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ABSTRACT
Friending recommendation has successfully contributed to
the explosive growth of online social networks. Most friend-
ing recommendation services today aim to support passive
friending, where a user passively selects friending targets
from the recommended candidates. In this paper, we advo-
cate a recommendation support for active friending, where a
user actively specifies a friending target. To the best of our
knowledge, a recommendation designed to provide guidance
for a user to systematically approach his friending target has
not been explored for existing online social networking ser-
vices. To maximize the probability that the friending target
would accept an invitation from the user, we formulate a new
optimization problem, namely, Acceptance Probability Maxi-
mization (APM), and develop a polynomial time algorithm,
called Selective Invitation with Tree and In-Node Aggrega-
tion (SITINA), to find the optimal solution. We implement
an active friending service with SITINA on Facebook to val-
idate our idea. Our user study and experimental results
reveal that SITINA outperforms manual selection and the
baseline approach in solution quality efficiently.

Categories and Subject Descriptors
K.4.2 [Computers and Society]: Social Issues ; F.2.2
[Analysis of Algorithms and Problem Complexity]:
Non-numerical Algorithms and Problems

Keywords
Friending, social network, social influence

1. INTRODUCTION
Due to the development and popularity of social network-

ing services, such as Facebook, Google+, and LinkedIn, the
new notion of “social network friending” has appeared in re-
cent years. To boost the growth of their user bases, existing
social networking services usually provide friending recom-
mendations to their users, encouraging them to send invita-
tions to make more friends. Conventionally, friending recom-
mendations are made following a passive friending strategy,
i.e., a user passively selects candidates from the provided
recommendation list to send the invitations. Moreover, the
recommended candidates are usually friends-of-friends of the
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user, especially those who share many common friends with
the user. This strategy is quite intuitive because friends-
of-friends may have been acquaintances or friends offline.
Furthermore, most users may feel more comfortable to send
a friending invitation to friends-of-friends rather than a to-
tal stranger whom they have shared no social connections
with at all. It is believed that given the success rate of such
a passive friending strategy to be high, it has contributed to
the explosive growth of online social networking services.

In contrast to passive friending, the idea of active friend-
ing, where a person may take proactive actions to make
friend with another person, does exist in our everyday life.
For example, in a high school, a student fan may like to
make friend with the captain in the school soccer team or
with the lead singer in a rock-and-roll band of the school. A
salesperson may be interested in getting acquainted with a
high-value potential customer in the hope of making a busi-
ness pitch. A young KDD researcher may desire to make
friends with the leaders of the community to participate in
organization and services of a conference. However, to the
best of our knowledge, the idea of providing friending recom-
mendations to assist and guide a user to effectively approach
another person for active friending has not been explored in
existing online social networking services. We argue that
social networking service providers, interested in exploring
new revenues and further growth of their user bases, may be
interested in supporting active friending.

One may argue that in existing social networking services,
an active friending initiator can send an invitation directly
to the friending target anyway.1 However, it may not work
if the initiator is regarded as a stranger by the target, es-
pecially when they are socially distant, i.e., they have no
common friends. Therefore, to increase the chance that the
target would accept the friending invitation, it may be a
good idea for the initiator to first know some friends of the
target, which in turn may require the initiator to know some
friends of friends of the target. In other words, if the ini-
tiator would like to plan for some actions, he may need the
topological information of the social network between the
target and himself, which unfortunately is unavailable due
to privacy issues. In this situation, it would thus be prefer-
able if the social networking service providers, given a target
specified by the initiator, could provide a step-by-step guid-
ance in the form of recommendations to assist the initiator
to make friends towards the target.

In this paper, we are making a grand suggestion for the
social networking service providers to support active friend-
ing. Our sketch is as follows. By iteratively recommending
a list of candidates who are friends of at least one existing
friend of the initiator, a social networking service provider
may support active friending, without violating the current
practice of privacy preservation in recommendations. Con-

1For the rest of the paper, we refer to the friending initiator
and friending target as initiator and target for short.
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sider an initiator who specifies a friending target. The so-
cial networking service, based on its proprietary algorithms,
recommends a set of friending candidates who may likely
increase the chance for the target to accept the eventual
invitation from the initiator. Similar to the recommenda-
tions for passive friending, the recommendation list consists
of only the friends of existing friends of the initiator. By ap-
pearance, the initiator follows the recommendations to send
invitations to candidates on the list. The invitation is dis-
played to a candidate along with the list of common friends
between the initiator and the candidate so as to encourage
acceptance of the invitation.2 As such, the aforementioned
step is repeated until the friending target appears in the
recommendation list and an invitation is sent by the initia-
tor. It is clear, however, that the recommendations made for
passive friending may not work well because active friending
is target-oriented. The recommended candidates should be
carefully chosen for the initiator, guiding him to approach
the friending target step by step.
To support active friending, the key issue is on the de-

sign of the algorithms that select the recommendation can-
didates. A simple scheme is to provide recommendations
by unveiling the shortest path between the initiator and the
target in the social network, i.e., recommending one candi-
date at each step along the path. As such, the initiator can
gradually approach the target by becoming acquainted with
the individuals on the path. However, this shortest-path rec-
ommendation approach may fail as soon as a middle-person
does not accept the friending invitation (since only one can-
didate is included in the recommendation list for each step).
To address this issue, it is desirable to recommend multi-
ple candidates at each step since the initiator is more likely
to share more common friends with the target and thereby
more likely to get accepted by the target. This is espe-
cially true, if broadcasting of the friending invitations can
be made to all neighbors of the initiator’s friends. In other
words, the probability to reach the friending target and get
accepted can be effectively maximized as an enormous num-
ber of paths are flooded with invitations to approach the
target. Nevertheless, the mechanism of friending invitations
is abused here because the above undirectional broadcast
aimlessly involves many unnecessary neighbors. Moreover,
the initiator may not want to handle a large number of te-
dious invitations.
In this paper, we study a new optimization problem, called

Acceptance Probability Maximization (APM), for active friend-
ing in online social networks. The service providers, eager
to explore new monetary tools to increase revenue, may con-
sider charging users for the active friending service.3 Given
an initiator s, a friending target t, and the maximal number
rR of invitations allowed to be issued by the initiator, APM
finds a set R of rR nodes, such that s can sequentially send
invitations to the nodes in R in order to approach t. The ob-
jective is to maximize the acceptance probability at t of the
friending invitation when s send it to t. The parameter rR
controls the trade-off between the expected acceptance prob-
ability of t and the anticipated efforts made by s for active
friending t.4 Again, R is not returned to s as a whole due
to privacy concerns. Instead, only a subset Rs of nodes that
are adjacent to the existing friends of s are recommended

2This is also a common practice for passive friending in ex-
isting social networking services such as Facebook, Google+,
and LinkedIn.
3Recent news has reported that Facebook now allows its
user to pay to promote their and their friends’ posts [1].
4Since s is not aware of the network topology and the dis-
tance to t, it is not reasonable to let s directly specify rR.
Instead, it is more promising for the service provider to list
a set of rR and the corresponding acceptance probabilities
and monetary costs, so that the user can choose a proper rR
according to her available budget.

to s, while other subsets of R will be recommended to s as
appropriate in later steps5.

The spread maximization problem [6, 7, 14, 17], which
also adopts a probabilistic influence model, is different from
APM in this paper. Given an initiator s and his friends,
APM intends to discover an effective subgraph (i.e., R) be-
tween the seeds and t. On the other hand, the spread max-
imization problem, given the topology of the whole social
network, aims to find a given number of seeds to maximize
the size of the whole spread t.

To tackle the APM problem, we propose three algorithms:
i) Range-based Greedy (RG) algorithm, ii) Selective Invita-
tion with Tree Aggregation (SITA) algorithm, and iii) Selec-
tive Invitation with Tree and In-Node Aggregation (SITINA)
algorithm. RG selects candidates by taking into account
their acceptance probability and the remaining budget of
invitations, leading to the best recommendations for each
step. However, the algorithm does not achieve the optimal
acceptance probability of the invitation to a target due to
the lack of coordinated friending efforts. On the other hand,
aiming to systematically select the nodes for recommenda-
tion, SITA is designed with dynamic programming to find
nodes which may result in a coordinated friending effort to
increase the acceptance probability of the target. SITA is
able to obtain the optimal solution, yet has an exponential
time complexity. To address the efficiency issue, SITINA
further refines the ideas in SITA by carefully aggregating
some information gathered during processing to alleviate re-
dundant computation in future steps and thus obtains the
optimal solution for APM in polynomial time. The contri-
butions of this paper are summarized as follows.

• We advocate the idea of active friending in online so-
cial networks and propose to support active friending
through a series of recommendation lists which serve
as a step-to-step guidance for the initiator.

• We formulate a new optimization problem, called Ac-
ceptance Probability Maximization (APM), for con-
figuring the recommendation lists in the active friend-
ing process. APM serves to maximize the acceptance
probability of the invitation from the initiator to the
friending target, by recommending selective interme-
diate friends to approach the target.

• We propose a number of new algorithms for APM.
Among them, Selective Invitation with Tree and In-
Node Aggregation (SITINA) derives the optimal solu-
tion for APM with O(nV rR

2) time, where nV is the
number of nodes in a social network, and rR is the
number of invitations budgeted for APM.

• We implement SITINA in Facebook in support of ac-
tive friending and conduct a user study including 169
volunteers with varied background. The user study
and experimental results indicate that SITINA effi-
ciently outperforms manual selection and the baseline
approach in solution quality.

The rest of this paper is organized as follows. Section 2
introduces a model for invitation acceptance and formulates
APM. Section 3 reviews the related work. Section 4 presents
the SITA and SITINA algorithms proposed for APM. Sec-
tion 5 reports our user study and experimental results. Fi-
nally, Section 6 concludes the paper.

5In this paper, APM is formulated as an offline optimiza-
tion problem intending to maximize the expected acceptance
probability. In an online scenario where the initiator does
not send invitations to some nodes in Rs or some nodes in
Rs do not accept the invitations, a new APM with renewed
invitation budget could be re-issued to obtain adapted rec-
ommendations. While this scenario raises important issues,
it is beyond the scope of this paper.
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2. INVITATION ACCEPTANCE
The notion of acceptance probability refers to an invita-

tion. Thus, here we first discuss two important factors that
may affect the acceptance probability of a friending invita-
tion in the environment of online social networking services
and describe how in this work we determine whether an indi-
vidual would accept a received invitation. Next, we explain
why the issue of deriving the acceptance probability over a
social network is very challenging and how we address this is-
sue by adopting an approximate probability based on a max-
imum influence in-arborescence (MIIA) tree. We formulate
the acceptance probability maximization (APM) problem
based on the MIIA tree. The invitation acceptance model
follows the existing social influence and homophily models,
which have been justified in the literature. Later in Section
5, the invitation acceptance model will be validated by a
user study with 169 volunteers.

2.1 Factors for Invitation Acceptance
In the process of active friending, while friending candi-

dates are recommended for the initiator to send invitations,
whether the invitees will accept the invitations remains un-
certain. Based on prior research in sociology and online
social networks [12, 20, 21], we argue that when a person
receives an invitation over an online social network, the de-
cision of the invitee depends primarily on two important
factors: i) the social influence factor [13, 14], and ii) the ho-
mophily factor [9, 12, 21]. Here, the social influence factor
represents the influence from the surroundings (i.e., common
friends) of individuals in the social network on the decision.
On the other hand, the homophily factor captures the fact
that each individual in a social network has a distinctive
set of personal characteristics, and the similarities and com-
patibilities among the characteristics of two individuals can
strongly influence whether they will become friends [12]. Be-
tween them, social influence comes from established social
links, while the homophily between two individuals may ex-
ist without a prerequisite of established social relationship.
Thus, we consider these two factors separately but aim to
treat them in a uniformed fashion in our derivation of the
acceptance probability for an invitation.
As the social influence factor involves the structure of the

social network (i.e., the common friends of the individuals),
we first consider the acceptance probability of an invita-
tion in terms of social influence.6 Let the social network be
represented as a social graph G(V,E) where V consists of
all the users in the social networking system and E be the
established social links among the users. An edge weight
wu,v ∈ [0, 1] on the directed edge (u, v) ∈ E probabilisti-
cally denotes the social influence of u upon v. The probabil-
ity can be derived according to an existing method [13, 14]
according to the interaction in online social networks, while
the setting of negative social influence has also been intro-
duced in [4]. Thus, if u is associated with an invitation from
a user s to v (i.e., u is a common friend of s and v), wu,v

is the probability for v to be socially influenced by u to ac-
cept the invitation.7 Hence, the acceptance probability for
an invitation can be derived by taking into account the so-
cial influences of all the existing common friends associated
with an invitation. It is assumed that each common friend
u has an independent social influence on the invitee v to ac-
cept the friending invitation [9, 12, 20] and thus the overall
acceptance probability can be obtained by aggregating the
individual social influences. Later, the user study in Section

6We intend to extend it with homophily factor later.
7The social influence probability has been extensively used
to quantify the probability of success in the process of confor-
mity, assimilation, and persuasion in Social Psychology [9,
12, 20]. While how to obtain the edge weight is an active
research topic [13, 24], it is out of scope of this paper.

5 demonstrates that the influence probability and homophily
probability derived according to the literature are consistent
to the real probabilities measured from the users.

While obtaining the acceptance probability for a given
invitation (as described above) is simple, deriving the ac-
ceptance probability for a friending target t who does not
have any common friends with the initiator s becomes very
challenging because more than one invitation needs to be
issued (so as to make some common friends first), and there
are complicated correlations among user acceptance events
for users between s and t.

Moreover, our ultimate task is to find a set R of interme-
diate users between s and t with size at most rR for s to send
invitations to, so as to maximize the acceptance probability
of t. We call this problem the acceptance probability maxi-
mization (APM) problem. Due to the combinatorial nature
of this invitation set R, it is still difficult to find such a set
to maximize the acceptance probability of t even in cases
where computing the acceptance probability is easy. The
following theorem makes the above two hardness precise.

Theorem 1. Given the set of neighbors S of the initia-
tor, computing the acceptance probability of t is #P-hard.
Moreover, finding a set R with size rR that maximizes the
acceptance probability of target t is NP-hard, even for cases
when computing acceptance probability is easy.

Proof. We prove the theorem in [30].

2.2 Approximate Acceptance Probability
The spread maximization problem in the Independent Cas-

cade (IC) model [17] also faces the challenge in Theorem 1.
To efficiently address this issue, an approximate IC model,
called MIA, has been proposed [4, 5, 6]. The social influ-
ence from a person u to another person v is effectively ap-
proximated by their maximum influence path (MIP), where
the social influence wu,v on the path (u, v) is the maximum
weight among all the possible paths from u to v. MIA cre-
ates a maximum influence in-arborescence, i.e., a directed
tree, MIIA(t, θ) including the union of every MIP to t with
the probability of social influence at least θ from a set S of
leaf nodes. The MIA model has been widely adopted to de-
scribe the phenomenon of social influence in the literature [4,
5, 6] with the following definition on activation probability,
which is basically the same as the acceptance probability if s
broadcasts friending invitations to all nodes in MIIA(t, θ).

Definition 1. The activation probability of a node v in
MIIA(t, θ) is ap′(v, S,MIIA(t, θ))) =

1, if v ∈ S
0, if N in(v) = ∅

1−
∏

u∈Nin(v) (1− ap′(u, S,MIIA(t, θ)) · wu,v), otherwise

where N in(v) is the set of in-neighbors of v.

Note that ap′(u, S,MIIA(t, θ)) · wu,v is the joint proba-
bility that u is activated and successfully influences v, and
u can never influence v if it is not activated. Therefore, the
activation probability of a node v can be derived according
to the activation probability of all its in-neighbors, i.e., the
child nodes in the tree. Since S is the set the leaf nodes,
the activation probabilities of all nodes in MIIA(t, θ) can
be efficiently derived in a bottom-up manner from S toward
t.

In light of the similarity between the IC model and the
decision model for invitation acceptance in active friending
with no budget limitation of invitations, we also exploit MIA
to tackle the APM problem. MIIA(t, θ) is constructed by
the MIPs from all friends of s to t, i.e., S is the set of friends
of s. In other words, θ is set as 0 to ensure that the social
influence from every friend is fully incorporated. Neverthe-
less, different from the activation probability in the litera-
ture, which allows the influence to propagate via every node
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Figure 1: Combining the social influence and ho-
mophily factors

in MIIA(t, θ), the acceptance probability for active friend-
ing allows the social influence to take effect on the invitation
acceptance only via a set R of nodes to be selected in our
problem. Thus, we define the acceptance probability for an
invitation to node v as follows.

Definition 2. The acceptance probability for an invita-
tion of a node v in MIIA(t, θ) is ap(v, S,R,MIIA(t, θ))) =

1, if v ∈ S
0, if v /∈ R or N in(v) = ∅

1−
∏

u∈Nin(v),u∈R (1− ap(u, S,R,MIIA(t, θ)) · wu,v)
, otherwise

where N in(v) is the set of in-neighbors of v.

Equipped with MIA, we are able to derive the acceptance
probability of t efficiently with a simple iterative approach
from the leaf nodes to the root (i.e., t). The above MIA ar-
borescence incorporates only the social influence factor. As
discussed earlier, the homophily factor between the initiator
and the receiver of an invitation is also crucial for friending.
Homophily in [9, 12, 21] represents the probability for two
individuals u and v to create a new social link due to shared
common personal characteristics. Homophily in Sociology
manifests the general tendency of people to associate with
others and similar others can be quantified with various ap-
proaches [2, 16, 29]. The homophily probability can be set
according to [3].
To extend MIA, we attach a duplicated s to each node

with a directed edge, with a parameter specifying the ho-
mophily factor from s to v. The MIP from each candidate
to t, together with the directed edge from s to the candi-
date, is incorporated in the extended MIA. Therefore, the
extended MIA is also an arborescence, where each leaf node
is a friend of s or s herself, and those leaf nodes make up
the set S.
Figure 1 shows an example of the extended MIA. For each

internal node, such as v1, its acceptance probability factors
are not only the social influence from v3 and v4 but also the
homophily factor between s and v1.
In this paper, the influence probability and homophily

probability are derived according to the above literature
without associating them with different weights. Later, user
study will be presented in Section 5, and the results show
that the real acceptance probability complies with the ac-
ceptance probability of the above model.

2.3 Problem Formulation
In this work, we formulate an optimization problem, called

Acceptance Probability Maximization (APM), to select a given
number of intermediate people to systematically approach
the friending target t based on MIIA(t, θ). The APM prob-
lem is formally defined as follows.
Acceptance Probability Maximization (APM). Given
a social network G(V,E), an initiator s and a friending tar-
get t, select a set R of rR users for s to send friending invi-
tations such that the acceptance probability
ap(t, S,R,MIIA(v, θ)) is maximized, where S is the friends
of s, including s itself.

As analyzed later, the optimal solution to APM can be
obtained in O(nV rR

2) time8, where nV is the number of
nodes in a social network, and rR is the total number of
invitations allowed. The setting of rR has been discussed in
Section 1. It is worth noting that APM maximizes the ac-
ceptance probability of t, instead of minimizing the number
of iterations to approach t, which can be achieved by the
shortest path routing in an online social network. Neverthe-
less, it is possible to extend APM by limiting the number
of edges in an MIP of MIIA(t, θ), to avoid incurring an
unaccepted number of iterations in active friending.

3. RELATED WORK
Recommendations for passive friending has been explored

in the recent few years. Chen et al. [3] demonstrated that
friending recommendations based on the topology of an on-
line social network are the easiest way to result in the ac-
ceptance of an invitation. In contrast, recommendations
based on contents posted by users are very powerful for
discovering potential new friends with similar interests [3].
Meanwhile, research shows that preferences extracted from
social networking applications can be exploited for recom-
mendations [15]. To avoid recommending socially distant
candidates, users are allowed to specify different social con-
straints [23], e.g., the distance between a user and the rec-
ommended friending targets, to limit the scope of friending
recommendations. Moreover, community information has
been explored for recommendations [25]. It is important to
note that the aforementioned research work and ideas are
proposed for passive friending, where the friending targets
are determined by the recommendation engines of social net-
working service providers in accordance with various criteria
(e.g., preferences and social closeness). Thus, the user can
conveniently (but passively) send an invitation to targets on
the recommendation list. Complementary to the conven-
tional passive friending paradigm, in this paper, we propose
the notion of active friending where a friending target can
be specified by the initiator. Accordingly, the recommen-
dation service may assist and guide the initiator to actively
approach a target.

The impact of social influence has been demonstrated in
various applications, such as viral marketing [6, 17, 18] and
interest inference [28]. Given an online social network, a
major research problem is the seed selection problem, where
the seeds correspond to the leaf nodes of MIA (i.e., initiator
s and her friends) in our problem. In contrast, APM selects
the topology between the friends and t, instead of selecting
the seeds. The homophily factor, capturing the tendency
of users to connect with similar others, has been considered
in several applications, such as by identifying either trusted
users [26] or users relationships [31] in social networks.

Notice that some works develop algorithms to return a
subgraph or path, such as community detection [19], short-
est path [10], pattern matching [11], or graph isomorphism
query [8]. In contrast to the shortest path query, our al-
gorithms for the APM problem emphasize the returning of
a graph, instead of a path. The topology of the returned
graph contains valuable neighborhood information of some
common friends who can be leveraged to effectively increase
the acceptance probability of a friending invitation. The ini-
tiator of a pattern matching or a graph isomorphism query
needs to specify a subgraph as the query input. However,
the goal of this study is to find an unknown graph between s
and t to maximize the acceptance probability of a invitation
to a friending target.

8MIA was proposed to simplify the IC model, which is com-
putation intensive and not scalable. Nevertheless, we prove
that APM in the IC model is NP-hard for general networks
and not submodular in [30].
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4. ALGORITHM DESIGN
To tackle the APM problem, we design efficient algo-

rithms in support of the invitation recommendations for ac-
tive friending. From our earlier discussions, it can be eas-
ily observed that the set of intermediate nodes in R, i.e.,
those to be recommended for invitation, play a crucial role
in maximizing the acceptance probability for active friend-
ing. Here we first introduce a range-based greedy algorithm
which provides some good insights for our other algorithms.
The algorithm, given an invitation budget rR, aims to

find the set of invitation candidates for recommendations to
an initiator s who would like to make friends with a tar-
get t. Let R denote the answer set, which is initialized as
empty at the beginning. The algorithm iteratively selects a
node v from the neighbors of s’s current friends and adds
it to R based on two heuristics: 1) the highest acceptance
probability and 2) the number of remaining invitations. The
purpose of the former is to minimize the potential waste of a
friending invitation, while the latter avoids selecting a node
too far away to reach t by constraining that v can only be
at most rR − |R| − 1 hops away from t. As a result, the
range-based greedy algorithm is inclined to first expand the
friend territory of s and then aggressively approach towards
the neighborhood of t.

4.1 Selective Invitation with Tree Aggregation
While the range-based greedy algorithm is intuitive, the

nodes added to R at separate iterations are not selected in
a coordinated fashion. Thus, it is difficult for the range-
based greedy algorithm to effectively maximize the accep-
tance probability. To address this issue, we propose a dy-
namic programming algorithm, call Selective Invitation with
Tree Aggregation (SITA), that finds the optimal solution for
APM by exploring the maximum influence in-arborescence
tree rooted at t (i.e., MIIA(t, θ)) in a bottom-up fashion.
SITA starts from the leaf nodes, i.e., nodes without in-
neighbors, to explore MIIA(t, θ) in a topological order until
t is reached finally. In order to obtain the optimal solution,
SITA needs to investigate various allocations of the rR in-
vitations to different nodes close to s or t in MIIA(t, θ).
However, it is not necessary for SITA to enumerate all pos-
sible invitation allocations. Thanks to the tree structure
of MIIA(t, θ), for each node v, SITA systematically sum-
marizes the best allocation for v, i.e. which generates the
highest acceptance probability for v, corresponding to the
subtree rooted at v. The summaries will be exploited later
by v’s parent node, which is the only out-neighbor of v,
to identify the allocation generating the highest probability.
The above procedure is repeated iteratively until t is pro-
cessed, and the allocation of rR invitations to the subtree
rooted at t is the solution returned by SITA.
More specifically, let fv,r denote the maximum acceptance

probability for v to accept the invitation from s while r
invitations have been sent to the subtree rooted at v in
MIIA(t, θ). By first sorting all nodes in topological order to
t, we process fv,r of a node v after all fu,r of its in-neighbors
u have been processed. Apparently, fv,0 = 0 for every node
v that is not a friend of s because no invitation will be sent
to the subtree rooted at v. On the other hand, for every
leaf node v, which is a friend of s (or s itself), fv,r = 1 for
r = 0. For all other nodes v in MIIA(t, θ), SITA derives
fv,r according to each in-neighbor fui,ri as follows,

fv,r = max∑
ri=r−1

{1−
∏

ui∈Nin(v)

[1− fui,ri · wui,v]}, (1)

where N in(v) denotes the set of in-neighbors of v with∣∣N in(v)
∣∣ = dv, ui is an in-neighbor of v, and ri is the number

of invitations sent from s to the subtree rooted at ui. An in-
vitation is sent to v, while the remaining r−1 invitations are
distributed to the in-neighbors of v. SITA effectively avoids
examining all possible distribution of the r − 1 invitations
to the nodes in the subtree. Instead, Eq. (1) examines only
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Figure 2: The running example(not including s and
her edges)

fui,ri of each in-neighbor ui of v on every possible number
of invitations ri. In other words, only the in-neighbors of v,
instead of all nodes in the subtree, participate in the compu-
tation of fv,r to efficiently reduce the computation involved.
For each node v, fv,r is derived in ascending order of r until
reaching r = min(rR, zv), where zv is the number of nodes
that are not friends of s in the subtree rooted at v. SITA
stops after ft,rR is obtained. In the following, we show that
SITA finds the optimal solution to APM.9

Lemma 1. Algorithm SITA answers the optimal solution
to APM.

Proof. We prove the lemma by contradiction. Assume
that the solution from SITA, i.e., ft,rR , is not optimal. Ac-
cording to the recurrence, there must exist at least one in-
neighbor t1 ∈ N in(t) together with the number of invita-
tions r1 such that ft1,r1 is not optimal. Similarly, since
ft1,r1 is not optimal, there exists at least one in-neighbor
t2 ∈ N in(t1) of t1 with the number of invitations r2 such
that ft2,r2 is non-optimal, r2 < r1. Here in the proof, let
fti,ri denote the non-optimal solution found in i-th iteration
of the above backtracking process, which will continue and
eventually end with a probability fti,ri such that 1) ti is a
friend of s but fti,0 ̸= 1 or fti,ri = 0 for ri > 0, or 2) ti is not
a friend of s but fti,0 ̸= 0. The above two cases contradict
the initial assignment of SITA. The lemma follows.

Example. Figure 2 illustrates an example of MIIA(t, θ)
with rR = 7, where the nodes denote the users involved in
deriving the maximal acceptance probability for t and the
numbers labeled on edges denote the influence probability
between two nodes. Without loss of generality, s and her
homophily edges are not shown in Figure 2. Note that the
dark nodes at the leaf are s and her existing friends and thus
have the acceptance probability as 1, while the white nodes
are the recommendation candidates to be returned by SITA
along with their acceptance probabilities. SITA explores
MIIA(t, θ) from the dark leaf nodes in a topological order,
i.e., the fv,r of a node v is derived after all fu,r of its in-
neighbors u are processed. Take u4 as an example. fu4,0 = 0
since no invitation is sent, fu4,1 = 1−(1−fu5,0 ·0.75) = 0.75.
Similarly, for u8, fu8,0 = 0 and fu8,1 = 0.95. Consider u6

which has in-neighbors u7 and u8, fu6,0 = 0, fu6,1 = 0.8, and
fu6,2 = 1−(1−fu7,0 ·0.8)(1−fu8,1 ·0.7) = 0.933. Notice that
for a node v, fv,r is derived for r ∈ [0,min(zv, rR)], e.g., for
u6, we only derive r ∈ [0, 2]. Nevertheless, to find fv,r, SITA
needs to try different allocations by distributing the number
of invitations ri to each different neighbor ui and then com-
bining the solutions fui,ri to acquire fv,r. For example, to
derive fu17,5, it is necessary to distribute 4 invitations to its
in-neighbors, including u18, u20 and u24. The possible al-
locations for (r18, r20, r24) include (0, 1, 3), (0, 2, 2), (1, 0, 3),

9Due to the space constraint, we do not show the pseudo-
code of SITA here but refer the readers to the next section
where a more general SITINA is presented.
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(1, 1, 2) and (1, 2, 1)10, which will obtain acceptance proba-
bility 0.5738, 0.7539, 0.7081, 0.6674 and 0.7639 respectively.
Eventually, we obtain fu17,5 = 0.7639. Notice that the num-
ber of possible allocations grows exponentially. After all the
nodes are processed, we obtain ft,7 = 0.7483. On the other
hand, the greedy algorithm RG selects a user v /∈ R with
the highest acceptance probability and at most rR− |R| − 1
hops away from t. Accordingly, it selects u8, u6, u15, u12,
and u3 sequentially. In the 6th step, the node with the
highest probability is u10. However, u10 is 3-hops away with
3 > rR − |R| − 1 = 2 and thus is not selected. Instead, it
selects the node with the next highest acceptance probabil-
ity, i.e., u2. In the last step, only the root t can be selected,
so RG obtains a solution with the acceptance probability as
0.4013. As such, SITA outperforms RG.

4.2 Selective Invitation with Tree and In-Node
Aggregation

Unfortunately, SITA is not a polynomial-time algorithm
because in Eq. (1), O(rdv ) allocations are examined to dis-
tribute r−1 invitations to the subtrees of the dv in-neighbors
corresponding to each node v. To remedy this scalability
issue, we propose the Selective Invitation with Tree and In-
Node Aggregation (SITINA) to answer APM in polynomial
time. SITINA effectively avoids the processing of O(rdv )
allocations by iteratively finding the best allocation for the
first k in-neighbors, which in turn is then exploited to iden-
tify the best allocation for the first k + 1 in-neighbors. The
process iterates from k = 1 till k = dv. Consequently, the
possible allocations for distributing r − 1 invitations to all
in-neighbors are returned by Eq. (1) in O(dvrR) time, where
dv is the in-degree of v in MIIA(t, θ).
To efficiently derive fv,r in Eq. (1), we number the in-

neighbors of v as u1, u2... to udv , where dv is the in-degree
of v. Let mv,k,x denote the maximum acceptance proba-
bility by sending x invitations to the subtrees of the first
k neighbors of v, i.e., u1 to uk. Initially, mv,1,x = fu1,x,
x ∈ [0, rR]. SITINA derives mv,k,x according to the best
result of the first k − 1 in-neighbors,

mv,k,x = max
x′∈[0,min(zuk

,x)]
{1−[1−mv,k−1,x−x′ ][1−fuk,x′wuk,v]},

(2)
where fuk,x′wuk,v is the acceptance probability for allocat-
ing x′ invitations to the k-th in-neighbor uk, andmv,k−1,x−x′

is the best solution for allocating x − x′ invitations to the
first k− 1 in-neighbors. By carefully examining different x′,
we can obtain the best solution mv,k,x for a given k.
SITINA starts from k = 1 to k = dv. For each k, SITINA

begins with x = 0 until x = min(
∑

i∈[1,k] zui , rR− 1), where∑
i∈[1,k] zui is the total number of nodes that are not friends

of s in the subtrees of the first k in-neighbors. SITINA
stops after finding every mv,dv ,x, x ∈ [0,min(zv, rR − 1)].
The pseudocode is presented in Algorithm 1, and the fol-
lowing lemma indicates that the optimal solution of APM is
mt,dt,rR−1.

Lemma 2. For any v and r, fv,r = mv,dv,r−1.

Proof. We prove the lemma by contradiction. Assume
that mv,dv,r−1 is not optimal. According to the recurrence,
there exists at least one rdv such that mv,dv−1,(rR−1−rdv ) is
not optimal. Similarly, since mv,dv−1,(r−1−rdv ) is not opti-
mal, there exists at least one rdv−1 such that
mv,dv−2,(r−1−rdv−rdv−1) is not optimal. Therefore, let

mv,dv−i,(r−1−σi), where σi =
∑

j∈[0,i−1] rdv−j , denote the

non-optimal solution obtained in the i-th iteration. The
backtracking process continues and eventually ends with
i = dv − 1, where mv,1,r1 ̸= fu1,x. It contradicts the ini-
tial assignment of mv,1,r1 , and the lemma follows.

10Some allocations are eliminated since ri /∈ [0,min(rR, zui)].

k x = 1 x = 2 x = 3 x = 4 x = 5 x = 6
1 0.315 * * * * *
2 0.315 0.4931 0.6528 * * *
3 0.32 0.5342 0.6674 0.7639 0.8314 0.8520

Table 1: All mu17,k,x

The following theorem proves that the algorithm answers
the optimal solution to APM in O(nV rR

2) time, where nV

is the number of nodes in a social network, and rR is the
number of invitations in APM. Note that any algorithm for
APM is Ω(nV ) time because reading MIIA(t, θ) as the in-
put graph requires Ω(nV ) time. Therefore, SITINA is very
efficient, especially in a large social network with nV signif-
icantly larger than dmax and rR.

Theorem 2. Algorithm SITINA answers the optimal so-
lution to APM in O(nV rR

2) time.

Proof. According to Lemma 1 and Lemma 2, SITINA
obtains the optimal solution of APM. Recall that nV is the
number of nodes in the social network, and dv is the in-
degree of a node v in MIIA(t, θ). The algorithm contains
O(nV ) iterations. Each iteration examines a node v to find
mv,dv ,x for every x ∈ [0,min(zv − 1, rR − 1)], where rR is
number of invitations sent by s in APM. There are O(dvrR)
cases to be considered to explore all mv,dv ,x for v in Eq.
(2), and each case requires O(rR) time. Therefore, finding
mv,dv ,x for a node v needs O(dvrR

2) time, and for all nodes
in MIIA(t, θ) it is O(

∑
v dvrR

2), where
∑

v dv = |E|. As
MIIA(t, θ) is a tree (i.e. |E| = nV − 1), the overall time
complexity is O(nV rR

2). The theorem follows.

Example. In the following, we illustrate how SITINA de-
rives fu17,r, r ∈ [0, zu17 ]. At the beginning, the in-neighbors
of u17 are ordered as u18, u20 and u24.

11 Then, we find all
mu17,1,x = fu18,x−1wu18,u17 , x ∈ [0,min(zu18 , rR − 1)] first,
representing the maximum acceptance probability u17 ob-
tained by only sending x invitations to the subtree rooted
at the first in-neighbor, i.e., u18. Then we derive mu17,2,x

for x ∈ [0,min(zu18 + zu20 , rR − 1)] to acquire the maxi-
mum acceptance probability of u17 by sending invitations
to subtrees rooted at u18 and u20. Notice that different x′,
representing the invitations distributed to the k-th subtree,
need to be examined in order to find the optimal solution.
For instance, while deriving mu17,3,4, we compare 1 − (1 −
mu17,2,1)(1−fu24,3×wu24,u17) = 0.7081, 1−(1−mu17,2,2)(1−
fu24,2)×wu24,u17) = 0.7539 and 1−(1−mu17,2,3)(1−fu24,1)×
wu24,u17) = 0.7417 and obtain mu17,3,4 = 0.7539. After
deriving all fu17,x+1 = mu17,dv ,x for x ∈ [0, 6] (min(rR −
1, zu17−1) = 6), the computation of u17 finishes. Table 1
lists the detailed results, where * denotes the instances with
r exceeding the number of people who are not the friends of
s in the first k subtrees.12

5. PERFORMANCE EVALUATION
We implement active friending in Facebook and conduct

a user study and a comprehensive set of experiments to val-
idate our idea of active friending and to evaluate the perfor-
mance of the proposed algorithms. In the following, we first
detail the methodology of our evaluation and then present
the results of our user study and experiments.

5.1 Methodology
We adopt a user study and experiments, two complemen-

tary approaches, for the performance evaluation. We aim to
use the user study to investigate how the recommendation-
based active friending approach fares with the approach
based on the users’ own strategies (i.e., which they would

11To avoid confusion, we keep their ID in this example with-
out renaming them as u1, u2, and u3.

12Note that mu7,k,x = 0 when x = 0.
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Algorithm 1 Selective Invitation with Tree and In-Node
Aggregation (SITINA)

Require: The query issuer s; the targeted user t; the influ-
ence tree MIIA(t, θ) rooted at t; the number of requests
rR that s can send.

Ensure: A set R of selected users that s sends requests to,
such that the acceptance probability is maximized.

1: Obtain a topological order σ which orders a node with-
out in-neighbor first.

2: for v ∈ σ do
3: //obtain all fv,r, r ∈ [0,min(rR, nv)]
4: Order in-neighbors of v as u1, u2,... udv
5: mv,0,r ← 0 for ∀r ∈ [0,min(rR − 1, nr − 1)]
6: for k = 1 to dv do
7: for x = 0 to min(

∑
i∈[1,k] zui , rR − 1) do

8: mv,k,x ← 0
9: for x′ = 0 to min(zuk , x) do
10: if mv,k,x < 1−[1−mv,k−1,x−x′ ][1−fuk,x

′wuk,v]
then

11: mv,k,x ← 1 − [1 − mv,k−1,x−x′ ][1 −
fuk,x′wuk,v]

12: πv,k,x ← x′

13: fv,0 ← 0
14: fv,x+1 ← mv,k,x, ∀x ∈ [0,min(rR − 1,

∑
i∈[1,k] zui)]

15: Backtrack πv,k,x to obtain R
16: return R with maximized ft,rR

follow under the existing environment of social networking
services). To perform the user study, we implement an app.
on Facebook. Through the app., the user is able to decide
whom to invite based on their own strategies to approach the
target. Meanwhile, according to the recommendations gen-
erated from the Range-Based Greedy (RG) algorithm and
the Selective Invitation with Tree and In-Node Aggregation
(SITINA) algorithm, respectively, the user also sends alter-
native sets of invitations to carry out the active friending
activities for comparison.13 Note that Selective Invitation
with Tree Aggregation (SITA) is not considered because it
makes exactly the same recommendations as SITINA. We
recruited 169 volunteers to participate in the user study.
Each volunteer was given 25 targets with varied invitation
budgets to work on. The social distances between the volun-
teer and the targets were pre-determined in order to collect
results for comparison under controlled parameter settings.
We further conducted experiments by simulation to eval-

uate the solution quality and efficiency of SITA, SITINA,
and RG, implemented in an HP DL580 server with four In-
tel Xeon E7-4870 2.4 GHz CPUs and 128 GB RAM. Two
large real datasets, FacebookData and FlickrData were used
in the experiments. FacebookData contains 60,290 users and
1,545,686 friend links crawled from Facebook [27], and Flick-
rData contains 1,846,198 users and 22,613,981 friend links
crawled from Flickr [22]. The initiator s and target t are
selected uniformly at random.
An important issue faced in both of our user study and

the experiments is the social influence and homophily factors
captured in the social network, which are required for RG,
SITA and SITINA to make recommendations. Most of the
previous works adopted a fixed probability (e.g., 1/degree
in [17, 6, 4, 7]) or randomly chose a probability from a set a
values (e.g., 0.001, 0.01, 0.1 in [6, 4]) due to the absence of
real social influence probabilities and homophily probabili-
ties. To address this issue, in the user study, we obtained
the social influence probability on each edge by mining the
interaction history of volunteers in Facebook in accordance
with [13, 14]. We also derived the homophily probabilities

13To alleviate the burden of the participants, we send invita-
tions on their behalves to the recommended candidates.
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Figure 3: Verifying the derived acceptance proba-
bility

from s to other nodes by mining the profile information in
their Facebook pages based on [3]. The social network in the
user study is denoted as UserStudyData. As for the social
networks in FacebookData and FlickrData that were used
for the experiments, we unfortunately do not have personal
profiles and historical interactions of the nodes. Thus, we
could not generate the social influence probability and ho-
mophily probability by mining real data. As a result, we
chose to assign the link weights of the social network based
on: i) the distributions of social influence and homophily
probabilities obtained from our user study (denoted as US),
and ii) the Zipf distribution for its ability to capture many
phenomena studied in the physical and social sciences [32].

5.2 User Study
Through the user study, we logged the responses of par-

ticipants to invitations and thus were able to calculate the
acceptance probabilities corresponding to invitations under
various circumstances. Using the collected data, we made a
number of comparisons.

First, we wanted to verify that the acceptance probabil-
ity of an active friending plan derived based on the MIIA
tree (using the mined social influence and homophily prob-
abilities as the link weights) are consistent with that of the
plan being executed in the user study. To this end, we first
verified the accuracy of our invitation acceptance model (for
single invitation) by comparing the derived acceptance prob-
ability and the actual acceptance probability obtained from
real activities in the user study. Figure 3(a), in which re-
sults obtained from the user study and our model are respec-
tively labeled as Actual and Derived, plots the comparison
in terms of the number of common friends in an invitation.
As can be seen, the acceptance probabilities of both Ac-
tual and Derived increase as the number of common friends
in invitations increases. Most importantly, the results are
consistently close, indicating that our invitation acceptance
model with its social influence and homophily weights used
is able to reasonably capture the decision making process
for invitations in real life.

Notice that the above comparison focuses on the aspect
of invitation acceptance only, without taking into account
the social network topology, which we approximate with
the MIIA tree. To verify that using the MIIA tree is suf-
ficiently effective for active friending planning, we further
compared acceptance probability derived using our proposed
algorithms with the actual acceptance probability obtained
through executing the plan in the user study. Figure 3(b)
shows that, under various distances between the initiator
and target, the acceptance probabilities derived using MIIA
tree is reasonably close to the actual acceptance probabili-
ties.

Next, we compared the effectiveness of strategies based
on RG, SITINA and the participants’ own heuristics. Fig-
ure 4(a) plots the comparison by varying the number of
friending invitations, rR. RG and SITINA generally out-
perform user heuristics (labeled as User) under all settings.
We can observe that the performance of SITINA is gen-
erally very good and improves as rR increases, while the
performance of User and RG are marked with a leap from
rR = 5 to 10 and remain close thereafter. This indicates the
value of the extra computation effort required for deriving
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Figure 4: Acceptance probability in the user study
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(sec.) SITINA SITA RG 

UserStudyData 0.0002 0.4472 2E-05 

FacebookData 0.0592 > 7 days 0.0002 

FlickrData 1.8315 0.0026 

Figure 6: Average Run-
ning time (rR = 20)

recommendations due to the increased invitation budget are
worthwhile, outperforming the heuristic strategies derived
based on RG and human intuition. Figure 4(b) describes
the evaluation of the acceptance probability of t under var-
ious settings of ds,t. When ds,t is 2, it is more likely that
there will be a lot of common friends (due to the nature of
social networks), and thus have greater acceptance proba-
bilities. When ds,t increases, it becomes more difficult for
an initiator to make effective decisions due to the smaller
number of common friends and the lack of knowledge about
the social network topology that is larger and more complex.
As is evident in Figure 4, SITINA has the best performance.

5.3 Experimental Results
While the user study verifies that SITINA is able to achieve

the best performance, the size of the social network is small
due to the limited number of volunteers participating in the
study. To further validate our ideas in a large-scale social
network and to evaluate the scalability of SITINA, we con-
ducted an experimental study by simulations.

5.3.1 Scalability
As proven earlier, SITA can obtain the optimal solution of

APM. However, it is not scalable as it needs to examine all
combinations of invitation allocations. Here we used it as a
baseline to compare the efficacy and efficiency with SITINA
over social networks of different sizes. First, we compared
the results by randomly sampling 50 (initiator, target) pairs
using UserStudyData. As depicted in Figure 5, both SITA
and SITINA significantly outperform RG in terms of accep-
tance probability. Next, we compared their running time,
not only using UserStudyData but also the large-scale Face-
bookData and FlickrData. As Figure 6 shows, the SITA
algorithm takes more than 7 days without returning the an-
swer, and is thus not feasible for practical use. For the rest
of the experiments, we only compared SITINA with RG.

5.3.2 Sensitivity Tests
In this section, we conducted a series of sensitivity tests

to examine the impact of different parameters, including
the invitation budget (rR), the number of friends of s (N),
the distance between the initiator and target (ds,t), and the
skewness of social influence and homophily probabilities (α).
In experiments on the impacts of rR, N , ds,t, we tested both
the FacebookData (US) and FlickrData (US).14 As the ob-
servations on both datasets are quite similar, we only report
both results for the first experiment and skip the FlickrData

14US and ZF denote the link weights assigned respectively
based on models from the User Study and Zipfian Distribu-
tion.
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Figure 7: Varying rR (FacebookData (US))
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Figure 8: Varying rR (FlickrData (US))

result for the rest due to space constraints. Finally, in the
last experiment, we use FacebookData (ZF) to observe how
α may potentially impact our algorithms.
Impact of rR. By varying rR and setting the default ds,t
of sampled (s, t) pairs as 4, we compared SITINA and RG
in terms of the acceptance probability and the number of
iterations using FacebookData (US) and FlickrData (US)
(see Figure 7 and Figure 8, respectively). As can be seen in
Figures 7(a) and 8(a), SITINA exhibits a much better per-
formance than RG, regardless of the rR. Meanwhile, Figures
7(b) and 8(b) reveal that the longest path in the solution R
obtained by SITINA is shorter than that in RG because RG
tends to spend invitations on some local users with higher
acceptance probabilities.15

Impact of N . We are interested in finding out whether the
number of friends of s has an impact on the performance.
Thus, we chose four different groups of initiators s (who
have around 100, 200, 300, and 400 friends, respectively) and
sampled 100 different targets t to compare their acceptance
probabilities. With rR set as 25, Figure 9 shows that as the
number of friends increases, the initiators have more choices
to reach their targets. In this way, SITINA can find the
optimal solution with a high acceptance probability, while
the near-sighted RG tends to select the friends of friends
with higher acceptance probabilities and eventually results
in a small acceptance probability to t.
Impact of ds,t. We also conducted an experiment to un-
derstand the impact of ds,t on the performance. Not surpris-
ingly, the finding is consistent with our user study (please
refer to Section 5.2 and Figure 4(b)). As such, we do not
plot the results here due to the space limitations.
Impact of α. In the experiments above, social influences
and homophily factors are modeled based on our user study,
but the distributions in different social networks may vary.
Thus, through the skewness parameter α, we used the Zip-
fian distribution to examine the impact of α on our algo-
rithms. As can be observed in Figure 10, the distributions
of social influence and homophily become more skewed (i.e.,
α increases) and the acceptance probabilities of SITINA and
RG drop, because it becomes more difficult for invitations
to get accepted when there are smaller numbers of highly
influential links while the number of less influential links
increases. It is also worth noting that, as the line in the fig-
ure indicates, the percentage of performance difference be-
tween SITINA and RG (i.e., the acceptance probability of
SITINA divided by that of RG) increases, which indicates
that SITINA is able to handle a skewed distribution much
better than RG.

15RG is inclined to take more time to reach t because in-
vitations are sequentially sent towards t. The latency of
friending a new intermediate node is different for each node.
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6. CONCLUSION AND FUTURE WORK
Observing the need of active friending in everyday life,

this paper formulates a new optimization problem, named
Acceptance Probability Maximization (APM), for making
friending recommendations on online social networks. We
propose the algorithm called Selective Invitation with Tree
and In-Node Aggregation (SITINA), to find the optimal so-
lution for APM and implement SITINA in Facebook. The
user study and experimental results demonstrate that active
friending can effectively maximize the acceptance probabil-
ity of the friending target.
In our future work, we will first explore the impact of the

delay between sending an invitation and acquiring the result
in active friending. This is important when the user wants to
make friends with the target within certain time frame. In
addition, for multiple friending targets, it is not efficient to
configure recommendations separately for each target. An
idea is to give priority to the intermediate nodes that can
approach many targets simultaneously. We will study active
friending for a group of targets in our future work.
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