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Abstract

The recent surge of intelligent personal assistants motivates spoken language un-
derstanding of dialogue systems. Considering high-level semantics, intent em-
beddings can be viewed as the universal representations that help derive a more
flexible intent schema to overcome the domain constraint and the genre mismatch.
A convolutional deep structured semantic model (CDSSM) is applied to jointly
learn the representations for human intents and associated utterances. Two sets
of experiments, intent expansion and actionable item detection, are conducted to
evaluate the power of the learned intent embeddings. The representations bridge
the semantic relation between seen and unseen intents for intent expansion, and
connect intents from different genres for actionable item detection. The discus-
sion and analysis of experiments provide a future direction for reducing human
effort of data annotation and eliminating domain and genre constraints for spoken
language understanding.

1 Introduction

With the surge of smart devices, recent efforts have focused on developing virtual personal assis-
tants (e.g. Apple Siri, Microsoft Cortana, Google Now, Amazon Echo, Facebook M, etc), where
spoken language understanding (SLU) is a key component of a dialogue system, which parses user
utterances into corresponding intents and associated semantic slots. Typically all domains are im-
plemented independently, where training intent detectors and slot taggers require domain-specific
manually annotated data. However, the intents are usually predefined and inflexible to expand and
transfer cross domains. For example, an SLU component designed for handling only the air travel
reservation task cannot handle new intents such as checking the flight status or making hotel reser-
vations. A standard solution is to re-design a semantic schema adding new intents with associated
slots to cover the new intents, which requires human effort for annotation and model re-training.
These issues remain the biggest challenge for SLU [1, 2].

Similarly, genre mismatch is another challenge of SLU. With task-oriented dialogue systems
(human-machine genre), such as personal assistants that can schedule meetings and send emails
to aid users, how can a system transfer the functionality to human dialogues (human-human genre)?
Most of the previous work on language understanding of human-human conversations focused on
analyzing task-oriented dialogues such as in customer care centers, and aimed to infer semantic rep-
resentations and bootstrap language understanding models [3, 4, 5, 6, 7]. These would then be used
in human-machine dialogue systems that automate the targeted task, such as travel arrangements.
This work takes the reversed direction, which transfers intents from the human-machine genre to the
human-human genre.

∗The work was done during the summer internship at Microsoft Research.
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Figure 1: Illustration of the CDSSM architecture for the predictive model.

With recent works on word embeddings and paragraph embeddings [8, 9], this paper addresses the
issue about domain and genre constraints by learning intent embeddings to obtain high-level seman-
tic representations for two tasks, intent expansion and actionable item detection. Intent expansion
is a task of predicting the unseen intents based on the data with seen intents, while actionable item
detection is to detect intents in human-human conversations based on human-machine interactions.
Both tasks address the issue about cross-domain constraints; the first task bridges the semantics from
different domains, and the second task connects the relation between two genres (human-human
genre and human-machine genre).

Previous work bootstrapped SLU models for a new domain by re-using the annotated intent data
from other domains [10, 11]. Kim et al. also proposed to automatically generate the mapping be-
tween semantic slots across domains to connect information cross domains [2]. Both studies implied
that semantics from different domains can be shared and the connection may help domain adaptation
and expansion. Instead of modeling the relations between intents from different sources, this paper
applies convolutional deep structured semantic models (CDSSM) to directly learn complete intent
embeddings using intents available in the training data, and then when expanding to new intents, the
trained CDSSM is used to construct the representations of new intents based on semantics from the
seen data. The idea is that although the intents “find movie” and “find weather” belong to movie
and weather domains respectively, they both contain the semantics about “find”, so such information
should allow us to learn the unseen intent representations based on the trained model, which benefits
by the semantics from other domains. Then we can expand and adapt intents to different domains
and genres without human annotation and model retraining.

In this paper, we treat intent modeling as an utterance classification task, where each user utterance
corresponds to an intent or an action. Recent studies used CDSSM to map questions into relation-
entity triples for question answering [12, 13], which motivates us to use CDSSM for capturing
relations from intent-utterance pairs [14], while vector representations for intents and utterances can
be learned by CDSSM. Considering that several studies investigated embedding vectors as features
for training task-specific models [15, 16, 17], the representations of intents and utterances can incor-
porate more informative cues from large data. Hence, this paper focuses on taking CDSSM features
to help model intents and conducts experiments for different tasks to prove the capability of intent
embeddings produced by CDSSM.

2 Convolutional Deep Structured Semantic Models (CDSSM)

2.1 Architecture

The model is a deep neural network with the convolutional structure, where the architecture is illus-
trated in Fig. 1 [15, 18, 19]. The model contains: 1) a word hashing layer obtained by converting
one-hot word representations into tri-letter vectors, 2) a convolutional layer that extracts contextual
features for each word with its neighboring words defined by a window, 3) a max-pooling layer that
discovers and combines salient features to form a fixed-length utterance-level feature vector, and 4)
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a semantic layer that further transforms the max-pooling layer to a low-dimensional semantic vector
for input utterances.

Word Hashing Layer lh. Each word from a word sequence (i.e. an utterance or an intent name)
is converted into a tri-letter vector [19]. For example, the tri-letter vector of the word “#email#”
(# is a word boundary symbol) has non-zero elements (value equals one in this case) for “#em”,
“ema”, “mai”, “ail”, and “il#” via a word hashing matrix Wh. Then we build a high-dimensional
vector lh by concatenating all word tri-letter vectors. The advantages of tri-letter vectors include: 1)
unseen intents and OOV words can be represented by tri-letter vectors, where the semantics can be
captured based on the subwords such as prefix and suffix; 2) the tri-letter space is smaller. Therefore,
incorporating tri-letter vectors improves the representation power of word vectors and also flexibly
represents intents for the purpose of intent expansion while keeping the size small.

Convolutional Layer lc. A convolutional layer extracts contextual features ci for each target word
wi, where ci is the vector concatenating the word vector of wi and its surrounding words within a
window (the window size is set to 3 in our experiment). For each word, a local feature vector lc is
generated using a tanh activation function and a shared linear projection matrix Wc:

lci = tanh(WT
c ci), where i = 1, ..., d, (1)

where d is the total number of windows.

Max-Pooling Layer lm. The max-pooling layer forces the network to only retain the most useful
local features by applying the max operation over each dimension of lci across i in (1),

lmj = max
i=1,...,d

lci(j). (2)

The convolutional and max-pooling layers are able to capture prominent words of the word se-
quences [15, 18]. As illustrated in Fig. 1, if we view the local feature vector lc,i as a topic distribu-
tion of the local context window, e.g., each element in the vector corresponds to a hidden topic and
the value corresponds to the activation of that topic, then taking the max operation at each element
keeps the max activation of that hidden topic across the whole sentence.

Semantic Layer y. The global feature vector lm in (2) is fed to feed-forward neural network layers
to output the final non-linear semantic features y as the output layer.

y = tanh(WT
s lm), (3)

where Ws is a learned linear projection matrix. The output semantic vector can be either utterance
embeddings yU or intent embeddings yI .

2.2 Training Procedure

The meeting data contains utterances and associated actions. The idea of this model is to learn the
embeddings for utterances and intents such that utterances with the same intents can be close to each
other in the continuous space. We define a semantic score between an utterance U and an action I
using the cosine similarity between their embeddings, yU and yI , as CosSim(U, I).

2.2.1 Predictive Model

The posterior probability of a possible intent given an utterance is computed based on the semantic
score through a softmax function, and a model can be trained by maximizing the likelihood of the
correctly associated intents given training utterances.

P (I | U) =
exp(CosSim(U, I))∑
I′ exp(CosSim(U, I ′))

, Λ(θ1) = log
∏

(U,I+)

P (I+ | U) (4)

where I ′ is an intent candidate. θ1 = {Wc,Ws} are the parameters of the model, which is optimized
using mini-batch stochastic gradient descent (SGD) [19].

2.2.2 Generative Model

Similarly, we can estimate the posterior probability of an utterance given an intent using the reverse
setting to obtain P (U | I), which is the generative model that emits the utterances for each intent.
Also, the parameters of the model θ2 are optimized similarly and performs a reversed estimation for
the relation between utterances and intents.
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Table 1: Intent classification performance on the mean average precision at K (MAP@K) (%).

Approach Seen Intents Unseen Intents
K=1 K=3 K=5 K=10 K=30 K=1 K=3 K=5 K=10 K=30

Ori.
(a) P (I|U) 59.0 66.3 67.5 68.3 68.8 - - - - -
(b) P (U |I) 45.2 52.7 54.1 55.2 56.0 - - - - -
(c) Bidir 58.6 66.1 67.3 68.2 68.6 - - - - -

Exp.
(d) P (I|U) 58.9 65.9 67.1 67.9 68.4 5.2 18.7 23.4 26.1 27.2
(e) P (U |I) 44.7 52.0 53.5 54.6 55.4 6.7 23.2 26.5 28.7 29.6
(f) Bidir 58.3 65.6 66.8 67.7 68.2 9.1 31.0 34.5 36.0 36.6

2.3 Score Estimation

Based on predictive and generative models from Section 2.2.1 and 2.2.2, here for an utterance Ui,
we define the estimated semantic score of the intent Ij using the predictive model as SP (Ui, Ij) and
using the generative model as SG(Ui, Ij).

Considering that the estimation from two directions may model the similarity in different ways, a
bidirectional estimation, SBi(U, I), is proposed to incorporate both prediction scores, SP (U, I) and
SG(U, I), and balance the effectiveness of predictive and generative models:

SBi(U, I) = γ · SP (U, I) + (1− γ) · SG(U, I), (5)

where γ is a weight to control the contributions from both sides.

3 Unseen Intent Prediction Experiments

In order to predict the possible intents given utterances, for each utterance U , we transform it into a
vector yU , and then estimate the semantic similarity with vectors for all intents including seen and
unseen intents, where the vector representations for new intents can be generated from the trained
CDSSM by feeding the tri-letter vectors of the new intent as input. For the utterance U , the esti-
mated semantic score of the k-th intent is defined as S(U, Ik). Then predicted intent for each given
utterance is decided according to the estimated semantic scores [18, 14]: I∗ = arg maxk S(U, Ik).

3.1 Experimental Setup

The dataset is collected via the Microsoft Cortana conversational agent, where there are more than
100 intents (e.g. get distance, show map, change calendar entry, etc). The set of intents is
segmented into seen and unseen intents to evaluate whether the CDSSM is able to generate proper
intent embeddings for improving intent prediction especially for unseen intents. There are total 19
different verbs such as find, create, send, get, etc. in all intents. To test the performance of the
embedding generation, we chose 7 intents with different verbs as unseen intents, with in total around
100K utterances. For the seen intents, there are about 1M annotated utterances, where we use 2/3
for training CDSSM and the rest for testing.

To test the capability of constructing unseen intent embeddings, the CDSSM is trained on the utter-
ances paired with the seen intents. The total number of training iterations is set to 300, the dimension
of the convolutional layer is 1000, and the dimension of the semantic layer is 300. The parameter
γ in (5) is set as 0.5 to allow predictive and generative models contribute equally. To measure the
performance of intent prediction, we report the mean average precision at K (MAP@K), where
MAP@1 is equal to the prediction accuracy.

3.2 Evaluation Results

Experimental results for seen intents and unseen intents are shown in Table 1. The original models
(rows (a)-(c)) only consider the relations between the given utterance and seen intents to determine
intents, while the expanded models (rows (d)-(f)) additionally consider expanded unseen intent em-
beddings for prediction. The results before intent expansion achieve from 58% to 68% of MAP@K
with various K for seen intents, while it cannot deal with the unseen intents. With the proposed
intent expansion, the expanded models additionally consider new intents without training samples,
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and produces similar but slightly worse results as original models for seen intents. The reason is
that considering more intent candidates increases the uncertainty of prediction and may degrade the
performance, but the difference is not significant in our experiments. For unseen intents, expanded
models are able to capture the correct intents and achieve higher than 30% of MAP when K ≥ 3,
which indicates the encouraging performance considering more than 100 intents.

Here we compare the performance among a predictive model, a generative model and a bidirectional
model. For seen intents, Table 1 shows that the predictive model (P (I | U)) is best among three
models, and the bidirectional model has similar performance as the predictive model (the difference
is not significant). The generative model (P (U | I)) performs worse in all cases. However, for
unseen intents, the generative model is better than the predictive one, and the bidirectional model
has much better performance compared with unidirectional ones. The reason is that the predictive
model predicts the intent that maximizes P (I | U), where the comparison is across intents (including
seen and unseen intents). Hence, seen intents usually carry higher probabilities from the CDSSM,
comparison between seen and unseen intents during prediction may be unfair. In the generative
model, the objective maximizes P (U | I), where the comparison is across utterances not intents, so
seen intents and unseen intents can have fair comparison to achieve better performance. Moreover,
the improvement of bidirectional estimation suggests that the predictive model and the generative
model can compensate each other, and then provide more robust estimated scores especially for
unseen intents, which is crucial to this intent expansion task. To summarize, the experiments show
that the learned embeddings capture the semantics borrowed from other domains and can be used to
flexibly expand the intents through high-level representations.

4 Actionable Item Detection Experiments

This task investigates actionable item detection in meetings (human-human genre), where the in-
telligent assistant dynamically provides the participants access to information (e.g. scheduling a
meeting, taking notes) without interrupting the meetings. A CDSSM is applied to learn the latent
semantics for human actions and utterances from human-machine and human-human interactions.
In order to predict the possible actions given meeting utterances, for each utterance U , we transform
it into a vector yU , and then estimate the semantic similarity with vectors for all intended actions I .
The estimated semantic scores can be used in two ways [18]: 1) as prediction scores of the action-
able item detector, and 2) as features inputted to a multi-class classifier and then convert to the final
estimation outputted by the classifier.

4.1 Experimental Setup

The dataset is from the ICSI meeting corpus [20], where 22 meetings previously used as test and dev
sets are included for the actionable item detection task [21]. These include three types of meetings,
Bed, Bmr, and Bro, which include regular project discussions between colleagues and conversations
between students and their advisors. The total numbers of utterances are 4544, 9227, and 7264 for
Bed, Bmr, and Bro respectively. Actionable items were manually annotated, where the annotation
schema was designed based on the Microsoft Cortana conversational agent schema. We identified
10 actions that are relevant to meeting scenarios: find calendar entry, create calendar entry,
open agenda, add agenda item, create single reminder, make call, search, send email,
find email, and open setting. There are total 318 utterances annotated with actionable items,
which accounts for about 2% of all utterances.

To compare with the matched data for CDSSM, we perform the experiments using Mismatch-
CDSSM and Match-CDSSM, where Mismatch-CDSSM is a CDSSM trained on conversational
agent data, which mismatches with the target genre, and Match-CDSSM is a CDSSM trained on
meeting data, which matches with the target genre. The conversational agent data is the same as the
prediction task. For meeting data, we conduct the experiments on the manual transcripts using the
same CDSSM setting. To test the generalization to different meeting types, we take one of meeting
types as training data and test on each of remaining two. Hence, we have 6 sets of experiments and
report the average of AUC scores for evaluation, which is similar to 6-fold cross-validation. The
multi-class classifier we apply for actionable item detection is the SVM with RBF kernel using a
default setting [22]. The parameter γ in (5) is set as 0.5 to allow predictive and generative models
contribute equally. Due to imbalanced classes (number of non-actionable utterances is larger than
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Table 2: Actionable item detection on average area of the precision-recall curve (AUC) (%).

Approach #dim Mismatch-CDSSM Match-CDSSM
P (A|U) P (U |A) Bidir P (A|U) P (U |A) Bidir

(a) Sim (CosSim(U,A)) 47.45 48.17 49.10 56.33 43.39 50.57
(b) SVM Embeddings 300 53.07 48.07 55.71 64.33 65.58 69.27
(c) (b) + Sim 311 52.80 54.95 59.09 64.52 64.81 68.86

number of actionable ones), the evaluation focuses on detection performance for each action. Here
for each action, we use the area under the precision-recall curve (AUC) as the metric to evaluate
whether the detector is able to effectively detect it for test utterances. In the experiments, we report
the average AUC scores over all classes (10 actions plus others).

4.2 Evaluation Results

Experimental results with different CDSSMs are shown in Table 2. Row (a) uses the semantic
similarity as final prediction scores, while rows (b)-(c) use the similarity as features and then train
an SVM to estimate the final prediction scores, where row (b) takes utterance embedding vectors as
features, and row (c) includes the semantic similarity as additional features for the classifier. Hence
the dimension of features is 311, including 300 values of utterance embeddings and 11 similarity
scores for 10 actions and others.

Treating the semantic similarity as final prediction scores achieves 49.10% and 50.57% for
Mismatch-CDSSM and Match-CDSSM respectively. Considering that the learned embeddings do
not fit the target genre well, the similarity treated as features of a classifier can be combined with
other features to automatically adapt the reliability of the similarity features. Row (b) shows the
improved performance using only utterance embeddings (from 49.10% to 55.71% for Mismatch-
CDSSM and from 50.57% to 69.27% for Match-CDSSM). Including the similarity scores as ad-
ditional features can further improve the performance for Mismatch-CDSSM (from 55.71% to
59.09%); however, for Match-CDSSM, additionally adding similarity scores as features does not
show the improvement, since the data for training CDSSM is from meetings, and the performance
cannot be improved when there is no genre mismatch. In addition, Mismatch-CDSSM is able to
capture the semantics of the unseen intents that share the semantics from other seen intents. For
example, send email does not appear in the training data, but we can still learn its embeddins from
send message and find email, showing the power of CDSSM.

From Table 2, it is shown that all results from the bidirectional estimation significantly outperform
the results using unidirectional estimation across all CDSSMs and all methods except for rows (a)
from Match-CDSSM. Comparing between the predictive model (P (A | U)) and the generative
model (P (U | A)), the performance is similar and does not show that a certain direction is better in
most cases. The improvement of bidirectional estimation suggests that the predictive model and the
generative model can compensate each other, and then provide more robust estimated scores for the
goal of actionable item detection. In sum, the experiments show that the learned intent embeddings
carry the crucial high-level semantics and can be applied to different genres for easy adaptation and
extension.

5 Conclusions

This paper focuses on learning intent embeddings for the tasks of intent expansion and actionable
item detection, where a convolutional deep structured semantic model (CDSSM) is applied to per-
form representation learning to bridge the semantic relation across domains and across genres. The
experiments show that CDSSM is capable of generating more flexible intent embeddings to remove
the domain constraint in dialogue systems for intent expansion. Also the intent embeddings learned
from the human-machine genre can be applied to detect actionable utterances in the human-human
genre, showing the robustness to genre mismatch. In sum, the paper highlights a future research
direction for bridging semantics across domains and genres.
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