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ABSTRACT

Head-related transfer functions (HRTFs) depend on the shape
of the human head and ears, motivating HRTF personalization
methods that detect and exploit morphological similarities be-
tween subjects in an HRTF database and a new user. Prior
work determined similarity from sets of morphological pa-
rameters. Here we propose a non-parametric morphological
similarity based on a harmonic expansion of head scans. Two
3D spherical transforms are explored for this task, and an
appropriate shape similarity metric is defined. A case study
focusing on personalisation of interaural time differences
(ITDs) is conducted by applying this similarity metric on a
database of 3D head scans.

Index Terms— 3D transform, 3D shape similarity, spher-
ical harmonic transform, HRTF personalisation

1. INTRODUCTION

Head-related transfer functions (HRTFs), which are filters
modeling the acoustic transfer function from a sound source
to the listener’s ears, are essential for rendering immersive
spatial sound over headphones. Effective spatialisation at
arbitrary directions relies strongly on availability of the user’s
own individual set of HRTFs. However, measurement of
HRTFs involves a costly and lengthy measurement proce-
dure, making acquisition of individual HRTFs impossible for
massively-deployed immersive spatial sound applications.

Prior research on indirect HRTF personalization can be
categorized into three main approaches. The first approach
is to parameterize the HRTF filters and let the user adjust
prominent parameters through an active listening task [1, 2,
3], while the second relies on acquisition of the user’s head
scan followed by a wave-based numerical simulation of the
filters [4, 5, 6]. The third approach, and the one that has been
researched more extensively, is based on acquiring a database
of measured HRTFs, associated with the respective anthropo-
metric features of the subjects’ head and/or pinna. Based on
similarity of the user’s features and the closest match in the
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database, an HRTF set is selected that is expected to match
adequately the user’s own [7, 8, 9, 10, 11, 12, 13, 14]. How-
ever, the relation between the various anthropometrics and
their effect on the HRTF is still an open research question,
making the definition of effective similarity difficult. A re-
view of the various HRTF personalisation approaches can be
found in [15].

This study proposes an alternative approach to HRTF se-
lection from a database, based on fast acquisition of the user’s
head scan using commodity equipment. However, instead of
trying to match a few morphological parameters, it considers
a non-parametric representation of the user’s head shape. Us-
ing a harmonic expansion, the similarity of the user’s 3D head
scan to the scans of subjects in an HRTF database is deter-
mined. Following the approach of [16, 17] for finding similar
3D objects in a database, the spherical harmonic transform
(SHT), well-known in acoustical processing, seems suitable
for this task and has been previously used to compress and
coarsely model head meshes in computer graphics [18]. How-
ever, it is essentially a 2D transform and therefore unable to
model complex shapes with parts that are occluded from the
origin, such as the pinna or the shoulders. The authors in
[16, 17] overcome this limitation by taking a series of SHTs
on a number of concentric spheres intersecting the 3D object
mesh. Moreover, they define a similarity measure between
3D shapes, based on the rotationally invariant property of the
SHT energy spectrum.

In this work we extend this approach using two full 3D
transforms that decompose harmonically both the angular and
the radial dimensions, namely the spherical Fourier-Bessel
transform (SFBT) [19] and the spherical harmonic oscilla-
tor transform (SHOT) [20]. We apply the transforms on a
database of head scans and we demonstrate their potential ap-
plication on personalising HRTFs.

2. BACKGROUND

2.1. Spherical 3D tranforms

The spherical harmonic transform (SHT) is defined on the
unit sphere of square integrable functions S2 with harmonic
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coefficients given by

flm =

∫
γ∈S2

f(γ)Y ∗lm(γ)dγ, (1)

where γ ≡ (θ, φ) is a point on S2, (θ, φ) are the in-
clination and azimuth angle respectively, and

∫
γ

dγ =∫ 2π

0

∫ π
0

sin θdθdφ. The basis functions Ylm(γ) are com-
plex or real orthonormalized spherical harmonics (SHs) of
degree l = 0, ...,∞ and order m = −l, ..., l. The function
can be recovered from the coefficients by the inverse SHT

f(γ) =

∞∑
l=0

l∑
m=−l

flmYlm(γ), (2)

A general spherical 3D transform form can be defined as

fnlm =

∫
r∈R3

f(r)ψ∗nlm(r)d3r, (3)

where r ≡ (r, θ, φ) and d3r = r2 sin θdθdφdr is the in-
finitesimal volume element in spherical coordinates. We are
interested in basis functions that are separable in the radial
and angular dimension as in

ψnlm(r) = ψnl(r)ψlm(γ) (4)

in which case the angular term are naturally the SHsψlm(γ) =
Ylm(γ). Due to (4), the transform of (3) can be split into a
radial transform with a nested SHT

fnlm =

∫
r

[∫
γ

f(r, γ)Y ∗lm(γ)dγ

]
ψ∗nl(r)r

2dr

=

∫
r

flm(r)ψ∗nl(r)r
2dr. (5)

The function can be reconstructed by the inverse transform as

f(r, γ) =
∑

n,l∈Z+

l∑
m=−l

fnlmψnl(r)Ylm(γ) (6)

where the indexing of the double summation over the (n, l)
wavenumbers depend on the type of the radial transform. For
all practical applications, the order of the transform is band-
limited to some maximum (N,L) depending on the order of
the underlying function that is transformed, or on limitations
imposed by finite sampling conditions.

Two spherical 3D transforms of the form of (5) are exam-
ined throughout this work, differing only on the radial part of
the basis function and their radial domain of integration. The
first is the spherical Fourier-Bessel transform (SFBT) [19],
with the radial basis functions

ψnl(r) = Nnljl(knlr) (7)

being the spherical Bessel functions jl of order l, including
the normalisation Nnl that preserves orthonormality. If the

domain of the SFBT is restricted to a solid sphere of radius α
with r ∈ [0, α] and a boundary condition of ψnlm(α, γ) = 0,
then the normalisation Nnl and the scaling factor knl are

Nnl =
α3

2
j2l+1(xln) (8)

and knl = xln/α, where xln is the n-th positive root of
jl(x) = 0. Band-limiting the transform to maximum orders
N,L requires all coefficients of n = 1, ..., N and l = 0, ..., L.

The second transform under study is the spherical har-
monic oscillator transform (SHOT), familiar in quantum me-
chanics as its basis functions express the wavefunctions of
the 3D isotropic quantum harmonic oscillator. Recently, Pei
and Liu [20] introduced it with the name SHOT as a signal
processing tool for similar applications to the SFBT, such as
compression and reconstruction of 3D data, shape registration
and rotation estimation [21]. The radial wavefunctions of the
SHOT are given by

ψnl(r) = NnlL
l+1/2
n (r2)rle−r

2/2 (9)

where Ll+1/2
n are the associated Laguerre polynomials with

n ∈ Z+. The normalization factor can be found by enforc-
ing orthonormality on (9) by

∫∞
0
|ψnl(r)|2r2dr = 1, and by

the orthogonality relation of the Laguerre polynomials [22,
Eq.22.2.12]

Nnl =
2n!

Γ(n+ l + 3/2)
, (10)

where Γ(·) is the Gamma function. Even though the angular
and radial orders n, l ∈ Z+ can be considered independent,
we follow herein the convention used in [20] that expresses
the order of the transform with a single quantum number p =
2n + l. A band-limited transform is then defined up to order
P , with p = 0, ..., P . Contrary to the SFBT defined above,
the radial domain of the SHOT is r ∈ [0,∞).

2.2. 3D shape registration and detection

It has been shown in [16, 17] that the energy of the SHT
spectrum per angular order l forms a rotationally-invariant
descriptor of the transformed shape, suitable for registration
and similarity matching of 3D objects [17]. That approach
relies on sampling spherically a 3D object by a) voxelizing
the boundary of the object, b) finding the intersecting points
between these voxels and K concentric spheres expanding
from the origin, and c) applying the SHT on each spheri-
cal intersection individually up to some order L. Harmonic
coefficients f (k)lm are then obtained with k = 1, ...,K. A
rotationally-invariant descriptor for each sphere is given by

e
(k)
l =

√√√√ l∑
m=−l

|f (k)lm |2, (11)



Fig. 1. Illustration of the sampling process: (a) original
scanned mesh, (b) raytracing intersections, (c) coarsely sam-
pled example, with a few sampling spheres for visibility.

resulting in an (L + 1) × K matrix E that characterises the
specific shape and is robust to it being rotated. A shape dis-
tance measure between two shapes (i, j) is further defined as

dSHT
ij = ‖Ei −Ej‖2 . (12)

This approach treats each intersecting sphere separately,
meaning that intersections at each segment can be rotated
arbitrarily with no effect to the feature matrix E. This obser-
vation motivated the authors in [19] to use the SFBT instead
of separate radial SHTs, obtaining a 3D spectrum unique to
the shape under study. Then a rotationally-invariant descrip-
tor can be formulated similar to (11) for the SFBT spectrum,
as

enl =

√√√√ l∑
m=−l

|fnlm|2, (13)

and similarly for the SHOT spectrum, as it is shown in [20].
In this work, we construct a 3D shape similarity measure

based on the SFBT/SHOT descriptor of (13), by stacking the
spectral energies enl in a vector e. The rotationally-invariant
distance measure between two shapes (i, j) is then given by

d3DT
ij = ‖ei − ej‖2 . (14)

3. APPLICATIONS TO HRTF SIMILARITY

Effective spatial rendering relies both on the magnitude and
the phase response of the HRTFs, where the phase response
is usually approximated with a direction-dependent delay
known as the interaural time difference (ITD). While ITD
depends mostly on the overall head shape, the magnitude
differences rely both on the head and pinna shape. Since
the harmonic descriptors obtained for each head are domi-
nated mainly by the head shape, we restricted our preliminary
evaluation only on personalization of the ITD.

The 3D transforms are applied to a database of 144 high
resolution head scans captured with a Flexscan3D optical
scanning setup. Each head scan is associated with its mea-
sured HRTFs, captured in the anechoic chamber of Microsoft

Fig. 2. Head shape reconstruction on a horizontal plane pass-
ing through the interaural axis, for a) SFBT, and b) SHOT.
The dots represent the actual intersection points on the bound-
ary of the mesh returned by the raytracer.

Research at 400 measurement directions [13]. Assuming that
we can capture the user’s head scan but we have no access to
their HRTFs, our objective is to determine the most similar
head in the database, based on the distance metric of (14),
and then use the respective non-individual ITDs for the user.
To validate this approach we a) apply the SFBT and SHOT
transforms to all scans in the database, b) select the most
similar head for all subjects, and c) determine a performance
based on the similarity between the selected ITD and each
subject’s true measured one. We compare against two base-
line methods for non-individualised HRTFs, the first based
on the ITD of a Head and Torso Simulator (HATS), and the
second based on the average ITD of the database.

3.1. Implementation

For the application of the SHOT and SFBT to the head scans,
a similar sampling approach as the one in [16, 17] was used,
but instead of voxelizing the scans, spherical sampling in a
uniformly distributed set of directions was performed. 5000
uniform directions were generated as a minimum energy so-
lution to the Thompson problem [23]. The step size for the ra-
dial sampling was fixed to 1mm, in order to capture variations
on the head shape with high detail. A maximum radius of
165mm, corresponding to the furthest point of all head scans
in the database, was used to limit the radial dimension. The
head scan was considered as a solid object and all samples in
the interior of the mesh were set to a value of one, with the
rest set to zero. To assess this interior/exterior condition, a
raytracer was used to find the intersections of each sampling
direction with the mesh and, based on these, determine if the
samples across the ray were inside or outside the head bound-
ary. An example of the sampling process is shown in Fig. 1.

Due to the uniformity of the sampling directions, the dis-



crete SHT in (5) on each radial step rj reduced to

flm(rj) =

∫
γ

f(rj , γ)Y ∗lm(γ)dγ =
4π

K

K∑
k=1

f(rj , γk)Y ∗lm(γk),

(15)
with γk the discrete sampling directions. To obtain the full
3D harmonic coefficients fnlm, the discrete radial transform
of (5) was applied to flm(rj) with the respective wavefunc-
tions ψnl(rj) using trapezoidal integration. The order of the
transform was limited to N = 10, L = 35 for the SFBT, and
P = 40 for the SHOT. Fig. 2 presents a visual validation of
the transforms, where reconstruction by the inverse SFBT and
SHOT manages to represent the head shape accurately.

After the SFBT and SHOT spectra were obtained, a dis-
tance matrix between all head scans was determined by (13,
14), and for each subject its most similar head scan was se-
lected. The ITD corresponding to this selection was deemed
as the non-individual personalized ITD for that subject, re-
turned by the method.

3.2. ITD processing

The ITD of each subject in the database was extracted from
the HRTFs as detailed in [14]. To define an ITD similarity
measure that considered the ITDs across all directions, we
followed an approach similar to the head similarity criterion.
A SHT of the ITD was taken, with a maximum order L = 15,
limited by the specific measurement grid. Since the measure-
ment grid was not uniform to apply directly (15), a weighted
least-squares solution to the SHT was used

bITD =
(
YH
LWYL

)−1
YH
LWaITD (16)

where aITD is the vector of the ITDs at the measurement di-
rections, YL is the matrix of SH values at the same directions
up to order L, and W is a diagonal matrix of weights corre-
sponding to the areas of the Voronoi cells around each mea-
surement point on the sphere. Finally, after the SH spectrum
of the ITDs bITD was obtained, its rotationally-invariant de-
scriptor eITD was computed from (11). This step was applied
in order to determine an ITD similarity that is taking the ITD
shape into account but not its rotation, which could vary be-
tween subjects during measurement. Finally, the ITD distance
metric between subjects (i, j) was defined as

dITD =
∥∥eITD

i − eITD
j

∥∥
2

(17)

4. RESULTS

The performance of the proposed approach was evaluated in
a leave-one-out cross-validation manner. The following ITD
distances were assessed: a) distance between the ITD given
by the head similarity and the subject’s own ITD (method),
b) distance between the generic HATS ITD and the subject’s

subject no.
20 40 60 80 100 120 140

dIT
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Fig. 3. ITD distances for 144 subjects in the database.

own (HATS), c) distance between the average ITD and the
subject’s own (average). Additionally, the smallest ITD dis-
tance was computed between each subject and all other sub-
jects in the database (closest), which serves as best perfor-
mance case for any method that selects a single ITD for per-
sonalization. The results are shown in Fig. 3. Average perfor-
mance scores are obtained by counting the number of subjects
for which method performs better than average and HATS.
These scores are presented in Table 1, given as percentages
over the total number of subjects in the database. In addi-
tion to the scores of the two 3D transforms, results using the
simpler SHT-based similarity are included for comparison.

Table 1. Percentage of cases in which method is better pre-
dictor of ITD than average/HATS.

Method Average HATS
SHOT 64% 71%
SFBT 60% 65%
SHT 42% 53%

The scores of the SHT-based approach are significantly
lower than the two 3D transforms, justifying the additional
complexity of their implementation. Otherwise, the results
show that the method performs significantly better than the
HATS ITD for the majority of the subjects, and better than the
average ITD, for both the SHOT and the SFBT, with SHOT
giving the best results. The two transforms agreed in general
on the few most similar head candidates, but could differ for
certain subjects on the selection of the single most similar
one, which could explain their performance difference.

5. CONCLUSIONS

This study introduces the use of two 3-dimensional spherical
transforms, the SFBT and SHOT, to determine head shape
similarity with applications to individualization of HRTFs.
Based on the transform properties, an efficient sampling
scheme of 3D head scans is developed. The resulting spectra
of the head shapes are used to assess a similarity metric based
on a rotationally invariant descriptor, which is applied to a
case study on personalization of ITDs with positive results.
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