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Abstract—Influence maximization is the problem of finding
a small set of most influential nodes in a social network so
that their aggregated influence in the network is maximized.
In this paper, we study influence maximization in the linear
threshold model, one of the important models formalizing the
behavior of influence propagation in social networks. We first
show that computing exact influence in general networks in
the linear threshold model is #P-hard, which closes an open
problem left in the seminal work on influence maximization by
Kempe, Kleinberg, and Tardos, 2003. As a contrast, we show
that computing influence in directed acyclic graphs (DAGs) can
be done in time linear to the size of the graphs. Based on the fast
computation in DAGs, we propose the first scalable influence
maximization algorithm tailored for the linear threshold model.
We conduct extensive simulations to show that our algorithm
is scalable to networks with millions of nodes and edges, is
orders of magnitude faster than the greedy approximation
algorithm proposed by Kempe et al. and its optimized versions,
and performs consistently among the best algorithms while
other heuristic algorithms not design specifically for the linear
threshold model have unstable performances on different real-
world networks.
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threshold model;

I. INTRODUCTION

Influence maximization is the problem of finding a small
set of most influential nodes in a social network so that
their aggregated influence in the network is maximized. The
seminal work by Kempe, Kleinberg and Tardos [1] provides
the first systematic study of influence maximization as a
discrete optimization problem. Influence maximization has
the obvious application in viral marketing through social
networks, where companies try to promote their products
and services through the word-of-mouth propagations among
friends in the social networks. With online social networking
sites such as Facebook, LinkedIn, Myspace, etc. attracting
hundreds of millions of people, online social networks
are also viewed as important platforms for effective viral
marketing practice. This further motivates the research com-
munity to conduct extensive studies on various aspects of the
influence maximization problem (e.g. [1], [2], [3], [4], [5],
[6], [7]).

In [1] Kempe et al. proposed two basic stochastic influ-
ence cascade models, the independent cascade (IC) model
and the linear threshold (LT) model, which are extracted
from earlier work on social network analysis, interactive
particle systems, and marketing. In both models, a social
network is modeled as a directed graph G = (V,E), where
the vertices of V represents individuals and edges in E rep-
resent relationships and the orientations of the edges indicate
the direction of influence. Roughly speaking, in the IC model
each edge has an activation probability and influence is
propagated by activated nodes independently activating their
inactive neighbors based on the edge activation probabilities.
In the LT model, each edge has a weight, each vertex has a
threshold chosen uniformly at random, and a vertex becomes
activated if the weighted sum of its active neighbors exceeds
its threshold (see Section II for model details).

The two models characterize two different aspects of
social interaction. The IC model focuses on individual (and
independent) interaction and influence among friends in a
social network. The LT model focuses on the threshold
behavior in influence propagation, which we can frequently
relate to — when enough of our friends bought a MP3,
played a new computer game, or used a new online social
networks, we may be converted to follow the same action.
The random threshold λv is to model the uncertainty of
individuals’ conversion thresholds. In [1], Kempe et al. show
that both models can be generalized and their generalized
versions become equivalent. However, the basic IC and LT
models stay as two distinct models.

The influence spread in the LT or IC model given a seed
set is the expected number of activated vertices after the
activation process ends. The influence maximization problem
with parameter k is to find a seed set S of size k such that
the influence spread of S is the largest. Kempe et al. show
that the maximization problem in both models are NP-hard,
and then they provide a greedy approximation algorithm for
both models that achieves an approximation ratio of 63%.
However, the greedy algorithm relies on the computation of
influence spread given a seed set, the exact solution of which
is left as an open problem in [1] for both models. Instead,
they use Monte-Carlo simulations on influence cascade to



estimate the influence spread, which makes the algorithm
rather slow and not scalable — the algorithm takes days to
select 50 seeds in a moderate sized graph of 30K nodes.

To overcome the inefficiency of the original greedy algo-
rithm, a series of studies have been done to either improve
the original greedy algorithm or propose new heuristic
algorithms ([3], [4], [6], [7]). The improvements on the
greedy algorithm reported in [4], [6], although significant, is
still not scalable — it reduces the computation in the above
examples from days to hours, but cannot scale up to larger
networks, as reported in [7]. The new heuristic algorithms
proposed in [3], [6], [7] are orders of magnitude faster than
the fastest implementation of the greedy algorithm while
maintaining a competitive level influence spread, making it
a very promising direction. However, all of these heuristic
algorithms are designed using specific properties of the IC
model. In constrast, for the equally important LT model,
the above heuristics do not apply and there is no scalable
heuristic designed by utilizing special features of the LT
model. In this paper, we fill this gap in the research of
scalable influence maximization algorithms.

First, we study the influence computation in the LT model
(Section III). We show that computing the exact influence
spread in the LT model is #P-hard, even if there is only one
seed in the network. Our reduction uses the interpolation
technique, and is more involved than the simple reduction
used in [7] to show the #P-hardness in the IC model. This
hardness result closes the open problem left in [1] and
further indicates that the greedy algorithm may have intrinsic
difficulty to be made more efficient. To constrast with this
hardness result, we show that computing influence spread in
directed acyclic graphs (DAGs) can be done in linear time,
which relies on an important linear relationship in activation
probabilities between a node and its in-neighbors in DAGs.

Next, based on the fast influence computation for DAGs
we propose the first scalable heuristic algorithm tailored for
influence maximization in the LT model, which we refer
to as the LDAG algorithm (Section IV). Our idea is to
construct a local DAG surrpounding every node v in the
network, and restrict the influence to v to be within the local
DAG structure. This makes influence computation tractable
and fast on a small DAG. To select local DAGs that could
cover a significant portion of influence porpagation, we
propose a fast greedy algorithm of adding nodes into the
local DAG of a node v one by one such that the individual
influence of these nodes to v is larger than a threshold
parameter θ. After constructing the local DAGs, we combine
the greedy approach of selecting seeds that provide the
maximum incremental influence spread with a fast scheme
of updating incremental influence spread of every node. Our
combined fast local DAG construction and fast incremental
influence update make the LDAG algorithm very efficient.

We conduct extensive simulations on both real-world
networks and synthetic networks to demonstrate the scala-

bility and effectiveness of our algorithm (Section V). Our
simulation results show that our LDAG algorithm scales
to networks with millions of nodes and edges, while the
optimized greedy algorithm already take days for networks
in the size of 64K. In term of influence spread, our LDAG
algorithm is always very close to that of the greedy algorithm
in all test cases, showing that the LDAG algorithm is able
to achieve the same level of influence spread while running
in orders of magnitude faster than the greedy algorithm.
We also compare the LDAG algorithm with some other
heuristic algorithms such as PageRank [8] and the degree
discount heuristic [6]. The results show that the LDAG
algorithm always performs among the best algorithms in
term of the influence spread in all test cases, while other
heuristics performs poorly in some test cases. We believe this
is because our LDAG algorithm is designed specifically for
the LT model while other heuristics do not take advantages
of the special features of the LT model or are designed for
a different model.

A. Related work

Domingos and Richardson [9], [10] are the first to study
influence maximization as an algorithmic problem. Their
methods are probabilistic, however. Kempe, Kleinberg, and
Tardos [1] are the first to formulate the problem as a discrete
optimization problem, but one of the issues of their work is
the scalability of their greedy algorithm.

In [4], Leskovec et al. present a “lazy-forward” opti-
mization in selecting new seeds to significantly reduce the
number of influence spread evaluations, but it is still slow
and not scalable to large graphs with hundreds of thousands
of nodes and edges, as demonstrated in our experiments.

Several recent work proposes different heuristic algo-
rithms specifically designed for the IC model. In [3], Kimura
and Saito propose shortest-path based influence cascade
models and provide efficient algorithms to compute influ-
ence spread under these models. In [6], Chen et al. propose
degree discount heuristics for the uniform IC model in which
all edge probabilities are the same. In [7], Chen et al.
propose maximum influence arborescence (MIA) heuristic
for the general IC model. since all of them are designed
using specific features of the IC model, they do not apply
directly to the LT model. In term of design principle, our
LDAG algorithm is similar to the MIA algorithm. Both uses
local structures to make the influence computation tractable
and reduce computation cost. However, the local structure
and the influence computation are different: MIA uses local
tree structures because that is the only structure making
the influence computation tractable in the IC model, while
LDAG uses local DAG structures, and thus could include
more influence paths in the local structure.

Narayanam and Narahari [5] propose a Shapley value
based heuristic SPIN for the LT model. However, SPIN
only relies on the evaluation of influence spreads of seed



sets, and thus does not use specific features of the LT
model. Moreover, SPIN is not scalable, with running time
comparable (as shown in [5]) or slower (as shown in our
tests) than the optimized greedy algorithm.

Several studies design machine learning algorithms to
extract influence cascade model parameters from real
datasets [11], [12], [13], [14], which can be used to generate
influence graphs studied in this paper.

II. LINEAR THRESHOLD MODEL AND THE GREEDY
ALGORITHM FOR INFLUENCE MAXIMIZATION

Following the definition in [1], we define the linear
threshold (LT) model as follows. An (LT) influence graph
is a weighted graph G = (V,E,w), where V is a set of n
vertices (nodes) and E ⊆ V × V is a set of m directed
edges, and w : V × V → [0, 1] is a weight function
such that w(u, v) = 0 if and only if (u, v) 6∈ E,1 and∑
u∈V w(u, v) ≤ 1. In the LT model, when given a seed

set S ⊆ V , influence cascades in graph G as follows.
First, every vertex v independently selects a threshold λv
uniformly at random in range [0, 1], which reflects our lack
of knowledge of users’ true thresholds as pointed out in [1].
Next, influence cascades in discrete steps i = 0, 1, 2, . . . ,,
and let Si denote the set of vertices activated at step i, with
S0 = S. In each step i ≥ 1, a vertex v ∈ V \ ∪0≤j≤i−1Sj
is activated (and thus is in Si) if the weighted number of its
activated in neighbors reaches its threshold, i.e.∑

u∈∪0≤j≤i−1Sj

w(u, v) ≥ λv.

The process stops at a step t when St = ∅. For convenience,
we consider Si = ∅ for all i > t. Let σL(S) denote the
expected number of activated nodes given the seed set S (i.e.
the expected value of |

⋃
i≥0 Si|) , where the expectation is

taken among all λv values from their uniform distributions.
We call σL(S) the influence spread of seed set S in influence
graph G under the linear threshold model.

As shown in [1], the linear threshold model defined above
is equivalent to the reachability in the following random
graphs, called live-edge graphs: Given an influence graph
G = (V,E,w), for every v ∈ V , select at most one
of its incoming edges at random, such that edge (u, v) is
selected with probability w(u, v), and no edge is selected
with probability 1 −

∑
u w(u, v). The selected edges are

called live and all other edges are called blocked. Let RG
denote the random graph generated from G, which includes
all vertices in V and all live edges selected. Thus, we have

Proposition 1 (Claim 2.6 of [1]): Given an influence
graph G and a seed set S, the distribution of the set of
active nodes in G with seed set S under the linear threshold
model is the same as the distribution of the set of nodes
reachable from S in the random graph RG.

1With such a definition of weight function w(), edge set E is redundant,
but it is convenient to keep E as intuitively we are refering G as a graph.

Algorithm 1 Greedy(k, f)
1: initialize S = ∅
2: for i = 1 to k do
3: select u = arg maxw∈V \S(f(S ∪ {w})− f(S))
4: S = S ∪ {u}
5: end for
6: output S

The above equivalence is central in analyzing the linear
threshold model, including that showing its influence spread
is submodular ([1]), proving that computing its influence
spread is #P-hard, and designing scalable algorithm for
influence maximization, as shown later in the paper. We say
that a set function f on subsets of V is submodular if for
any S ⊆ T ⊆ V and any u ∈ V \ T , f(S ∪ {u})− f(S) ≥
f(T ∪{u})−f(T ). Intuitively, submodularity indicates that
f has diminishing margin returns when adding more nodes
into a set. We say that f is monotone if f(S) ≤ f(T ) for all
S ⊆ T ⊆ V . The following proposition states an important
property of σL.

Proposition 2 (Theorem 2.5 of [1]): The influence
spread σL under the linear threshold model is monotone
and submodular.

The influence maximization problem under the linear
threshold model is, when given the influence graph G and an
integer k, finding a seed set S of size k such that its influence
spread σL(S) is the maximum. It is shown in [1] that
finding the exact optimal solution is NP-hard, but because
σL is monotone and submodular, a greedy algorithm has a
constant approximation ratio. Algorithm 1 shows a generic
greedy algorithm for any set function f . It simply execute
in k rounds, and in each round it selects a new entry that
gives the largest marginal increase in f . It is shown in [15]
that for any monotone and submodular set function f with
f(∅) = 0, the greedy algorithm has an approximation ratio
f(S)/f(S∗) ≥ 1−1/e, where S is the output of the greedy
algorithm and S∗ is the optimal solution.

However, the generic greedy algorithm requires the evalu-
ation of f(S). In the context of influence maximization, the
exact computation of σL(S) was left as an open problem
in [1]. In the next section, we close this open problem by
showing that the exact computation of σL(S) is #P-hard.
This hardness result further indicates the intrinsic limitation
of the greedy algorithm approach and motivates us to pursue
scalable heuristic algorithms for the influence maximization
problem in the LT model.

III. INFLUENCE COMPUTATION IN THE LT MODEL

In this section, we first show that computing exact influ-
ence spread for general graphs is #P-hard, and then provide
a linear-time algorithm computing exact influence spread in
directed acyclic graphs (DAGs). The DAG computation al-
gorithm is the basis for our influence maximization solution



presented in the next section.

A. #P-hardness for general graphs

We show that the exact computation of σL(S) is #P-hard
by applying Proposition 1 and using a reduction from the
simple path counting problem.

Theorem 1: Given an influence graph G and a seed set S
as the input, it is #P-hard to compute σL(S) in G.
Proof. We reduce this problem from the problem of
counting simple paths in a directed graph. Given a directed
graph G = (V,E), counting the total number of simple paths
in G is #P-hard [16]. Let n = |V |. From G, we construct
a graph G′ by adding a new node s 6∈ V and adding edges
from s to all nodes in V . Let d be the maximum in-degree of
any node in G′. For every edge e in G′, we assign its weight
w(e) = w ≤ 1/d, where w is a constant to be determined
later. By the selection of d, we know that the summation of
weights among all incoming edges of a node is at most 1,
satisfying the weight requirement of the LT model. Now we
have an instance of the influence computation problem: G′

with edge weights w and seed set S = {s}. We show that
if for any eligible w computing σL(S) in G′ is solvable, we
can count the number of simple paths in G, and thus show
that influence computation is #P-hard.

Let P denote the set of all simple paths starting from s
in G′. By the equivalence given in Proposition 1, we have2

σL(S) =
∑
π∈P

∏
e∈π

w(e).

Let Bi be the set of simple paths of length i in P , for
i = 0, 1, . . . , n, and let βi = |Bi|. Then we have

σL(S) =
n∑
i=0

∑
π∈Bi

∏
e∈π

w(e) =
n∑
i=0

∑
π∈Bi

wi =
n∑
i=0

wiβi

With the above equation, we can set w to n + 1 different
values w0, w1, . . . , wn. For each wi, by assumption we can
obtain σL(S) corresponding to wi. Then we obtain a set
of n+ 1 linear equations with β0, . . . , βn as variables. The
coefficient matrix M of these equations is a Vandermonde
matrix (Mij = wji , i, j = 0, . . . , n). Thus the equations have
a unique solution for β0, . . . , βn and is easy to compute.

Finally, we notice that for each i = 1, . . . , n, there is a
one-to-one correspondence between paths in Bi and simple
paths of length i − 1 in graph G. Therefore,

∑n
i=1 βi give

the answer to the total number of simple paths in graph G.
Thus we complete the reduction and the theorem holds. �

From the proof we see that #P-hardness holds even if seed
set S contains only one vertex. It is also #P-hard if we want
to compute the influence to one vertex, since the influence
spread to a graph is the sum of influence to all vertices in
the graph.

2By convention, if π only contains node s with no edges,
∏
e∈π w(e) =

1.

Algorithm 2 compute ap(u) for all u in DAG D, with seed
set S

1: ∀u in D, ap(u) = 0; ∀u ∈ S, ap(u) = 1;
2: topologically sort all nodes reachable from S in D into

a sequence ρ, with in-degree zero nodes sorted first.
3: for each node u ∈ ρ \ S according to order ρ do
4: ap(u) =

∑
x∈N in(u)∩ρ ap(x) · w(x, u)

5: end for

B. Linear-time algorithm for DAGs

Theorem 1 shows that computing influence spread in
general graphs is #P-hard. We now show that in directed
acyclic graphs (DAGs), the computation instead can be done
in time linear to the size of the graph.

Let D = (V,E,w) be a DAG, and let S ⊆ V be a seed set
in D. For any u ∈ V , let ap(u) be the activation probability
of u, that is, the probability that u is activated in D under
the LT model given the seed set S. By definition, ap(u) = 1
if u ∈ S. The following lemma shows the important linear
relationship of activation probability in a DAG, the proof of
which uses Proposition 1.

Lemma 3: For any v ∈ V \ S, we have

ap(v) =
∑

u∈V \{v}

ap(u) · w(u, v). (III.1)

Proof. by Proposition 1, we consider the random graph RD
generated by live edges. Let Eu denote the event that edge
(u, v) is selected as a live edge in RD. By the live-edge
graph generation method, we have Pr(Eu) = w(u, v). Let
Ru denote the event that u is reachable from seed set S. By
Proposition 1, Pr(Ru) = ap(u). Then for all v ∈ V \S, we
have

ap(v) =
∑

u∈V \{v}

Pr(Eu) · Pr(Ru | Eu).

When the graph is a DAG, for any (u, v) ∈ E, whether u is
reachable from S is independent of (u, v) being selected as
a live edge, because there is no path from S to u that passes
through v. Therefore, Pr(Ru | Eu) = Pr(Ru) = ap(u), and
the lemma holds. �

Based on the above lemma, we can design a linear-time
algorithm to compute ap(v) for all v ∈ V , as shown
in Algorithm 2. We use N in(u) and Nout(u) to denote
the in-neighbors and outneighbors of node u, respectively.
Topological sort in line 2 is to total order nodes and respect
the partial order given by the DAG D. Then in lines 3–
5 we compute ap(u)’s using Equation (III.1) for all u’s
following the topological order, which guarantees that when
we compute ap(u), all ap(x)’s of u’s in-neighbors x have
been computed. The operation “∩ρ” in line 4 is mainly for
convenience of reusing this code in Algorithm 5, and could
be omitted here without affecting the computation. It is clear
that the algorithm computes all ap(v)’s in time linear to the



size of the DAG D. Finally, we can add all ap(v)’s together
to obtain the influence spread of the seed set S in graph D.

IV. LDAG ALGORITHM FOR INFLUENCE MAXIMIZATION

In the previous section, we show that computing influence
in a DAG is easy. However, real social networks are not
DAGs typically, so we cannot apply the algorithm for DAG
directly. In [1] the authors use Monte-Carlo simulations
to estimate the influence spread, making their greedy al-
gorithm very inefficient. To allow efficient computation of
influence in general social networks, we compute a local
DAG for every node v in the graph and use influence to
v propagated through its local DAG to approximate the
influence in the original network. We refer to this as the
LDAG influence model. The intuition is that (a) influence
computation in DAGs are fast, and (b) influence cascade in
the LT model is typically local because of the exponential
dropoff in the probability of influence propagation. However,
the local DAGs need to be carefully select in order to
cover a significant portion of influence while allowing fast
computations. In this section, we first introduce the general
framework of the LDAG influence model, and then study
local DAG constructions and influence maximization in the
LDAG model.

A. LDAG influence model

In the LDAG influence model, each node v in the graph
G = (V,E,w) is associated with a local DAG LDAG(v),
a subgraph of G containing v. We also refer to LDAG(v)
as the LDAG rooted at v. Given a seed set S, we assume
that the influence from S to v is only propagated within
LDAG(v) according to the LT model. Let ap(v, S) be the
activation probability of v when influence is propagated
within LDAG(v). Then the influence spread of S in the
LDAG influence model, denoted as σD(S),3 is given by

σD(S) =
∑
v∈V

ap(v, S). (IV.2)

Given G and LDAGs rooted at all nodes, maximizing
σD(S) is still NP-hard.

Theorem 2: The influence maximization problem in the
LDAG influence model is NP-hard.
Proof. (Sketch). We reduce the problem from the Vertex
Cover problem. For every node v, we use v together with
v’s in-neighbors and the edges between these in-neighbors
and v to construct the LDAG rooted at v. The rest of the
proof is similar to the one in [1]. �

Although finding the optimal seed set in the LDAG
influence model is NP-hard, computing σD(S) given S is in
polynomial-time because all computations are on DAGs. It is
also easy to see that σD(S) is still monotone and submodular

3Symbol D in σD() is a notation standing for DAG, in order to
differentiate from σL(). It does not represent a specific DAG D as used
elsewhere in the paper.

Algorithm 3 FIND-LDAG(G, v, θ), compute LDAG(v, θ)
1: X = ∅; Y = ∅; ∀u ∈ V, Inf (u, v) = 0; Inf (v, v) = 1
2: while maxu∈V \X Inf (u, v) ≥ θ do
3: x = arg maxu∈V \X Inf (u, v)
4: Y = Y ∪ {(x, u) | u ∈ X} /* adding edges */
5: X = X ∪ {x} /* adding the node */
6: for each node u ∈ N in(x) do
7: Inf (u, v) += w(u, x) · Inf (x, v)
8: end for
9: end while

10: return D = (X,Y,w) as the LDAG(v, θ)

(because every ap(v, S) is monotone and submodular on S).
Therefore, we can use the greedy Algorithm 1 on σD() to
find S with an approximation ratio of 1− 1/e.

In the following, we address two tasks to make our
LDAG algorithm effective and efficient. First, for each
node v, we need to compute its local DAG LDAG(v) that
covers a significant portion of influence from other nodes
to v. Second, we make the algorithm more efficient when
combining the greedy Algorithm 1 and the DAG influence
computation of Algorithm 2.

B. Local DAG construction

We first need to compute the local DAG surrounding
v such that it covers a significant portion of influence
from other nodes to v while ignoring nodes that has only
very small influence to v. This is formally defined as the
following maximization problem. Let Inf G(u, v) be the
influence probability from u to v in graph G, that is, the
probability that v is activated when u is the only seed.

Definition 1 (MAX-LDAG Problem): Given an influence
graph G = (V,E,w), a node v ∈ V , and a threshold θ ∈
[0, 1] as the input, the MAX-LDAG problem is to compute
a DAG D = (X,Y,w), such that (a) D is a subgraph of G,
i.e. X ⊆ V , Y ⊆ E; (b) v ∈ X; (c) Inf D(u, v) ≥ θ for all
u ∈ X; and (d)

∑
u∈X Inf D(u, v) is the maximum among

all DAGs satisfying (a), (b), and (c).
Condition (c) above is for controlling the size of the

LDAG using parameter θ, which represents a tradeoff be-
tween efficiency (smaller DAGs and thus faster computa-
tions) and accuracy (larger DAGs and more accurate influ-
ence result). Condition (d) aims at maximizing the sum of
individual influence from any node u in the DAG to its root
v. This is a heuristic for covering as much as possible the
influence propagation in the selected DAG. Unfortunately
the problem MAX-LDAG is NP-hard, as shown by the
following theorem.

Theorem 3: Problem MAX-LDAG is NP-hard.
Proof. (Sketch). The reduction is from the Regular Graph
Vertex Cover problem. See [17] for a complete proof. �

To circumvent the NP-hardness result, we use an efficient
greedy heuristic algorithm shown in Algorithm 3 to compute



a local DAG LDAG(v, θ) for each node v given a threshold
θ. Initially the DAG D to be computed is empty, and only the
influence probability from v to itself is 1 and all others are 0.
The algorithm add nodes into D one by one. Each time, the
algorithm selects the node x that has the largest influence to
v among all nodes not in D, and add x together with all its
outgoing edges to nodes already in D into DAG D. After x
is added into D, we need to update the influence probability
for those in-neighbors u of x not yet in D, since they may
have new paths through x to influence v (line 7). The process
ends when the x selected has influence to v less than θ. It
is easy to note that the algorithm has the similar structure
as the classic Dijkstra shortest-path algorithm. Let nv be the
number of nodes in LDAG(v, θ), and `v be the volume of
LDAG(v, θ), which is the sum of in-degrees of nodes in
LDAG(v, θ). Then we know that our LDAG construction
algorithm (Algorithm 3) has an efficient implementation in
O(`v + nv log `v) time (using a Fibonacci heap).

While our LDAG algorithm does not provide an ap-
proximation guarantee, it is very efficient and produces
very good results in practice. In our experiment section,
we will show that our FIND-LDAG algorithm leads to
much better result in influence maximization than randomly
selected local DAGs, and its performance is already very
close to the gready Algorithm 1 for influence maximization,
suggesting that the room for further improving the local
DAG construction is small.

C. LDAG algorithm

After selecting the LDAGs rooted at all nodes, we may
simply follow the greedy Algorithm 1 to select the k seeds,
and use Algorithm 2 to compute influence spread. This
is not very efficient, however, as we now explain. Let
InfSet(u) = {v ∈ V | u ∈ LDAG(v, θ)}, which represents
the set of nodes that could be influenced by u in the
LDAG influence model. After a new seed s is selected, for
every v ∈ InfSet(s), we need to recompute the incremental
influence spread of every node u in LDAG(v) because it
may have changed. The naive computation would be for
every such u, using Algorithm 2 to compute the influence
to v in LDAG(v) when u is added to the seed set. Let nv
and mv denote the number of nodes and edges of LDAG(v),
respectively. Since computing influence in LDAG(v) given
a seed set takes O(mv) time using Algorithm 2, and we
need to try all possible nodes in LDAG(v) as the next seed,
it takes O(nvmv) time to compute the incremental influence
spread of any node in LDAG(v). In the following, we utilize
the linear relationship shown in Lemma 3 to reduce the
above time from O(nvmv) to O(mv).

Informally, in a DAG D, the activation probabilities of
nodes u and v have a linear relationship, so if we know the
linear coefficient α and the activation probability ap(u) of u,
we can immediately know that when u is selected as a seed,
the additional influence u imposes on v is (1 − ap(u))α.

Algorithm 4 compute αv(u) for all u in DAG D

1: ∀u in D, αv(u) = 0; αv(v) = 1;
2: topologically sort all nodes that can reach v in D into

a sequence ρ, with v sorted first.
3: for each node u ∈ ρ \ (S ∪ {v}) according to order ρ

do
4: αv(u) =

∑
x∈Nout (u)∩ρ w(u, x) · αv(x)

5: end for

More specifically, consider a DAG D = (V,E,w) and a
seed set S ⊆ V , and for all u ∈ V , let ap(u) denote the
activation probability of u as computed by Algorithm 2. For
two nodes u, v ∈ V \ S, let the incremental influence of u
to v in D be the amount of increase in ap(v) when u is
selected as an additional seed. We have

Lemma 4: For two nodes u, v ∈ V \ S, the incremental
influence of u to v in D is (1−ap(u)) ·αv(u), where αv(u)
is calculated in Algorithm 4.
Proof. (Sketch). The proof is done by repeatedly expanding
ap(v) using Equation (III.1). �

Algorithm 4 shows that we can compute all αv(u)’s
for all u ∈ D in time linear to the size of the DAG.
Then by the above lemma we can immediately obtain the
incremental influence of all nodes u to v. Therefore, by using
the linear relationship, we reduce the incremental influence
computation from O(nvmv) to O(mv).

Algorithm 5 shows our full algorithm of selecting k seeds.
For ease of reading, we add subscript v on variables such
as apv(u) to denote that the variables are for LDAG(v, θ)
rooted at node v. Lines 1–12 are for the preparation phase,
in which LDAG(v, θ)’s are computed (and InfSet(v)’s are
derived from them), apv(u)’s are initialized to 0 since there
is no seed, and αv(u)’s are computed. We use a max-heap
to maintain IncInf (u) for every u ∈ V , which is the incre-
mental influence of u to all nodes if u is selected as the seed.
By Lemma 4, initially IncInf (u) =

∑
v∈InfSet(u) αv(u).

The main loop in lines 14–31 uses the greedy approach to
select k seeds one by one. After selecting a seed s with the
highest incremental influence (line 15), we need to update
related ap(u)’s and α(u)’s in order to calculate the new
incremental influence of nodes. The nodes needed to be
updated are those sharing at least one LDAG(v, θ) with
s, i.e. those u’s in LDAG(v, θ) for all v ∈ InfSet(s) \ S.
In each of such LDAG(v, θ)’s, when s is selected as the
next seed, by Algorithm 4 we can see that only those nodes
u that can reach s in LDAG(v, θ) need to update their
αv(u)’s. Due to the linear relationship, the update of those
αv(u)’s can be done by simply computing their changes
∆αv(u)’s through reusing the code in Algorithm 4, with
the initial condition ∆αv(s) = −αv(s) because αv(s) is
changed to zero when s is selected as a seed (lines 18–
21). These nodes with updated αv(u)’s do not change their
ap(u)’s because they are not reachable from s. Thus their



Algorithm 5 LDAG algorithm for seed selection
1: /* preparation phase */
2: set S = ∅
3: ∀ v ∈ V, IncInf (v) = 0
4: for each node v ∈ V do
5: generate LDAG(v, θ) using Algorithm 3
6: /* InfSet(v)’s are derived from LDAG(v, θ)’s */
7: ∀u ∈ LDAG(v, θ), set apv(u) = 0
8: ∀u ∈ LDAG(v, θ), compute αv(u) using Algorithm 4
9: for each u in LDAG(v, θ) do

10: IncInf (u) += αv(u)
11: end for
12: end for
13: /* main loop for selecting k seeds */
14: for i = 1 to k do
15: s = arg maxv∈V \S{IncInf (v)}
16: for each v ∈ InfSet(s) \ S do
17: /* update αv(u) for all u’s that can reach s in

LDAG(v, θ) */
18: ∆αv(s) = −αv(s); ∀u ∈ S,∆αv(u) = 0
19: topologically sort all nodes that can reach s in

LDAG(v, θ) into a sequence ρ, with s sorted first.
20: compute ∆αv(u) for all u ∈ ρ, using lines 3–5 of

Algorithm 4, where ρ \ (S ∪ {v}) is replaced by
ρ \ (S ∪ {s}) and αv() is replaced by ∆αv().

21: αv(u) += ∆αv(u), for all u ∈ ρ
22: IncInf (u) += ∆αv(u) · (1−apv(u)) for all u ∈ ρ
23: /* update apv(u) for all u’s reachable from s in

LDAG(v, θ) */
24: ∆apv(s) = 1− apv(s); ∀u ∈ S,∆apv(u) = 0
25: topologically sort all nodes reachable from s in

LDAG(v, θ) into a sequence ρ, with s sorted first.
26: compute ∆apv(x) for all u ∈ ρ, using lines 3–5 of

Algorithm 2, where ρ\S is replaced by ρ\(S∪{s})
and ap() is replaced by ∆apv()

27: apv(u) += ∆apv(u), for all u ∈ ρ
28: IncInf (u)−= αv(u) ·∆apv(u) for all u ∈ ρ
29: end for
30: S = S ∪ {s}
31: end for
32: return S

incremental influence IncInf (u) needs to be updated by
adding ∆αv(u)(1−ap(u)) (line 22). Similarly, for all nodes
u reachable from s in LDAG(v, θ), they need to update
apv(u) but not αv(u), and the update of apv(u) follows
Algorithm 2 by computing the changes ∆apv(u), with the
initial condition ∆apv(s) = 1 − apv(s) and for all seeds
u ∈ S ∆apv(u) = 0 (lines 24–27). Finally the incremental
influence IncInf (u) of each u reachable from s decreases
by αv(u)∆apv(u) (line 28).
Time and space complexity of LDAG algorithm. Let n
be the total number of nodes in G. Let mθ and m̄θ be the

Table I
STATISTICS OF FOUR REAL-WORLD NETWORKS.

Dataset NetHEPT Epinions Amazon DBLP
number of nodes 15K 76K 262K 655K
number of edges 31K 509K 1.2M 2.0M
average degree 4.12 13.4 9.4 6.1
maximal degree 64 3079 425 588
number of connected
components 1781 11 1 73K

largest component
size 6794 76K 262K 517K

average component
size 8.6 6.9K 262K 9.0

Note: Directed graphs are treated as undirected graphs in these statistics.

maximum size and average size (in terms of the number of
edges) of LDAG(v, θ) among all v ∈ V , respectively. Let nθ
be the maximum size of InfSet(v) among all v ∈ V . The
LDAG(v, θ) is computed by a Dijkstra-like algorithm in
Algorithm 3, and let t̄θ be the average time to compute one
LDAG(v, θ) among all v ∈ V . Note that m̄θ = O(t̄θ), and
for sparse graphs (such as typical social networks) t̄θ = m̄θ.

For every node v ∈ V , the LDAG algorithm maintains
LDAG(v, θ) and InfSet(v), and for every u in LDAG(v, θ),
the algorithm maintains apv(u) and αv(u). The algorithm
also maintains a max-heap for IncInf (v) for all v ∈ V .
Thus, it is easy to see that space needed is proportional to
the total size of all LDAGs, which is O(nm̄θ).

The preparation phase of our LDAG algorithm (lines 1–
12) generates all LDAG(v, θ)’s, and for each of them
compute αv(u)’s. The LDAG construction takes O(nt̄θ)
time, and αv(u) computations take O(nm̄θ) time totally.
The initialization of the max-heap for IncInf () takes O(n)
time. Thus the entire preparation phase takes O(nt̄θ) time.

In each iteration of the main loop (lines 14–31), selecting
a new seed from the max-heap takes constant time, and for
each v ∈ InfSet(v) \ S, updating αv(u)’s and apv(u)’s for
all u ∈ LDAG(v, θ) takes O(mv) time, where mv is the
size of LDAG(v, θ). Then updating each IncInf (u) takes
O(log n) time on the max-heap. Therefore, one iteration
of the main loop takes O(

∑
v∈InfSet(s)\Smv · log n) =

O(nθmθ log n). Therefore, to select k seeds, the total time
is O(nt̄θ + knθmθ log n). Note that without using the
linear relationship speedup, the time complexity would be
O(nt̄θ + knθmθ(mθ + log n)).

V. EXPERIMENTS

We use experiments on real-world networks as well as
synthetic networks to demonstrate the effectiveness and the
efficiency of our LDAG algorithm.

A. Setting up the experiments

The four real-world networks we use and their basic
statistics are summarized in Table I, which include: (a)
NetHEPT, an academic collaboration network extracted from
”High Energy Physics - Theory” section of the e-print arXiv



(http://www.arXiv.org), with nodes representing authors and
edges representing coauthorship relations; (b) DBLP, the
Computer Science Bibliography Database maintained by
Michael Ley (http://www.informatik.uni-trier.de/˜ley/db/),
again with nodes representing authors and edges repre-
senting coauthorship relations; (c) Epinions, the Who-trust-
whom network of Epinions.com [18], where nodes are
members of the site and a directed edge from u to v means
v trust u (and thus u has influence to v); and (d) Amazon,
the Amazon product co-purchasing network [19] dated on
March 2, 2003, where nodes are products and a directed
edge from u to v means product v is often purchased with
product u (and thus u has influence to v). These datasets vary
in size and features and thus can test the performance of the
algorithms in different cases. We also use synthetic power-
law degree graphs generated by the DIGG package [20]
to test the scalability of our algorithm with different sized
graphs of the same feature.

For the graphs we tested, we use the following two
methods to generate the influence weights on all edges: (a)
the uniform method, in which for every node v in a graph
with in-degree dv , we set the weight of every incoming edge
of v to be 1/dv; and (b) the random method, in which the
weight of every edge is generated uniformly at random in
the range [0, 1], and then we normalize the weights of all
incoming edges of a node v so that they sums to 1.

In the experiments, we compare our LDAG algorithm
with several other algorithms for influence maximization. As
explained in the Introduction, to the best of our knowledge
we do not find any other algorithm that is designed using
specific features of the LT model. Thus we compare our
algorithm with a few other more or less generic algorithms
and heuristics, as we list below.

• LDAG(θ): Our LDAG Algorithm 5 with threshold pa-
rameter θ. In all of our tests, we use θ = 1/320.4

• Greedy: The greedy Algorithm 1 on the LT model
with the lazy-forward optimization of [4]. For each
candidate seed set S, 20000 simulations is run to obtain
an accurate estimate of σL(S).

• SPIN: A heuristic algorithm based on the Shapley
values [5]. We use 20000 simulations to estimate σL(S)
to be consistent with Greedy and other algorithms.
Also, in computing Shapley values, 10000 random per-
mutations and 400 random nodes in each permutation
are used, same as in [5] on a graph similar to NetHEPT.

• DegreeDiscountIC: The degree discount heuristic
of [6] developed for the uniform IC model with a
propagation probability of p = 0.01. Although this
heuristic is designed specifically for the uniform IC
model, we use it as a general heuristic in the class

4We found that a fairly loose range of θ from 1/80 to 1/640 produce
similar results in term of influence spread in all of our test cases (one is
within 3.6% while all the rest are within 2% of the case θ = 1/320), and
thus we choose θ = 1/320 for all cases.

(a) normal scale (b) log-log scale
Figure 1. Scalability of different algorithms in synthetic datasets. Each
data point is an average of ten runs.

Figure 2. Running time of different algorithms in the four datasets

of degree centrality heuristics. It performs much better
than the pure degree heuristic, as shown in [6] as well
as in our own tests in the LT model.

• PageRank: The popular algorithm used for ranking
web pages [8]. The transition probability along edge
(u, v) is w(v, u). Intuitively, w(v, u) in the LT model
indicates the strength of influence of v to u, and thus we
use it in the reverse direction to be the “vote” of u on
v’s rank, as interpreted by the PageRank algorithm. We
select k nodes with the highest PageRanks as the seeds.
We use 0.15 as the restart probability for PageRank, and
we use the power method to compute the PageRank
values. The stopping criteria is when two consecutive
iterations differ for at most 10−4 in L1 norm.

We run 20000 simulations to accurately estimate σL(S)
for every seed set S obtained from any heuristic algorithms,
which matches the accuracy of the greedy algorithm. All
experiments are run on a server with 2.33GHz Quad-Core
Intel Xeon E5410, 32G memory, and Microsoft Windows
Server 2003.

B. Results of the experiments

Scalability on the synthetic dataset. We first test the
scalability of the algorithms, using a family of synthetic
power-law graphs generated by the DIGG package [20]. We
generate graphs with doubling number of nodes, from 2K,
4K, up to 256K, using power-law exponent of 2.16. Each
size has 10 different random graphs and our running time



Table II
AVERAGE NUMBER OF NODES AND EDGES IN LDAGS IN THE

NETWORKS WITH UNIFORM WEIGHTS.

Dataset NetHEPT Epinions Amazon DBLP
number of nodes 37.2 51.1 48.7 47.1
number of edges 285 162 82.1 159

result is the average among the runs on these 10 graphs.
Every undirected edge is treated as two directed edges, and
we use uniform method to generate edge weights for the
directed edges. We run different algorithms to select 50 seeds
in each graph. Figure 1 shows our scalability test result, with
normal scale in (a) and log-log scale in (b) for better viewing
of different curves. The results clearly show that Greedy is
not scalable — it almost runs 16 hours for the graphs with
about 80K edges. LDAG scales quite well, only taking 1.5
minutes for graphs with 350K edges.

The scalability of our LDAG algorithm is further demon-
strated in our tests on real networks, as shown in Figure 2.
The figure shows the running time of different algorithms on
the four real-world networks of different sizes, and weights
are generated using the uniform method (the results on the
random method are similar and thus omitted). We can see
that even for the largest DBLP graph with 655K nodes and
2M edges, LDAG only takes 5 minutes to finish, while
Greedy takes 190 hours. Therefore, our LDAG algorithm
has much better scalability and is more than three orders of
magnitude faster than the greedy algorithm. One of the key
reasons for the efficiency of LDAG is the small LDAG size
computed by the algorithm, as reported in Table II.

Among other heuristics algorithms, SPIN turns out to
have very poor scalability, running very slow even for the
smallest NetHEPT graph of 15K nodes. For this reason we
do not include SPIN in our scalability test or in other larger
datasets. PageRank and DegreeDiscountIC have a better
scalability than LDAG, but we will show next that their
influence spread is not as good as LDAG.

Influence spread in the real-world datasets To compare
influence spread generated by different algorithms, we run
all algorithms on four real-world networks using both uni-
form weights and random weights, and we select from 1
seed to 50 seeds. Figure 3 reports the results using random
weights on four networks. The results using uniform weights
are similar and are reported in [17]. For ease of reading, the
legend of each figure lists the algorithms in the same order
as their corresponding influence spread with 50 seeds.

Several conclusions can be made from these test results.
First, comparing with Greedy, LDAG consistently matches
the performance of Greedy. The largest difference is in the
DBLP dataset where LDAG is 6.7% and 5.5% lower than
Greedy (for uniform and random weights respectively),5

5All percentages reported are taken as the average of percentages from
using one seed to using 50 seeds.

(a) NetHEPT (b) Epinions

(c) Amazon (d) DBLP
Figure 3. Influence spread on the four datasets with random weights.

(a) (b)
Figure 4. Comparing influence spread in NetHEPT network with uniform
weights, with the following different setup: (a) Greedy with 20, 200, 2000,
and 20000 simulation runs; (b) using DAGs computed by our FIND-LDAG
algorithm vs. randomly computed DAGs.

while in other datasets LDAG is very close to Greedy or
essentially the same as Greedy. Second, comparing with
other heuristics PageRank and DegreeDiscountIC, LDAG
perofrms consistently well, while DegreeDiscountIC per-
forms poorly in Amazon dataset (more than 90% lower than
LDAG) and Epinions dataset (more than 34% lower than
LDAG), and PageRank performs significantly worse than
LDAG in Amazon dataset (9.4% and 19.9% lower in uni-
form weights and random weights, respectively). PageRank
and DegreeDiscountIC do performs a few percentage better
than LDAG in the DBLP dataset. However, the unstable
performance of PageRank and DegreeDiscountIC makes
them not suitable as a general heuristic for the LT model to
be applied for different type of networks.

We believe that our test results provide a balanced view
among these different algorithms. The main advantage of our
LDAG algorithm is that it performs consistently among the
best algorithms in all tests, and we attribute it to the design
of LDAG tailored specifically to the LT influence model.



Greedy algorithm with smaller number of simulations.
We run Greedy with a smaller number of simulations to es-
timate influence spread (20, 200 and 2000, instead of 20000)
to see if we can significantly reduce Greedy’s running
time while obtaining similar influence spread. Our results
in Figure 4(a) clearly shows that it is not the case: Greedy
with 20, 200 and 2000 simulations are 56%, 13% and 4.3%
worse than Greedy with 20000 simulations, and all are
worse than our LDAG algorithm. In particular, Greedy(20)
has running time comparable to LDAG, but has much worse
influence spread. Therefore, the greedy algorithm cannot
maintain high influence spread when reducing its number
of simulations in estimating incremental influence spread.
Importance of finding a good LDAG. Finally, we verify
the effectiveness of our LDAG construction Algorithm 3. To
do so, we compare it against an algorithm that randomly
generates LDAGs: at each step, the algorithm randomly
selects one node from the in-neighbors of all nodes already
in the LDAG and adds the node as well as its outgoing edges
into the LDAG. We denote this algorithm as RandDAG.
Since threshold θ does not apply to RandDAG, we directly
control the size of LDAGs, and in our test RandDAG always
select 30 nodes in each LDAG. To make a fair comparison,
we also modify Algorithm 3 so that it also selects 30 nodes
for each LDAG instead of using parameter θ. We run both
algorithms in the NetHEPT network using uniform weights.
Our results in Figure 4(b) show that our greedy approach
of generating LDAGs perform much better than randomly
generated LDAGs, indicating that indeed LDAGs should be
carefully selected. On the other hand, our greedy LDAG
construction already results in influence spread very close
to that of the greedy seed selection algorithm, so the benefit
of further improvement in LDAG construction is small.

To summarize, the experimental results demonstrate that
our LDAG algorithm performs consistently among the best
algorithms in term of the influence spread and can scale to
graphs with millions of nodes and edges, while other algo-
rithms either do not scale or do not have stable performance
in influence spread. Therefore, we believe that our LDAG
algorithm is suitable as the scalable solution to the influence
maximization problem in the LT model.

VI. FUTURE WORK

There are many future directions related to this work.
First, we need to go beyond the basic IC and LT models
in the framework of [1], and study influence maximization
problems in other models, especially those that may not
satisfy the submodularity property. Second, we need to
analyze real social networks using real-world social inter-
action data to learn that what type of influence models
are suitable for these networks, in order to effectively
apply influence maximization algorithms. Third, influence
maximization may be combined with other network analysis
techiques such as clustering and community detection to

further enhance the efficiency and effectiveness of influence
maximization. Finally, one may further pursue the theoretical
problems related to influence maximization, for example,
finding efficient approximation algorithms for computing
influence in the IC or LT model, constructing LDAGs with
approximation ratio guarantees, etc.
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