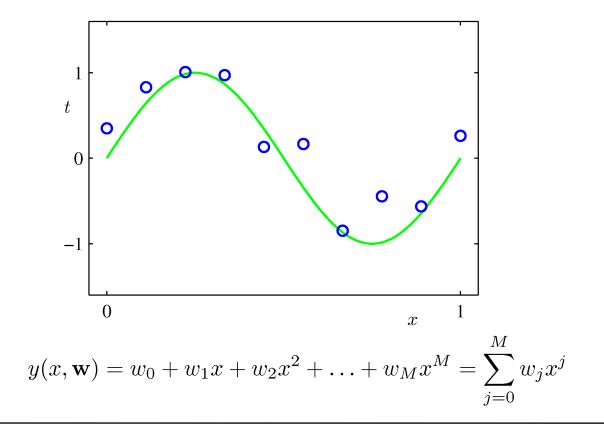
PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 3: LINEAR MODELS FOR REGRESSION

Linear Basis Function Models (1)

Example: Polynomial Curve Fitting



Linear Basis Function Models (2)

Generally

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$$

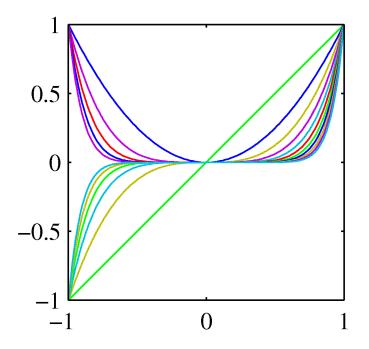
where $\phi_j(\mathbf{x})$ are known as *basis functions*. Typically, $\phi_0(\mathbf{x}) = 1$, so that w_0 acts as a bias. In the simplest case, we use linear basis functions : $\phi_d(\mathbf{x}) = x_d$.

Linear Basis Function Models (3)

Polynomial basis functions:

$$\phi_j(x) = x^j.$$

These are global; a small change in x affect all basis functions.

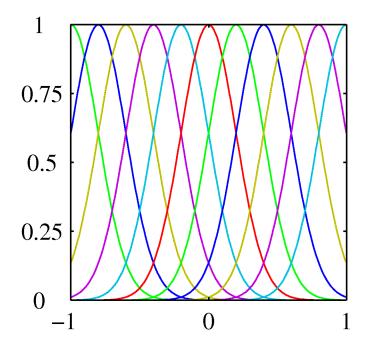


Linear Basis Function Models (4)

Gaussian basis functions:

$$\phi_j(x) = \exp\left\{-\frac{(x-\mu_j)^2}{2s^2}\right\}$$

These are local; a small change in x only affect nearby basis functions. μ_j and s control location and scale (width).



Linear Basis Function Models (5)

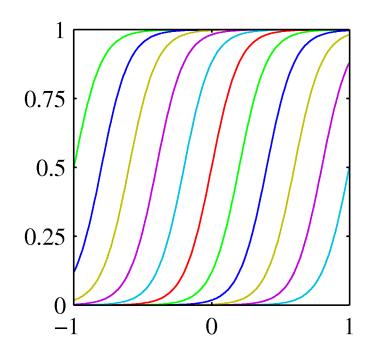
Sigmoidal basis functions:

$$\phi_j(x) = \sigma\left(\frac{x-\mu_j}{s}\right)$$

where

$$\sigma(a) = \frac{1}{1 + \exp(-a)}.$$

Also these are local; a small change in x only affect nearby basis functions. μ_j and scontrol location and scale (slope).



Maximum Likelihood and Least Squares (1)

Assume observations from a deterministic function with added Gaussian noise:

 $t = y(\mathbf{x}, \mathbf{w}) + \epsilon$ where $p(\epsilon|\beta) = \mathcal{N}(\epsilon|0, \beta^{-1})$

which is the same as saying,

$$p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1}).$$

Given observed inputs, $\mathbf{X} = {\mathbf{x}_1, \dots, \mathbf{x}_N}$, and targets, $\mathbf{t} = [t_1, \dots, t_N]^T$, we obtain the likelihood function $p(\mathbf{t} | \mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^N \mathcal{N}(t_n | \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}).$

Maximum Likelihood and Least Squares (2)

Taking the logarithm, we get

$$\ln p(\mathbf{t}|\mathbf{w},\beta) = \sum_{n=1}^{N} \ln \mathcal{N}(t_n|\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n),\beta^{-1})$$
$$= \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi) - \beta E_D(\mathbf{w})$$

where

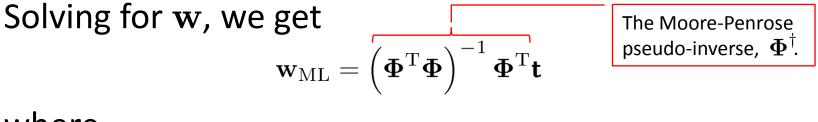
$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2$$

is the sum-of-squares error.

Maximum Likelihood and Least Squares (3)

Computing the gradient and setting it to zero yields

$$\nabla_{\mathbf{w}} \ln p(\mathbf{t}|\mathbf{w},\beta) = \beta \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) \right\} \boldsymbol{\phi}(\mathbf{x}_n)^{\mathrm{T}} = \mathbf{0}.$$



where

$$\mathbf{\Phi} = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_{M-1}(\mathbf{x}_N) \end{pmatrix}$$

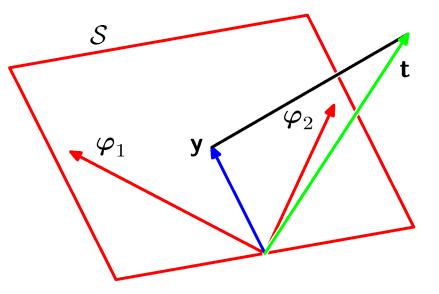
Geometry of Least Squares

Consider

 $\mathbf{y} = \mathbf{\Phi} \mathbf{w}_{\mathrm{ML}} = [\mathbf{\varphi}_1, \dots, \mathbf{\varphi}_M] \mathbf{w}_{\mathrm{ML}}.$ $\mathbf{y} \in \mathcal{S} \subseteq \mathcal{T} \qquad \mathbf{t} \in \mathcal{T}$ $\bigwedge_{N-\mathrm{dimensional}}^{N-\mathrm{dimensional}}$

 ${\mathcal S}$ is spanned by ${oldsymbol arphi}_1,\ldots,{oldsymbol arphi}_M$.

 \mathbf{w}_{ML} minimizes the distance between **t** and its orthogonal projection on \mathcal{S} , i.e. **y**.



Data items considered one at a time (a.k.a. online learning); use stochastic (sequential) gradient descent:

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_n$$

= $\mathbf{w}^{(\tau)} + \eta (t_n - \mathbf{w}^{(\tau)T} \boldsymbol{\phi}(\mathbf{x}_n)) \boldsymbol{\phi}(\mathbf{x}_n).$

This is known as the *least-mean-squares (LMS)* algorithm. Issue: how to choose η ?

Regularized Least Squares (1)

Consider the error function:

 $E_D(\mathbf{w}) + \lambda E_W(\mathbf{w})$

Data term + Regularization term

With the sum-of-squares error function and a quadratic regularizer, we get

$$\frac{1}{2}\sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2}\mathbf{w}^{\mathrm{T}}\mathbf{w}$$

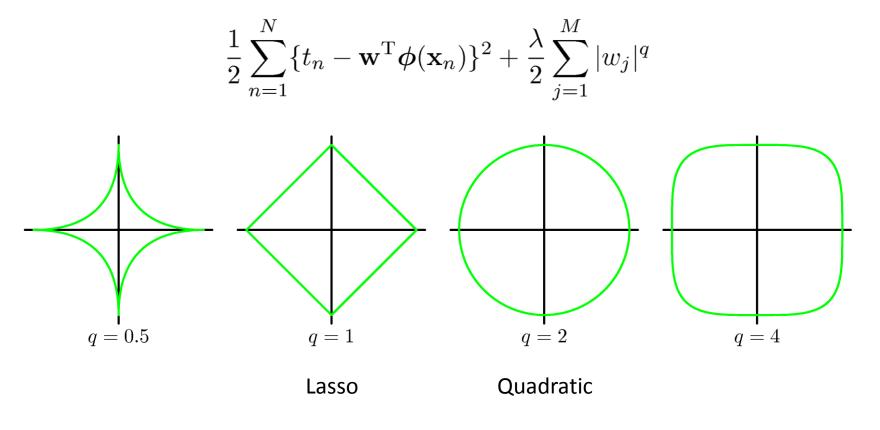
 λ is called the regularization coefficient.

which is minimized by

$$\mathbf{w} = \left(\lambda \mathbf{I} + \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}.$$

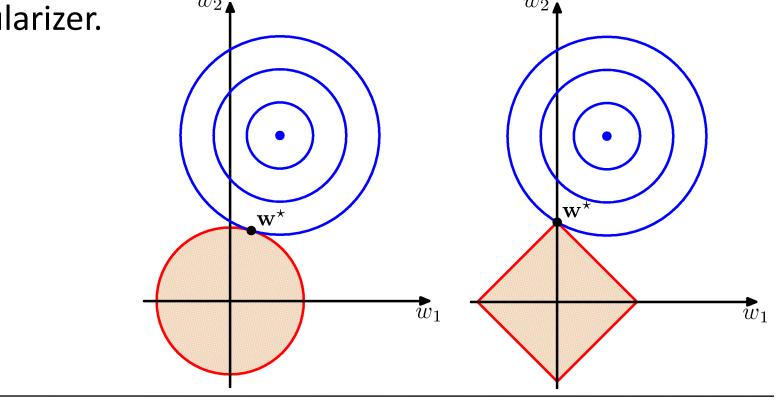
Regularized Least Squares (2)

With a more general regularizer, we have



Regularized Least Squares (3)

Lasso tends to generate sparser solutions than a quadratic regularizer. w_2



Analogously to the single output case we have:

$$p(\mathbf{t}|\mathbf{x}, \mathbf{W}, \beta) = \mathcal{N}(\mathbf{t}|\mathbf{y}(\mathbf{W}, \mathbf{x}), \beta^{-1}\mathbf{I})$$
$$= \mathcal{N}(\mathbf{t}|\mathbf{W}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}), \beta^{-1}\mathbf{I}).$$

Given observed inputs, $\mathbf{X} = {\mathbf{x}_1, \dots, \mathbf{x}_N}$, and targets, $\mathbf{T} = [\mathbf{t}_1, \dots, \mathbf{t}_N]^T$, we obtain the log likelihood function

$$\ln p(\mathbf{T}|\mathbf{X}, \mathbf{W}, \beta) = \sum_{n=1}^{N} \ln \mathcal{N}(\mathbf{t}_n | \mathbf{W}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1} \mathbf{I})$$
$$= \frac{NK}{2} \ln \left(\frac{\beta}{2\pi}\right) - \frac{\beta}{2} \sum_{n=1}^{N} \left\|\mathbf{t}_n - \mathbf{W}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\right\|^2.$$

Maximizing with respect to \mathbf{W} , we obtain

$$\mathbf{W}_{\mathrm{ML}} = \left(\mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}
ight)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{T}.$$

If we consider a single target variable, t_k , we see that

$$\mathbf{w}_k = \left(\mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}
ight)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}_k = \mathbf{\Phi}^{\dagger} \mathbf{t}_k$$

where $\mathbf{t}_k = [t_{1k}, \dots, t_{Nk}]^T$, which is identical with the single output case.

The Bias-Variance Decomposition (1)

Recall the *expected squared loss*,

$$\mathbb{E}[L] = \int \left\{ y(\mathbf{x}) - h(\mathbf{x}) \right\}^2 p(\mathbf{x}) \, \mathrm{d}\mathbf{x} + \iint \{h(\mathbf{x}) - t\}^2 p(\mathbf{x}, t) \, \mathrm{d}\mathbf{x} \, \mathrm{d}t$$

where
$$h(\mathbf{x}) = \mathbb{E}[t|\mathbf{x}] = \int tp(t|\mathbf{x}) \, \mathrm{d}t.$$

The second term of $\mathbb{E}[L]$ corresponds to the noise inherent in the random variable t.

What about the first term?

The Bias-Variance Decomposition (2)

Suppose we were given multiple data sets, each of size N. Any particular data set, \mathcal{D} , will give a particular function $y(\mathbf{x};\mathcal{D})$. We then have

$$\{y(\mathbf{x}; \mathcal{D}) - h(\mathbf{x})\}^{2}$$

$$= \{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] + \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}^{2}$$

$$= \{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\}^{2} + \{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}^{2}$$

$$+ 2\{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\}\{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}.$$

The Bias-Variance Decomposition (3)

Taking the expectation over ${\cal D}$ yields

$$\mathbb{E}_{\mathcal{D}}\left[\{y(\mathbf{x}; \mathcal{D}) - h(\mathbf{x})\}^{2}\right] \\ = \underbrace{\{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}^{2}}_{(\text{bias})^{2}} + \underbrace{\mathbb{E}_{\mathcal{D}}\left[\{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\}^{2}\right]}_{\text{variance}}.$$

The Bias-Variance Decomposition (4)

Thus we can write

expected $loss = (bias)^2 + variance + noise$ where

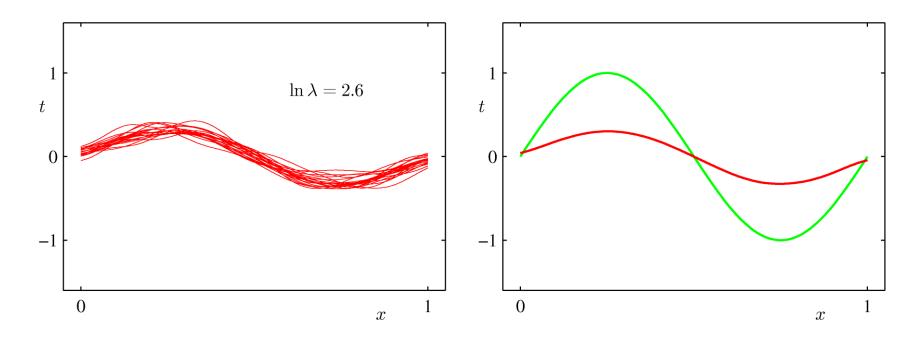
$$(\text{bias})^2 = \int \{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x};\mathcal{D})] - h(\mathbf{x})\}^2 p(\mathbf{x}) \, \mathrm{d}\mathbf{x}$$

variance =
$$\int \mathbb{E}_{\mathcal{D}} \left[\{y(\mathbf{x};\mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x};\mathcal{D})]\}^2 \right] p(\mathbf{x}) \, \mathrm{d}\mathbf{x}$$

noise =
$$\iint \{h(\mathbf{x}) - t\}^2 p(\mathbf{x},t) \, \mathrm{d}\mathbf{x} \, \mathrm{d}t$$

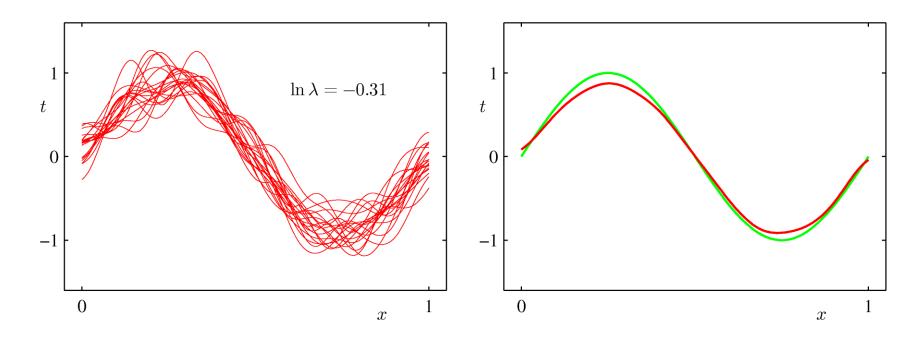
The Bias-Variance Decomposition (5)

Example: 25 data sets from the sinusoidal, varying the degree of regularization, λ .



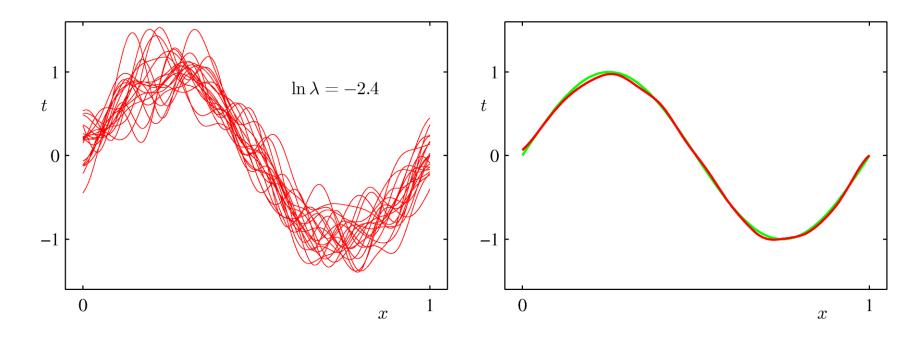
The Bias-Variance Decomposition (6)

Example: 25 data sets from the sinusoidal, varying the degree of regularization, λ .



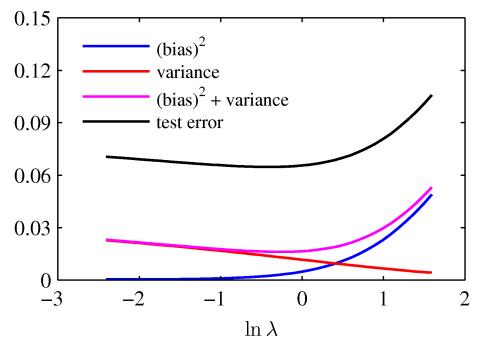
The Bias-Variance Decomposition (7)

Example: 25 data sets from the sinusoidal, varying the degree of regularization, λ .



The Bias-Variance Trade-off

From these plots, we note that an over-regularized model (large λ) will have a high bias, while an underregularized model (small λ) will have a high variance.



Bayesian Linear Regression (1)

Define a conjugate prior over $\ensuremath{\mathbf{w}}$

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_0, \mathbf{S}_0).$$

Combining this with the likelihood function and using results for marginal and conditional Gaussian distributions, gives the posterior

$$p(\mathbf{w}|\mathbf{t}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N)$$

where

$$\begin{split} \mathbf{m}_N &= \mathbf{S}_N \left(\mathbf{S}_0^{-1} \mathbf{m}_0 + \beta \mathbf{\Phi}^{\mathrm{T}} \mathbf{t} \right) \\ \mathbf{S}_N^{-1} &= \mathbf{S}_0^{-1} + \beta \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}. \end{split}$$

Bayesian Linear Regression (2)

A common choice for the prior is

 $p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$

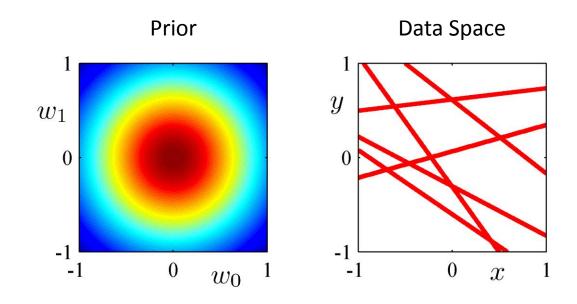
for which

$$\mathbf{m}_N = \beta \mathbf{S}_N \mathbf{\Phi}^{\mathrm{T}} \mathbf{t} \\ \mathbf{S}_N^{-1} = \alpha \mathbf{I} + \beta \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}.$$

Next we consider an example ...

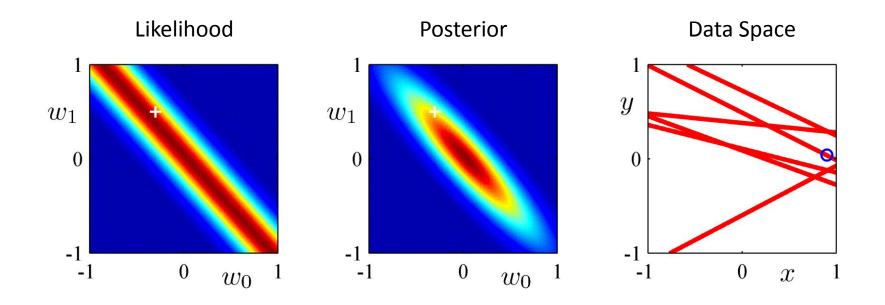
Bayesian Linear Regression (3)

0 data points observed



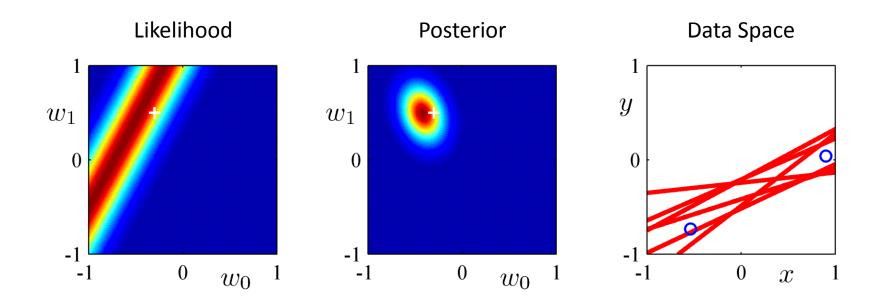
Bayesian Linear Regression (4)

1 data point observed



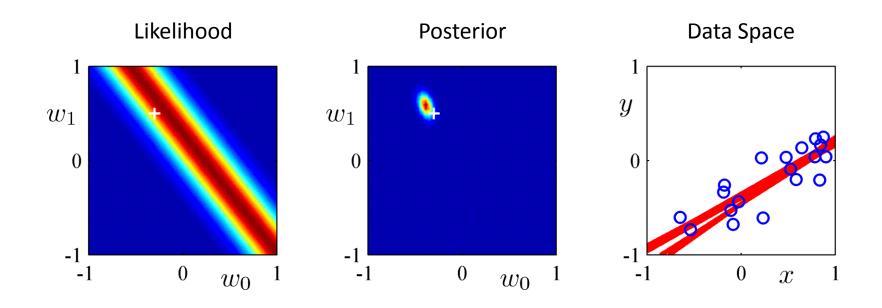
Bayesian Linear Regression (5)

2 data points observed



Bayesian Linear Regression (6)

20 data points observed



Predictive Distribution (1)

Predict t for new values of x by integrating over w:

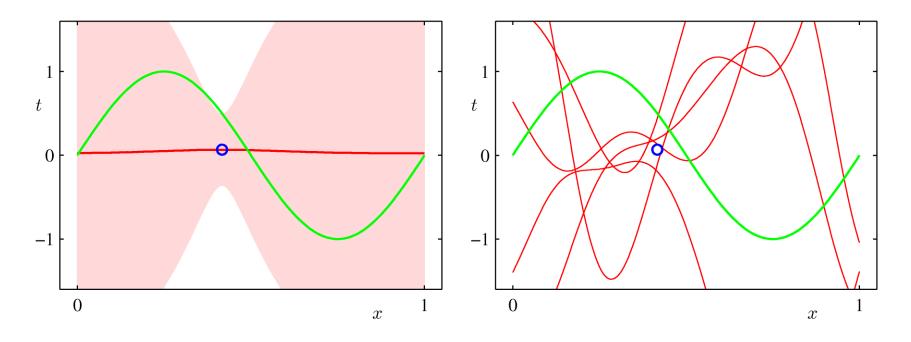
$$p(t|\mathbf{t}, \alpha, \beta) = \int p(t|\mathbf{w}, \beta) p(\mathbf{w}|\mathbf{t}, \alpha, \beta) \, \mathrm{d}\mathbf{w}$$
$$= \mathcal{N}(t|\mathbf{m}_N^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}), \sigma_N^2(\mathbf{x}))$$

where

$$\sigma_N^2(\mathbf{x}) = \frac{1}{\beta} + \boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}} \mathbf{S}_N \boldsymbol{\phi}(\mathbf{x}).$$

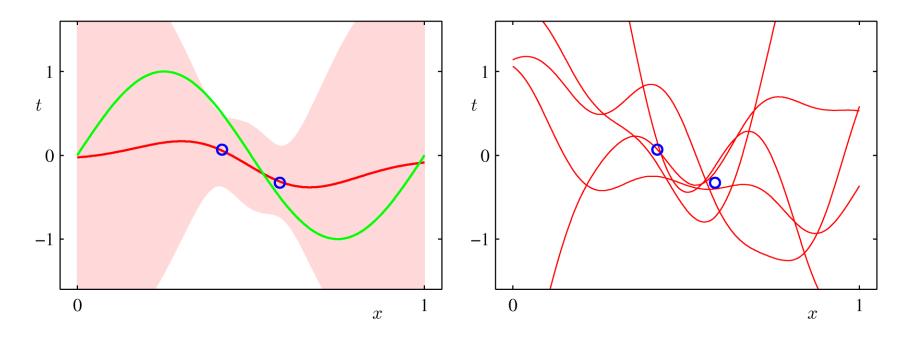
Predictive Distribution (2)

Example: Sinusoidal data, 9 Gaussian basis functions, 1 data point



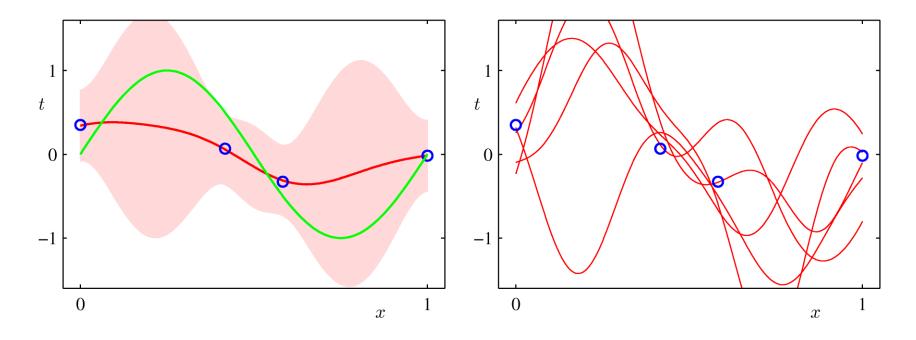
Predictive Distribution (3)

Example: Sinusoidal data, 9 Gaussian basis functions, 2 data points



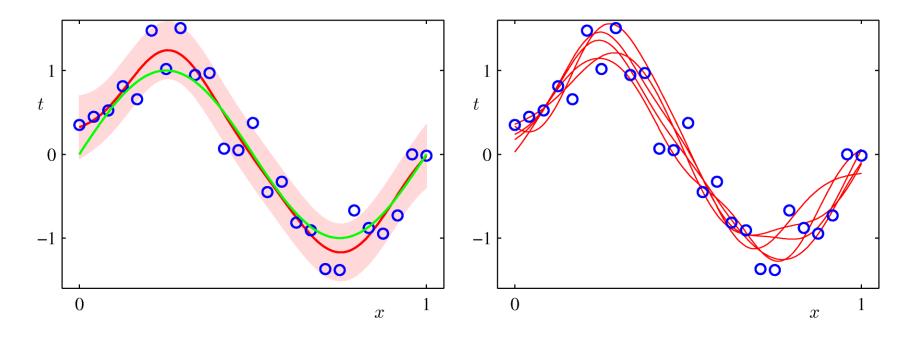
Predictive Distribution (4)

Example: Sinusoidal data, 9 Gaussian basis functions, 4 data points



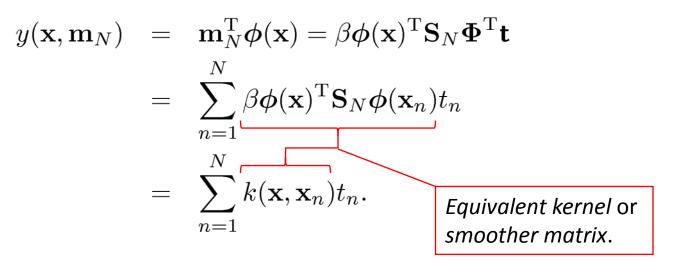
Predictive Distribution (5)

Example: Sinusoidal data, 9 Gaussian basis functions, 25 data points



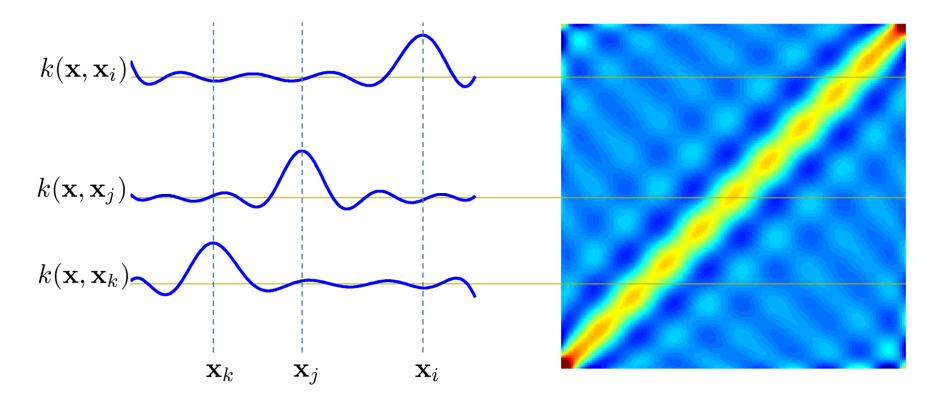
Equivalent Kernel (1)

The predictive mean can be written



This is a weighted sum of the training data target values, t_n .

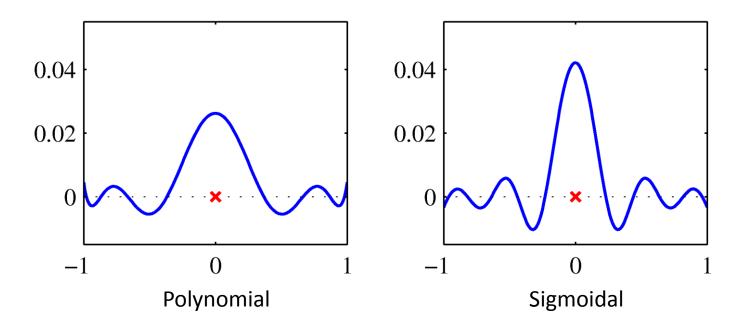
Equivalent Kernel (2)



Weight of t_n depends on distance between x and x_n ; nearby x_n carry more weight.

Equivalent Kernel (3)

Non-local basis functions have local equivalent kernels:



The kernel as a covariance function: consider

$$\begin{aligned} \operatorname{cov}[y(\mathbf{x}), y(\mathbf{x}')] &= \operatorname{cov}[\boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}} \mathbf{w}, \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}')] \\ &= \boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}} \mathbf{S}_{N} \boldsymbol{\phi}(\mathbf{x}') = \beta^{-1} k(\mathbf{x}, \mathbf{x}'). \end{aligned}$$

We can avoid the use of basis functions and define the kernel function directly, leading to *Gaussian Processes* (Chapter 6).

$$\sum_{n=1}^{N} k(\mathbf{x}, \mathbf{x}_n) = 1$$

for all values of \mathbf{x} ; however, the equivalent kernel may be negative for some values of \mathbf{x} .

Like all kernel functions, the equivalent kernel can be expressed as an inner product:

$$k(\mathbf{x}, \mathbf{z}) = \boldsymbol{\psi}(\mathbf{x})^{\mathrm{T}} \boldsymbol{\psi}(\mathbf{z})$$

where $\psi(\mathbf{x}) = \beta^{1/2} \mathbf{S}_N^{1/2} \phi(\mathbf{x})$.

Bayesian Model Comparison (1)

How do we choose the 'right' model?

Assume we want to compare models \mathcal{M}_i , $i=1, \ldots, L$, using data \mathcal{D} ; this requires computing

$$p(\mathcal{M}_i|\mathcal{D}) \propto p(\mathcal{M}_i)p(\mathcal{D}|\mathcal{M}_i).$$

Posterior

Prior

Model evidence or *marginal likelihood*

Bayes Factor: ratio of evidence for two models

 $\frac{p(\mathcal{D}|\mathcal{M}_i)}{p(\mathcal{D}|\mathcal{M}_j)}$

Having computed $p(\mathcal{M}_i | \mathcal{D})$, we can compute the predictive (mixture) distribution

$$p(t|\mathbf{x}, \mathcal{D}) = \sum_{i=1}^{n} p(t|\mathbf{x}, \mathcal{M}_i, \mathcal{D}) p(\mathcal{M}_i|\mathcal{D}).$$

A simpler approximation, known as *model selection*, is to use the model with the highest evidence.

Bayesian Model Comparison (3)

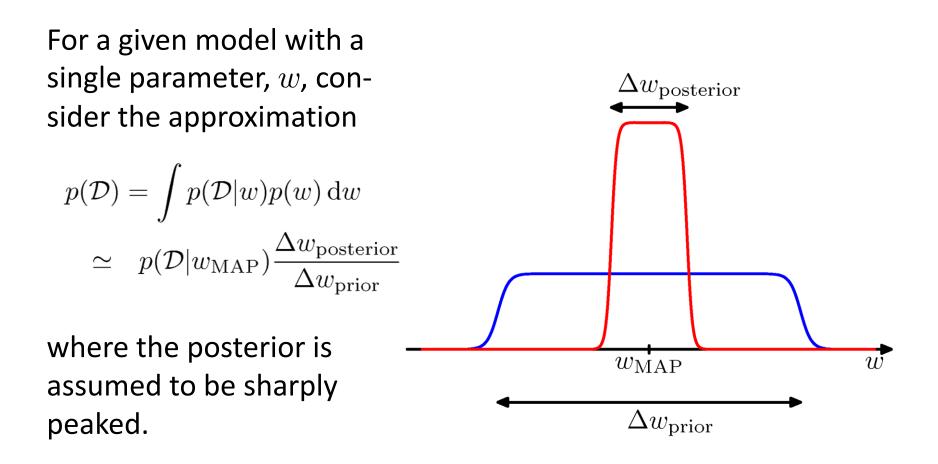
For a model with parameters w, we get the model evidence by marginalizing over w

$$p(\mathcal{D}|\mathcal{M}_i) = \int p(\mathcal{D}|\mathbf{w}, \mathcal{M}_i) p(\mathbf{w}|\mathcal{M}_i) \,\mathrm{d}\mathbf{w}.$$

Note that

$$p(\mathbf{w}|\mathcal{D}, \mathcal{M}_i) = \frac{p(\mathcal{D}|\mathbf{w}, \mathcal{M}_i)p(\mathbf{w}|\mathcal{M}_i)}{p(\mathcal{D}|\mathcal{M}_i)}$$

Bayesian Model Comparison (4)



Bayesian Model Comparison (5)

Taking logarithms, we obtain

$$\ln p(\mathcal{D}) \simeq \ln p(\mathcal{D}|w_{\text{MAP}}) + \ln \left(\frac{\Delta w_{\text{posterior}}}{\Delta w_{\text{prior}}}\right)$$

Negative

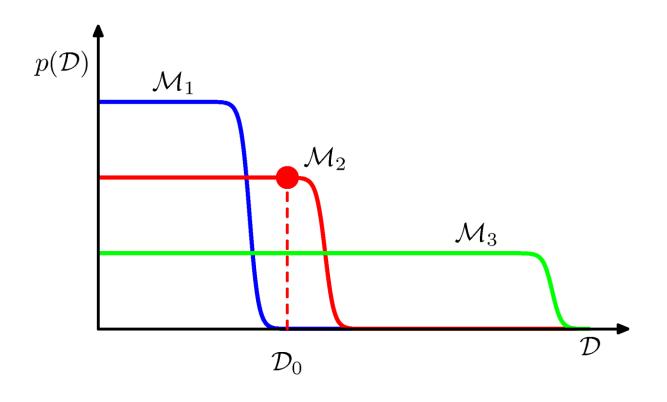
With M parameters, all assumed to have the same ratio $\Delta w_{\rm posterior}/\Delta w_{\rm prior}$, we get

$$\ln p(\mathcal{D}) \simeq \ln p(\mathcal{D}|\mathbf{w}_{\text{MAP}}) + M \ln \left(\frac{\Delta w_{\text{posterior}}}{\Delta w_{\text{prior}}}\right)$$

Negative and linear in M .

Bayesian Model Comparison (6)

Matching data and model complexity



The Evidence Approximation (1)

The fully Bayesian predictive distribution is given by

$$p(t|\mathbf{t}) = \iiint p(t|\mathbf{w},\beta)p(\mathbf{w}|\mathbf{t},\alpha,\beta)p(\alpha,\beta|\mathbf{t})\,\mathrm{d}\mathbf{w}\,\mathrm{d}\alpha\,\mathrm{d}\beta$$

but this integral is intractable. Approximate with

$$p(t|\mathbf{t}) \simeq p\left(t|\mathbf{t}, \widehat{\alpha}, \widehat{\beta}\right) = \int p\left(t|\mathbf{w}, \widehat{\beta}\right) p\left(\mathbf{w}|\mathbf{t}, \widehat{\alpha}, \widehat{\beta}\right) \, \mathrm{d}\mathbf{w}$$

where $(\widehat{\alpha}, \widehat{\beta})$ is the mode of $p(\alpha, \beta | \mathbf{t})$, which is assumed to be sharply peaked; a.k.a. *empirical Bayes, type II* or *generalized maximum likelihood,* or *evidence approximation*.

The Evidence Approximation (2)

From Bayes' theorem we have

 $p(\alpha, \beta | \mathbf{t}) \propto p(\mathbf{t} | \alpha, \beta) p(\alpha, \beta)$

and if we assume $p(\alpha,\!\beta)$ to be flat we see that

$$p(\alpha,\beta|\mathbf{t}) \propto p(\mathbf{t}|\alpha,\beta)$$

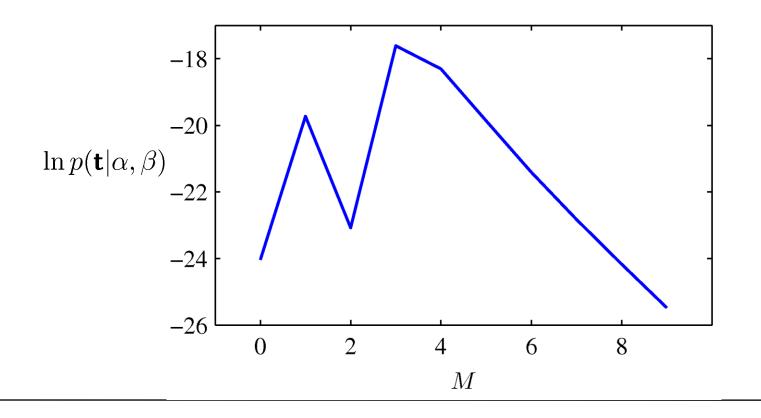
= $\int p(\mathbf{t}|\mathbf{w},\beta)p(\mathbf{w}|\alpha) \,\mathrm{d}\mathbf{w}.$

General results for Gaussian integrals give

$$\ln p(\mathbf{t}|\alpha,\beta) = \frac{M}{2}\ln\alpha + \frac{N}{2}\ln\beta - E(\mathbf{m}_N) + \frac{1}{2}\ln|\mathbf{S}_N| - \frac{N}{2}\ln(2\pi).$$

The Evidence Approximation (3)

Example: sinusoidal data, M^{th} degree polynomial, $\alpha = 5 \times 10^{-3}$



Maximizing the Evidence Function (1)

To maximise $\ln p(\mathbf{t}|\alpha,\beta)$ w.r.t. α and β , we define the eigenvector equation

$$\left(eta \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}
ight) \mathbf{u}_{i} = \lambda_{i} \mathbf{u}_{i}.$$

Thus

$$\mathbf{A} = \mathbf{S}_N^{-1} = \alpha \mathbf{I} + \beta \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}$$

has eigenvalues $\lambda_i + \alpha$.

Maximizing the Evidence Function (2)

We can now differentiate $\ln p(\mathbf{t}|\alpha,\beta)$ w.r.t. α and β , and set the results to zero, to get

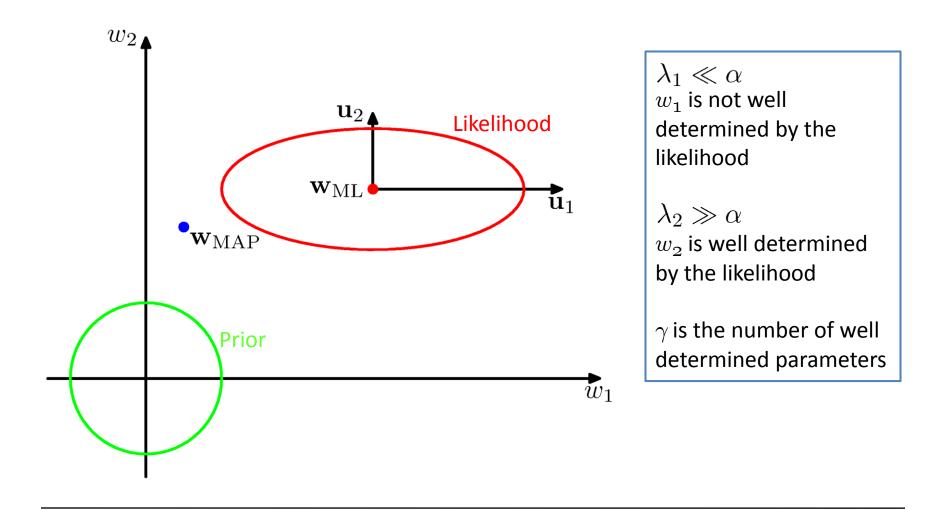
$$\alpha = \frac{\gamma}{\mathbf{m}_N^{\mathrm{T}} \mathbf{m}_N}$$
$$\frac{1}{\beta} = \frac{1}{N-\gamma} \sum_{n=1}^N \left\{ t_n - \mathbf{m}_N^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) \right\}^2$$

where

$$\gamma = \sum_{i} \frac{\lambda_i}{\alpha + \lambda_i}.$$

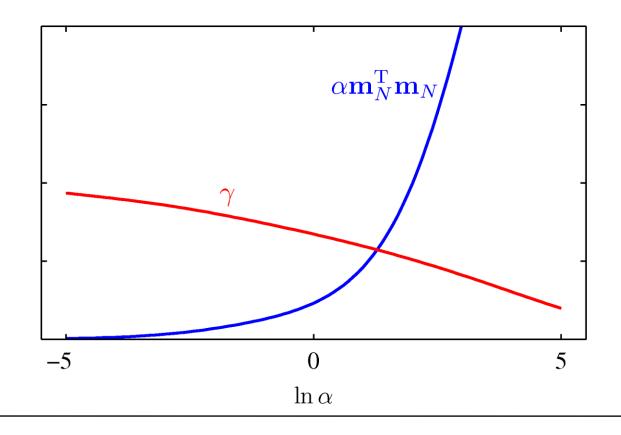
N.B. γ depends on both α and β .

Effective Number of Parameters (3)



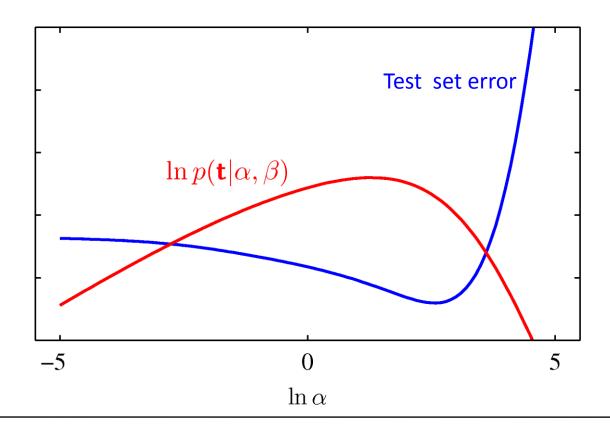
Effective Number of Parameters (2)

Example: sinusoidal data, 9 Gaussian basis functions, $\beta = 11.1$.



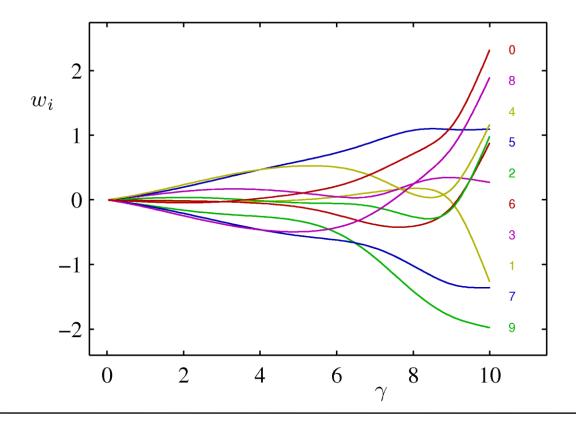
Effective Number of Parameters (3)

Example: sinusoidal data, 9 Gaussian basis functions, $\beta = 11.1$.



Effective Number of Parameters (4)

Example: sinusoidal data, 9 Gaussian basis functions, $\beta = 11.1$.



Effective Number of Parameters (5)

In the limit $N \gg M$, $\gamma = M$ and we can consider using the easy-to-compute approximation

$$\alpha = \frac{M}{\mathbf{m}_N^{\mathrm{T}} \mathbf{m}_N}$$
$$\frac{1}{\beta} = \frac{1}{N} \sum_{n=1}^{N} \left\{ t_n - \mathbf{m}_N^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) \right\}^2$$

Limitations of Fixed Basis Functions

- M basis function along each dimension of a D-dimensional input space requires M^D basis functions: the curse of dimensionality.
- In later chapters, we shall see how we can get away with fewer basis functions, by choosing these using the training data.