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Abstract

Unsupervised word embeddings provide rich linguistic and conceptual informa-
tion about words. However, they may provide weak information about domain
specific semantic relations for certain tasks such as semantic parsing of natural
language queries, where such information about words or phrases can be valuable.
To encode the prior knowledge about the semantic word relations, we extended the
neural network based lexical word embedding objective function by incorporating
the information about relationship between entities that we extract from knowl-
edge bases [1]. In this paper, we focus on the semantic tagging of conversational
utterances as our end task and we investigate two different ways of using these
embeddings: as additional features to a linear sequence learning method, Condi-
tional Random Fields (CRF), and as initial embeddings to a convolutional neural
networks based CRF model (CNN-CRF) with shared feature layers and globally
normalized sequence modeling components. While we obtain an average of 2%
improvement in F-score compared to the previous baselines when the enriched
embeddings are used as additional features for CRF models, we obtain slightly
more gains - when the embeddings are used as initial word representations for the
CNN-based CRF models.

1 Introduction

One of the strongest trends in speech and language processing at the moment is the use of word
embeddings, which are vectors whose relative similarities correlate with semantic similarity. Such
vectors are used both as an end in itself (for computing similarities between terms), and as a rep-
resentational basis for downstream tasks like text/utterance classification, document clustering, part
of speech tagging, named entity recognition, sentiment analysis, slot tagging, and so on. In this
paper, we focus on the sequence learning problem, specifically semantic slot tagging in conversa-
tional understanding tasks. We show different ways of using knowledge graphs to enrich the entity
embeddings and provide these embeddings to two sequence learning methods in different ways to
improve semantic tagging performance.

Semantic tagging is crucial in recognizing words of semantic importance in a given natural language
query such as:

who played
character︷︸︸︷

zeus in the

year︷︸︸︷
2010

genre︷ ︸︸ ︷
action

type︷ ︸︸ ︷
movie

name︷ ︸︸ ︷
Titans

The recognized semantic tags are used to send queries to the database to fetch relevant data so as
to generate appropriate system response. Common approaches to building semantic taggers for la-
beled data are sequence learning algorithms such as conditional random fields (CRF) [2], recurrent
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neural networks, that depend on large amounts of manually annotated data to achieve good perfor-
mance. These models mainly focus on short-range syntactic dependencies, considering words in a
user defined window. To better capture the long range dependencies previous work introduced sam-
pling based inference methods [3], local classification models [4], additional loss functions in the
objective function in Augmented Loss Framework [5], long short term memory approach incorpo-
rated into recurrent neural networks [6], etc. Unsupervised word embeddings can provide sequence
models with rich linguistic and conceptual information about words [7, 8, 9], but, they may provide
weak or no information about the domain specific semantic relations. Strengthening the long-range
dependencies between words (e.g., zeus and Titans) is important for disambiguation of entities in
queries. This, if true, is a useful property as it can help to improve other tasks such as classification,
clustering, ranking, to name a few.

Our end goal is to use the enriched embeddings on a semantic tagging task, namely slot tagging in
natural language understanding. In this paper, we investigate two different approaches: (1) using
enriched embeddings directly as features to a CRF model (similar to [9]) and (2) injecting them as
initial embeddings to a Convolutional Neural Network (CNN) based CRF model (CNN-CRF)[15]. In
our earlier work [1], we have shown that when we use the enriched word embeddings as features for
CRF models, we achieve up to 2% improvement in F-score in comparison to the baselines. In this
paper, using them as prior embeddings to convolutional neural network models, we show further
improvements in the performance (slightly more than the best performing CRF models). Empirical
analysis of sequence learning methods (linear or non-linear) as a downstream method demonstrates
the effect of enriched relational embeddings in capturing long term dependencies between words.

2 Learning Word Embeddings with Priors

We begin with first reviewing word2vec and some of the earlier work that extends its objective
function to inject prior knowledge.

Word2Vec [14]. It is an efficient neural network language model. The algorithm takes unstructured
text and learns embeddings (”features”) about each word represented as a set of latent variables.
These embeddings capture different relationships - both semantic and syntactic, allowing for some
(very basic) algebraic operations, like ”king-man+woman∼=queen”. The objective function, learns
representations of each word wt to maximize the log likelihood of each token given its context,
namely, neighboring words within window size c:

max
1

T

T∑
t=1

log p(wt|wt+c
t−c) (1)

where wt+c
t−c is the set of words in the window of size c centered at wt (wt included). Using the

continuous bag of words model (CBOW) of word2vec, p(wt|wt+c
t−c) predicts the current word based

on the context as follows:

p(wt|wt+c
t−c) :=

exp
(
eywt

T .
∑
−c≤j≤c,j 6=0 ewt+j

)
∑

w exp
(
eyw

T .
∑
−c≤j≤c,j 6=0 ewt+j

) (2)

In Eq. (2) ew and eyw represent input and output embeddings, the scalar vector representations of
each word w.

Relational Constrained Model (RTM) [13]. Learns embeddings to predict one word from another
related word. Suppose we are given a list of synonymous or paraphrases of N words based on
a knowledge source (e.g., Wordnet). RTM learns the word embeddings based on the paraphrase
relation between the words. Thus, they introduce priors as paraphrases encoding synonymy rela-
tions such as ”analog”∼”analogue” or ”bolt”∼”screw”. They change the objective function of the
word2vec by dropping the context and learn the embeddings on the paraphrase data. The objective
to maximize is the sum over all the words in the vocabulary, which is similar to Eq.(1) without the
context:

max
1

N

N∑
i=1

∑
w∈Rwi

log p(w|wi) (3)

where p(w|wt)=exp(eyw
T ewi

)/
∑

w exp(eyw
T ewi

). This model enables learning of embeddings
such that they are predictive of related words in the resource. ew and eyw are again input and output
embeddings.
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Clash of
Titans Louis

Leterrier
action

fantasy

2010

Liam Neeson Zeus

directed
by

genre

genre initial
release

date

starring

actor character

Knowledge Graph

Query Click Log

ec

Clash of Titans

e

2010

qs

”2010 movies”

u

http://. . .

q

“fantasy movies from
ancient times”

released-date

Table 1: (Left) A sub-graph from freebase with central entity Clash of Titans the movie. (Right) Query mining
starting from seed knowledge base entities ec, then searching the query click logs and later collecting related
queries that share the same clicked URL.

Joint Model [13]. While CBOW learns lexical word embeddings from provided text, the RTM
learns embeddings of words based on their similarity to other words provided by a knowledge re-
source. The Joint model combines the two through linear combination:

max
1

T

T∑
t=1

log p(wt|wt+c
t−c) +

C

N

N∑
i=1

∑
w∈Rwi

log p(w|wi) (4)

The left hand-side of the objective function (CBOW) learns the embeddings on the unstructured text,
while the right hand-side (RTM) uses the paraphrase data. The Joint balances the two by a regu-
larization parameter C (e.g., C= 1

12 helps to allow CBOW to benefit from unlabeled data, but refine
embeddings constraint by the paraphrase information.)

3 Mining Entities, Relations and Queries

We focus on the entity relations that are present in knowledge graphs, such as Freebase, which
encode factual world knowledge in triples <s,r,o> of a pair of entities and their relations. Since our
ultimate goal is semantic tagging of natural language queries in movies domain, we start by mining
knowledge graph entities related to the movies domain.

•Mining entities and relations related to domain (Triplets Data). We start by listing all entities
of central type, ec (e.g. Freebase film.film type for the movie domain). Then, for each entity,
we collect other entities e that has incoming relation from ec (e.g., e=2010 via the relation release-
date). We automatically formulated realizations of triplets from each ec and its related e’s and their
relations, r (e.g., <si,ri,oi>=<Clash of Titans, released, 2010>) using the methods as in [16].

•Mining Query-Entity-Type (QET) relational data for training embeddings. We mine queries
related to each entity e from the query click logs as sketched in Figure ??. We automatically generate
seed queries qs for each e (e.g., 2010 becomes ”2010 movies” or ”fantasy films recent releases”) and
search qs in click logs and their clicked URL u. We collect other queries q that also link to the URLs
u to effectively perform two-step random walk on the click graph [17]. We obtain list of query
q, its related entity e and the entity id triplets (e.g., <q,e,id>), which we call QET relational data
(e.g.,<”show me 2010 movies”,”2010”, freebase.com/mt/09fu66>). (see Table 3 Right). For detailed
information about our data collection, please refer to [16].

4 Enriching Word Embeddings

4.1 Context and Entity Constrained Model - CECM

The first approach, the context constrained model (CECM), uses query-entity pairs as training data
and learns representation for each word wt by implicitly constraining the context of the word with
the corresponding entity. The CECM maximizes the log likelihood of each query token t given its
context words within a window size of c along with the entity e related to the query:

max
1

T

T∑
t=1

log p(wt|wt+c
t−c, e) (5)
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4.2 Relation Encoding Model - REM

Given triplets S={<si,ri,oi>}, i=1,. . . |S| of relations extracted from knowledge graph, we can
assume that the functional relation induced by the r-labeled arcs should correspond to a translation
of the embeddings. Thus, we can enforce that s+r≈o when <s,r,o> holds. This is similar to
saying that given the relational information, the ’Clash of Titans’+’released’≈’2010’. We encode
the relations between s+r and o similar to the Joint model of [13]. We define R as a set of
relations R′ between s+r, and object o extracted from knowledge graph (e.g., R′=released-date
where the realizations are r={released, debuted, launched,...}). Our new relation encoding model
(REM) maximizes the log probability as:

1

T

T∑
t=1

log p(wt|wt+c
t−c, e) +

∑
R′∈R

1

N

N∑
i=1

∑
s+r∈R′

oi

log p(s+ r|oi) (6)

The left-handside of Eq. (6) is our CECM model, which trains on the QET dataset to learn the lexical
word embedding with the entity types of the query in its context. The right hand-side (the relational
part) optimizes the relational word embeddings for each relation R′∈R separately and trains on the
list of triplets. The log probability is computed as:

p(s+ r|oi) := exp(eys+r
T
eoi)/

∑
s+r

exp(eys+r
T
eoi). (7)

As an intermediate step, at each epoch, we calculate the output embeddings eys+r by algebraically
adding the output embeddings of the subject s and relation r predicted by the the CECM model as
follows: eys+r=eys+eyr . Note that, the entities and relations in the triplets data may comprise of the
unigrams as well as n-gram words.

5 Semantic Tagging with Enriched Entity Embeddings

Once we learn the enriched embeddings of the words and entities, we use them to improve the
slot tagging performance of conversational understanding task. We summarize the two approaches
related to our work in this paper:

5.1 Enriched Embeddings used as Features

We convert the scalar valued vector representations of words into class-based representation similar
to [7, 9]. Such word classes are used as additional features [9] for the CRF models .

5.2 Enriched Embeddings used as Prior Representations

NN based CRF has been investigated in the literature. In [19, 20], conditional neural field and neural
CRF were introduced which combined the NN based feature learning and the CRF models. Similar
approaches have also been used for phone recognition with success [21, 22].

In contrast to the above approaches, in [15] the sequence labeling is handled as a full blown CRF
model, introducing another CNN-based CRF model (CNN-CRF), that stacks the convolutional and
sequence tagging layers. Simply put, the first layer is a convolutional neural network, where the
sentence representations are learnt and the top layer is nothing but a CRF model, as shown in Fig-
ure 1. Due to the fact that this model takes a globally normalized conditional approach (similar to
CRF models), in this paper, we use this method to benchmark our results against CRF models.

In CNN-CRF no normalization is performed at each individual position. In fact, the top layer is
essentially the same as a first order CRF model. The only difference is that the features from the
word sequence are automatically extracted continuous-valued features, instead of predefined indi-
cator functions. As shown in Figure 1, the word sequence is represented as the concatenated word
vectors (R). Such word vectors may also encode positional information indicating which word in
the sequence the tag will be predicted for. The feature transform T spans over a fixed-sized n-gram
window and slides over the input sequence. The total score of the sequence is factorized into the
sum of scores at each word position i. t(Yi−1, Yi) is the tag transition score from Yi−1 to Yi. The
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Figure 1: CNN-CRF: Globally normalized conditional model based on CNN. The top layer is essen-
tially the same as CRF

hij(Xi, R, T ) denotes the jth element in the feature vector extracted out of the n-gram window cen-
tered at Xi, and θj(Yi) is the corresponding feature weight associated with the tag Yi. The bottom
layers can be trained using the well-known back propagation algorithm. The derivative of the loss
function is taken with respect to each hij(Xi, R, T ) at the top layer, and obtain the derivative with
respect to T and R by applying the chain rule.

In this paper, we use the enriched embeddings to represent the word vectors (R). Speifically, instead
of using random initialization (e.g., samples from Gaussian distribution), we deterministically set
the initial embedding to be the enriched embeddings learnt in section 4.

6 Experiments

Datasets. To evaluate our approach we use the movie domain dataset from [25], available for down-
load. The focus here is on audiovisual media in the movie domain. The user interacts via voice with a
system that can perform a variety of tasks such as browsing, searching, etc. We used crowd-sourcing
to collect and annotate queries with semantic entity. The data contains 3,338 training and 1,084
test queries. Each query is tagged with 25 different semantic entities, e.g., movie-director
(’James Cameron’), movie-title (’Die Hard’), genre (’feel good’), description (’black
and white’, ’pg 13’), review-rate (’epic’, ’not for me’), theater-location (’near me’,’city
center’), etc.

We have collected around 250K different movie names and 10 million related queries. To train the
word embeddings, after cleanup and filtering the mined data, we compiled around 1M movies related
query-entity pairs to construct the QET dataset, using the intuition presented in the previous section.
We extracted ∼100K entity-relation triplets to construct the triplets datasets for each relation.

Baseline Embedding Models: We train the baseline embeddings, i.e., CBOW on just the 1M movie
queries from the QET dataset (excluding the entity and type information). For training the baseline
RTM and Joint models [13] we use the entity lists as paraphrase data. Specifically, using the entity
lists from QEC dataset, we randomly selected entities from each entity type to construct paraphrase
pairs (e.g., using release-date entity type, we add an entry to the paraphrase file as ”1960”
≈”2003”).
Proposed Embedding Models: For training the first of our new embeddings models, CECM, we use
the QET dataset, encoding the entity types implicitly at training time. For the REM models, we use
the entity relation triplet pairs representing the relational data as well as the QET dataset.

Features for CRF models: We convert the scalar valued vector representations of words into class-
based representation similar to [7, 9]. Following [9], we use the classes to generate class-based
features for the CRF models . If a query contains a compound entity (with ’ ’), we assign each word
of the compound the same class as the compound (e.g., if we have class(”Clash of Titans”)=c876,
then we assign class(”Clash”)=c876, class(”of”)=c876, class(”Titans”)=c876).

Features for CNN-CRFmodels: We used the learnt features as is and injected into the convolutional
layer of the CNN-CRF.

Evaluations and Results on Semantic Tagging. We use CRF to build semantic tagging models and
add several embedding features from baseline and the models that enrich the embeddings as follows:
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Model F-Score on Test

Baselines
CRF-1 86.15
CRF-2 86.09
CNN-CRF 86.94

Baselines CRF-CBOW 86.61
with CRF-RTM 87.58

Embeddings CRF-Joint 87.65
CNN-CRF-CBOW 86.80
CNN-CRF-RTM 87.97
CNN-CRF-Joint 88.41

New with CRF-CECM 88.58
Enriched CRF-REM 88.12

Embeddings CRF-(CECM->REM) 88.70
CNN-CRF-CECM 87.46
CNN-CRF-REM 88.17
CNN-CRF-(CECM->REM) 88.79

Table 2: Results for semantic tagging on the test dataset with embedding features from different models.

• CRF: Baseline models consider models with 1-gram (CRF-1) and 2-gram (CRF-2) word features
with a window of 5 words, without the embedding features.
• {CRF-CBOW, CRF-RTM, CRF-Joint}: Baseline models using embedding features from CBOW,
RTM, and Joint models respectively.
• {CRF-CECM, CRF-REM, CRF-(CECM->REM)}: These models use embedding features from
CECM, REM. The last one uses embedding features obtained from the REM models using the CECM
output as initial embeddings.

Similarly, we use CNN-CRF to build semantic tagging models and use several embedding features
as prior embedding values to build the following models:
• CNN-CRF: Baseline models consider models with a window of 5 words, where the word vectors
are initialized based on random samples from Gaussian distribution.
• {CNN-CRF-CBOW, CNN-CRF-RTM, CNN-CRF-Joint}: Baseline models using word embed-
ding features from CBOW, RTM, and Joint models respectively.
• {CNN-CRF-CECM, CNN-CRF-REM, CNN-CRF-(CECM->REM)}: These models use embed-
ding features from CECM, REM. The last one uses embedding features obtained from the REMmodels
using the CECM output as initial embeddings.

We present the empirical results in Table 2. For both learning methods - regardless of the way the
embeddings are used in sequence tagging, we obtain gains over the baseline embeddings (non-
enriched). Our analysis has let us conclude that using the explicit relational embeddings from
Knowledge Graphs (e.g., Freebase in our case) can boost the implicit embeddings and together
they are better suited for semantic tagging tasks. We observe that CNN-based CRF models are per-
forming slightly better than the regular CRF models. In particular, the CNN-CRF-(CECM->REM)
yields the best performance among all the other models. As a future work, we would like to obtain
the enriched embedding for other domains, such as restaurants and transportation, in which preci-
sion in resolution of entities are also important for a better user experience in human to machine
conversational dialogs.

In addition, we would like to investigate on improvements for the CNN models by implementing
recent techniques such as drop-out [26], word-hashing [27], to name a few.

7 Conclusion

We empirically investigated difference usages of domain specific word embeddings on sequence
learning task. We learn that the embeddings of a word can be enriched based other words that to-
gether have functional relations with. The enriched embeddings provide rich semantic information
to the semantic tagging tasks, proving information about the long term relations. Although the re-
sults indicate that the type of the sequence learning algorithm has little effect on the performance
of the sequence learning models, we observed a slight improvement when the convolutional neu-
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ral network based sequence learning models are used. As a future work, we will conduct similar
experiments on different domains to validate that our findings are broadly applicable.
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