Ph/2. Therefore, the expected cost is at least

Ph/8 · min
i≤h/8

{r(i, 0)} ≥ nh2

32
Ph/8 · Ph/2.

The lower bound is attained since Ph/2 ≥ Ph/2 and Ph/8 ≥ Ph/8.

We have the main result of this section.
Theorem 1.1 (restated) If the underlying branching process is a deterministic chain,

there exists a sybil-proof direct referral incentive mechanism with expected cost O(nh2),
where h is the desired level of agents the root wants to propagate the query and n is the
answer rarity.

4.3. Optimality of the DR mechanism on chains

In fact, our DR mechanism is optimal with respect to a general class of query incentive
mechanisms on chains. To proceed with our discussion, we focus on the query incentive
mechanisms with following properties:

(1) The answer selection is deterministic on the chain. (Notice that both RW and SP are
deterministic and identical on a chain.)

(2) The mechanism is sybil-proof.
(3) The mechanism must retrieve an answer if there is one in the first h agents.
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(4) The reward allocation scheme is normalized, i.e., the reward to each node from the root
to the first answer must be at least 1.

We call a query incentive network is regular if all four constraints are satisfied. Notice
that our DR mechanism is regular. Our DR mechanism is in fact has the smallest cost in
all resulting configurations among all regular query incentive mechanisms. Due to space
limitation, we provide the proof in the full version [Chen et al. 2013].

Theorem 4.5. The DR mechanism on chains is an optimal regular query incentive
mechanism.

5. SYBIL-PROOF DR MECHANISMS ON ARBITRARY BRANCHING PROCESSES

In this section, we present a sybil-proof query incentive mechanism for an arbitrary branch-
ing processes with branching factor b > 1. In particular, we present a Direct Referral (DR)
mechanism for any interested height h. We will show that the DR mechanism, which uses
the SP answer selection scheme, is sybil-proof. After that, we show that the expected cost
for the DR scheme is O(h2). It is desirable to point out that compared with previous works,
our analysis does not depend on a particular height h, and it does not require b ≥ 2.

5.1. Direct referral query incentive mechanisms with height h

The DR mechanism will be using the SP answer selection scheme. Similar to the chain case,
the reward allocation scheme in the DR mechanism is oblivious. In particular, the reward
allocation scheme can be described by a function r(·, ·), where r(i, s) is the reward of the
i-th agent in the selected answer path and the selected answer holder is the i+ s-th agent
for i ≥ 1 and s ≥ 0.

To simply the notation, we decompose the referral reward (with s ≥ 1) r(i, s) into two
parts: r(i, s) = x(i, s) + y(i, s). x(i, s) ≥ 0 is for the direct referral and y(i, s) ≥ 0 ensures
that the reward is at least 1. Specifically, the referral rewards in our the DR mechanism for
height h with i ≤ h− 1 and s ≥ 1 is defined as r(i, s) = x(i, s) + y(i, s):

x(i, s) =

 max
i+1≤j≤h

{
x(j, 1) +

j − i
λi+1

h∑
`=i+1

λ`

}
, if i ≤ h− 1 and s = 1,

0, otherwise.

(11)

and

y(i, s) =

{
1 if i+ s ≤ h and s > 1,

0, otherwise.
(12)

Finally, the reward of the selected answer holder at level i is defined ai = r(i, 0) for i ≤ h
as follows. ah = 1 and for i < h,

ai = x(i, 1) + ai+1 + 1⇒ ai = (h− i+ 1) +
∑
i≤j≤h

x(j, 1). (13)

Informally, in the above reward scheme, if the selected answer is at level i ≤ h, the answer
holder receives ai, its direct referral at level i−1 receives xi−1 + 1 and all other agents from
the root to the selected answer holder receive 1. For simplicity, we abbreviate the sequence
{x(i, 1)} as {xi}.

Remark: Our mechanism requires a specified height h. Furthermore, to compute the
rewards, we need the knowledge of the branching process. Notice that, such knowledge is
also required in previous literature to compute the initial reward as well as the contracts
between the agents.
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5.2. Sybil-proofness of the DR query incentive mechanism

We show that the DR mechanism defined above is sybil-proof. Eqn. (13) implies that if one
agent at level i has an answer, it does not have incentive to generate sybils, i.e., a(i) is its
largest possible reward and generating sybils will not increase its chance to be selected. So
to show the sybil-proofness of the DR mechanism, we only need to argue for those agents
who do not have answers. The following lemma characterizes the probabilities that one
agent is rewarded when it does not have an answer.

Proposition 5.1. For an agent v at level i < h in the underlying d-ary tree of the
branching process, let Rev(v) be the event that v is on the path from the root to the selected
answer holder u 6= v and DR(v) be the event that u is a child of v. We have

Pr[Rev(v)] =

∑h
j=i+1 λi

di
and Pr[DR(v)] =

λi+1

di
.

Let NA(v) be the event that v does not have an answer.

Pr[Rev(v) |NA(v)] =
n

n− 1
·
∑h
j=i+1 λi

di
and Pr[DR(v) |NA(v)] =

n

n− 1
· λi+1

di
.

Proof. Rev(v) happens if the selected answer u is at level i+ 1 or lower, which is with

probability
∑h
j=i+1 λj as the mechanism only retrieves an answer in the first h levels. Notice

that there are exactly di agents at level i. (The root is treated as level 0.) By symmetry, the

probability that u is in the subtree of v is exactly 1
di . Therefore, Pr[Rev(v)] =

∑h
j=i+1 λj/d

i.

By the same argument, we have Pr[DR(v)] = λi+1/d
i.

Now consider the two probabilities conditioned on the event NA(v) with Pr[NA(v)] =
(1 − 1/n). Notice that Rev(v) (resp. DR(v)) implies NA(v). In other words, Pr[Rev(v) ∧
NA(v)] = Pr[Rev(v)] (resp. Pr[DR(v) ∧ NA(v)] = Pr[DR(v)]). The results then come from
Bayes’ theorem.

Lemma 5.2. The above DR mechanism is sybil-proof.

Proof. As discussed earlier, it is sufficient to consider agents that do not have answers.
Consider such an agent v at level i ≤ h− 1. Suppose v will get more reward by generating
j sybils and attach its original subtree to the last sybil.

Consider the case that v does not create sybils. Conditioning on the even NA(v), i.e.
v does not have an answer, by Proposition 5.1, the probability that v receives the direct

referral fee is λi+1

di ·
n
n−1 and the probability that the answer selected is in the subtree rooted

at v is
∑h
j=i+1

λj

di ·
n
n−1 .

Notice that if v generates sybils, both probabilities will decrease. This can be shown by
coupling the randomness in both cases. For any fixed realization of the branching process
and the answer placement, the probability that a particular answer in v’s subtree is selected
is always higher (or equal) in the case that v does not generate sybils by the SP answer
selection scheme.

Now we consider the rewards in both cases. If v does not generate sybils, the expected
reward is

R0
i =

n

n− 1
·

(
λi+1

di
· xi +

∑h
j=i+1 λj

di

)
. (14)
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The first part is the reward from direct referral xi and the second part comes from y(i, s).
For the case that v generates j ≥ 1 sybils, the expected reward of v and its sybils is at most

Rji ≤
n

n− 1
·

(
λi+1

di
· xi+j + (j + 1) ·

∑h
j=i+1 λj

di

)
. (15)

By Eqn. (11), xi ≥ xi+j + j ·
∑h

`=i+1 λ`

λi+1
, which implies R0

i ≥ Rji . This is a contradiction.

Therefore, agent v will not benefit by generating sybils if it does not have the answer. Hence
the DR mechanism is sybil-proof.

5.3. The expected cost of the DR mechanism

Now we start analyzing the expected cost of the DR mechanism, which can be described as
follows

h∑
i=1

λi · ai +

h∑
i=2

λi · xi−1 +

h∑
i=1

λi · (i− 1) (16)

The first term is the reward to the answer holder. The second term is the reward for the
direct referral and the third term is for all other agents that forwarded the answer. Before
we analyze the cost in Eqn. (16), we characterize the sequence {xi}.

Observation 5.1. The sequence of {xi} is decreasing.

Proposition 5.3. For i ≥ `∗+1, xi ≤ γ ·(h−i), where γ is the constant in Lemma 3.1.

Proof. We prove the statement by induction. The statement holds for i = h as xh = 0.
Suppose it holds for all i ≥ j. Now consider j − 1 ≥ `∗ + 1. By construction,

xj−1 = max
`≥j
{x` +

(`− j + 1)

λj

h∑
s=j

λs} ≤ max
`≥j
{γ · (h− `) + γ · (`− j + 1)} = γ · (h− j + 1).

The inequality is by Lemma 3.1 (4).

In other words, we will not pay a lot of referral fee for agents beyond level `∗.

Proposition 5.4. For all i ≤ `∗, we have λi+1 · xi ≤ (γ + 1) · (h− i).
Proof. The statement is proved by induction. We first consider the case i = `∗. By

definition in Eqn. (11),

x`∗ = max
j≥`∗+1

{x(j) +
j − `∗

λ`∗+1

h∑
`=`∗+1

λ`} ≤ max
j≥`∗+1

{x(j) + (j − `∗) · (1 +
γ · λ`∗+2

λ`∗+1
)}

≤ max
j≥`∗+1

{γ · (h− j) + (j − `∗) · (1 + γ)} ≤ (γ + 1) · (h− `∗). (17)

The first inequality is by Lemma 3.1 (4) and the second inequality is by Lemma 3.1 (1) and
Proposition 5.3.

Now suppose it holds for all j ≤ i ≤ `∗. Consider j − 1 ≥ 1, we have

λj · xj−1 = max
`≥j
{λj · x` + (`− j + 1)

h∑
k=j

λk} ≤ max
`≥j
{λj · x` + (`− j + 1)}. (18)

Assume the term max`≥j{λjx` + (`− j + 1)} is optimized at ` = j∗. Consider two cases:
Case 1: j∗ ≥ `∗. In this case, λj · xj∗ + (j∗ − j + 1) ≤ (γ + 1) · (h− j∗) + (j∗ − j + 1) ≤

(γ + 1) · (h− j + 1) by Proposition 5.3 and Eqn. (17).
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Case 2: j ≤ j∗ < `∗. We have

λj · xj∗ + (j∗ − j + 1) ≤ λj∗+1xj∗ + (j∗ − j + 1) ≤ (γ + 1) · (h− j∗) + (j∗ − j + 1)

≤ (γ + 1) · (h− j + 1).

The first inequality comes from λj ≤ λj∗+1 by Lemma 3.1 (1). The second inequality is by
induction. Therefore, in both cases, we have λj · xj−1 ≤ (γ + 1)(h− j + 1).

We are ready to show the expected cost of the above mechanism.

Lemma 5.5. The expected reward of the DR query incentive mechanism is O(h2).

Proof. By Proposition 5.4 and Proposition 5.3, the total referral fee is

h∑
i=2

λi · xi−1 ≤
`∗∑
i=2

(γ + 1)(h− i) + γ · (h− `∗ − 1) ·
∑

j≥`∗+1

λj = O(h2). (19)

Now we analyze the total expected reward for answer holders.

h∑
i=1

λi · ai =

h∑
i=1

λi · (h− i+ 1 +

h∑
j=i

xj) ≤ h+

h∑
j=1

xj

j∑
i=1

λi

≤ h+

`1−1∑
j=1

xj

j∑
i=1

λi +

`∗∑
j=`1

xj +

h∑
j=`∗+1

xj , (20)

where `1 is defined in Lemma 3.1. We inspect the terms individually. Consider the second
term in Eqn. (20). By Lemma 3.1 (2), {λi} grows at a rate of ρ > 1 until λ`1 for `1 ≤ `∗.

Therefore, for any i ≤ `1,
∑i
j=1 λj ≤

ρ
ρ−1λi. Then

`1−1∑
j=1

xj

j∑
i=1

λi ≤
`1−1∑
j=1

xj · λj ·
ρ

ρ− 1
≤
`1−1∑
j=1

xj · λj+1 ·
ρ

ρ− 1
= O(h2).

The second inequality is by the fact λi ≤ λi+1 for i ≤ `∗ − 1 in Lemma 3.1 (1) and the last
equality comes from Eqn. (19).

For the third term, by Proposition 5.4 for any `1 ≤ j ≤ `∗,

xj ≤ (γ + 1)(h− j) · 1

λj+1
. ≤ (γ + 1)(h− j) · 1

λ`1
= O(h).

The last equality comes from λ`∗ ≥ λj ≥ λ`1 = Ω(1) by Lemma 3.1 (3). Also by
Lemma 3.1 (3), `∗ − `1 = O(1) and the third term in Eqn. (20) is O(h).

Finally, by Proposition 5.3, the last term in Eqn. (20) is O(h2). We conclude that

h∑
i=1

λi · ai = O(h2). (21)

Combining Eqn. (19) and Eqn. (21), the expected cost of Eqn. (16) is O(h2).

We obtain the main result of this paper.
Theorem 1.2 (restated) For any branching process with branching factor b > 1, there

is a constant pb > 0 such that for any answer rarity n with 0 < 1/n < pb, there exists a
sybil-proof direct referral query incentive mechanism with expected cost O(h2), where h is
the desired level of agents the root wants to propagate the query.
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6. CONCLUSION

In this paper, we developed a set of sybil-proof query incentive mechanisms which allocate
most rewards to the selected answer holder as well as its direct referral. We show that such
a direct referral mechanism, with properly designed rewards, is efficient, with expected cost
O(h2) for any b > 1. In contrast, all previous mechanisms require a reward exponential to h
when h is large enough for finding an answer with high probability. We also showed that if
the underlying branching process is a chain, our DR mechanism is optimal with some mild
assumptions. Since our reward scheme has very simple structure, it might have good chance
to be adopted in practice.

One drawback of our DR mechanism is that it is only efficient in expectation. In some
cases, e.g., when the first agent has an answer, the cost will be exponential to h even in
the case of b > 2 and h = O(log n). As a result, our mechanism is not collusion-proof.
Agents can collude with each other to improve their overall reward. It is an interesting open
problem to design efficient sybil-proof incentive mechanisms to address these issues.
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