
PATTERN RECOGNITION 
AND MACHINE LEARNING
CHAPTER 3: LINEAR MODELS FOR REGRESSION



Linear Basis Function Models (1)

Example: Polynomial Curve Fitting



Linear Basis Function Models (2)

Generally

where Áj(x) are known as basis functions.

Typically, Á0(x) = 1, so that w0 acts as a bias.

In the simplest case, we use linear basis 
functions : Ád(x) = xd.



Linear Basis Function Models (3)

Polynomial basis functions:

These are global; a small 
change in x affect all basis 
functions.



Linear Basis Function Models (4)

Gaussian basis functions:

These are local; a small change 
in x only affect nearby basis 
functions. ¹j and s control 
location and scale (width).



Linear Basis Function Models (5)

Sigmoidal basis functions:

where

Also these are local; a small 
change in x only affect nearby 
basis functions. ¹j and s
control location and scale 
(slope).



Maximum Likelihood and Least Squares (1)

Assume observations from a deterministic function 
with added Gaussian noise:

which is the same as saying,

Given observed inputs,                            , and targets,
, we obtain the likelihood function  

where



Maximum Likelihood and Least Squares (2)

Taking the logarithm, we get

where

is the sum-of-squares error.



Computing the gradient and setting it to zero yields

Solving for w, we get 

where

Maximum Likelihood and Least Squares (3)

The Moore-Penrose 
pseudo-inverse,       .



Geometry of Least Squares

Consider

S is spanned by                    .

wML minimizes the distance 
between t and its orthogonal 
projection on S, i.e. y.

N-dimensional
M-dimensional



Sequential Learning

Data items considered one at a time (a.k.a. 
online learning);  use stochastic (sequential) 
gradient descent:

This is known as the least-mean-squares (LMS) 
algorithm. Issue: how to choose ´?



Regularized Least Squares (1)

Consider the error function:

With the sum-of-squares error function and a 
quadratic regularizer, we get  

which is minimized by

Data term + Regularization term

¸ is called the 
regularization 
coefficient.



Regularized Least Squares (2)

With a more general regularizer, we have

Lasso Quadratic



Regularized Least Squares (3)

Lasso tends to generate sparser solutions than a 
quadratic 
regularizer. 



Multiple Outputs (1)

Analogously to the single output case we have:

Given observed inputs,                            , and targets,
, we obtain the log likelihood function



Multiple Outputs (2)

Maximizing with respect to W, we obtain

If we consider a single target variable, tk, we see that

where                               , which is identical with the 
single output case.



The Bias-Variance Decomposition (1)

Recall the expected squared loss,

where

The second term of E[L] corresponds to the noise 

inherent in the random variable t.

What about the first term?



The Bias-Variance Decomposition (2)

Suppose we were given multiple data sets, each of 
size N. Any particular data set, D, will give a 
particular function y(x;D). We then have



The Bias-Variance Decomposition (3)

Taking the expectation over D yields



The Bias-Variance Decomposition (4)

Thus we can write

where 



The Bias-Variance Decomposition (5)

Example: 25 data sets from the sinusoidal, varying 
the degree of regularization, ¸.



The Bias-Variance Decomposition (6)

Example: 25 data sets from the sinusoidal, varying 
the degree of regularization, ¸.



The Bias-Variance Decomposition (7)

Example: 25 data sets from the sinusoidal, varying 
the degree of regularization, ¸.



The Bias-Variance Trade-off

From these plots, we note 
that an over-regularized 
model (large ¸) will have a 
high  bias, while an under-
regularized model (small ¸) 
will have a high variance.



Bayesian Linear Regression (1)

Define a conjugate prior over w

Combining this with the likelihood function and using  
results for marginal and conditional Gaussian 
distributions, gives the posterior 

where 



Bayesian Linear Regression (2)

A common choice for the prior is 

for which

Next we consider an example …



Bayesian Linear Regression (3)

0 data points observed

Prior Data Space



Bayesian Linear Regression (4)

1 data point observed

Likelihood Posterior Data Space



Bayesian Linear Regression (5)

2 data points observed

Likelihood Posterior Data Space



Bayesian Linear Regression (6)

20 data points observed

Likelihood Posterior Data Space



Predictive Distribution (1)

Predict t for new values of x by integrating 
over w:

where



Predictive Distribution (2)

Example: Sinusoidal data, 9 Gaussian basis functions, 
1 data point



Predictive Distribution (3)

Example: Sinusoidal data, 9 Gaussian basis functions, 
2 data points



Predictive Distribution (4)

Example: Sinusoidal data, 9 Gaussian basis functions, 
4 data points



Predictive Distribution (5)

Example: Sinusoidal data, 9 Gaussian basis functions, 
25 data points



Equivalent Kernel (1)

The predictive mean can be written

This is a weighted sum of the training data 
target values, tn.

Equivalent kernel or 
smoother matrix.



Equivalent Kernel (2)

Weight of tn depends on distance between x and xn; 
nearby xn carry more weight.



Equivalent Kernel (3)

Non-local basis functions have local equivalent 
kernels:

Polynomial Sigmoidal



Equivalent Kernel (4)

The kernel as a covariance function: consider

We can avoid the use of basis functions and 
define the kernel function directly, leading 
to  Gaussian Processes (Chapter 6).



Equivalent Kernel (5)

for all values of x; however, the equivalent kernel 
may be negative for some values of x.

Like all kernel functions, the equivalent kernel can be 
expressed as an inner product:

where                                  .



Bayesian Model Comparison (1)

How do we choose the ‘right’ model?

Assume we want to compare models Mi, i=1, …,L, 
using data D; this requires computing

Bayes Factor: ratio of evidence for two models

Posterior Prior Model evidence or 
marginal likelihood



Bayesian Model Comparison (2)

Having computed p(MijD), we can compute 
the predictive (mixture) distribution

A simpler approximation, known as model 
selection, is to use the model with the 
highest evidence.



Bayesian Model Comparison (3)

For a model with parameters w, we get the 
model evidence by marginalizing over w

Note that 



Bayesian Model Comparison (4)

For a given model with a 
single parameter, w, con-
sider the approximation

where the posterior is 
assumed to be sharply 
peaked. 



Bayesian Model Comparison (5)

Taking logarithms, we obtain

With M parameters, all assumed to have the same 
ratio                                   , we get

Negative

Negative and linear in M.



Bayesian Model Comparison (6)

Matching data and model complexity



The Evidence Approximation (1)

The fully Bayesian predictive distribution is given by

but this integral is intractable. Approximate with

where           is the mode of              , which is assumed to 

be sharply peaked; a.k.a. empirical Bayes, type II or gene-

ralized maximum likelihood, or evidence approximation.



The Evidence Approximation (2)

From Bayes’ theorem we have 

and if we assume p(®,¯) to be flat we see that

General results for Gaussian integrals give  



The Evidence Approximation (3)

Example: sinusoidal data, M  th degree polynomial, 



Maximizing the Evidence Function (1)

To maximise                    w.r.t. ® and ¯, we define the 
eigenvector equation 

Thus

has eigenvalues  ¸i + ®.



Maximizing the Evidence Function (2)

We can now differentiate                     w.r.t. ® and ¯, 
and set the results to zero, to get

where

N.B. ° depends on both ® and ¯.



Effective Number of Parameters (3)

Likelihood

Prior

w1 is not well 
determined by the 
likelihood 

w2 is well determined 
by the likelihood 

° is the number of well 
determined parameters



Effective Number of Parameters (2)

Example: sinusoidal data, 9 Gaussian basis functions, 
¯ = 11.1. 



Effective Number of Parameters (3)

Example: sinusoidal data, 9 Gaussian basis functions, 
¯ = 11.1. 

Test  set error



Effective Number of Parameters (4)

Example: sinusoidal data, 9 Gaussian basis functions, 
¯ = 11.1. 



Effective Number of Parameters (5)

In the limit               , ° = M and we can consider 
using the easy-to-compute approximation 



Limitations of Fixed Basis Functions

• M basis function along each dimension of a 
D-dimensional input space requires MD

basis functions: the curse of dimensionality.

• In later chapters, we shall see how we can 
get away with fewer basis functions, by 
choosing these using the training data.


