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ABSTRACT
Large software organizations are transitioning to event data
platforms as they culturally shift to better support data-
driven decision making. This paper offers a case study at
Microsoft during such a transition. Through qualitative
interviews of 28 participants, and a quantitative survey of
1,823 respondents, we catalog a diverse set of activities that
leverage event data sources, identify challenges in conducting
these activities, and describe tensions that emerge in data-
driven cultures as event data flow through these activities
within the organization. We find that the use of event data
span every job role in our interviews and survey, that different
perspectives on event data create tensions between roles or
teams, and that professionals report social and technical
challenges across activities.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: General—Standards; D.2.9
[Software Engineering]: Management—Programming teams

Keywords
boundary object, collaboration, logging, telemetry, developer
tools, practices

Let’s log that. . . It’s like in the bones of the system. (Ryandev)

1. INTRODUCTION
When software engineers talk about “log data,” they often

refer to the output from trace statements in source code,
which are intended to help with troubleshooting and debug-
ging [6, 23, 24, 22]. However, as software companies have
moved to software as a service [3], the concept of “log data”
has dramatically broadened in scope.

Cloud-hosted services centralize the collection of data
about software, service, and customer behavior, which allows
the data to be collected continuously at scale [13]. To cope
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with scale, software teams have adopted big data platforms,
like Hadoop. Large software companies, like Google and
Microsoft, both use these data platforms internally and also
provide them to third parties through services like Google
Web Analytics and Microsoft Application Insights. To allow
continuous monitoring, teams have adopted streaming data
platforms, like Storm. Teams often consume this streaming
data, called telemetry, through live dashboards and periodic
reports. Both the data at rest (logs) and the data in mo-
tion (telemetry) are conceptually the same: timestamped,
customizable records that capture system and user events.
Because of this similarity, we use the term event data to
cover both cases.

The motivation for adopting event data platforms is to
support the shift to data-driven decision making [14], also
called software analytics [12, 25]. Understanding this shift
is important for two reasons. First, the new data-driven
team practices provide the context for future innovations
in software engineering tools and processes. Second, the
shift itself provides the opportunity for software engineering
research to smooth the transition. The most salient feature
in the shift from traditional logging to event data is the
widening of scope: while traditional logging was primarily
focused on one team role (developers) and one work activity
(troubleshooting), the goal of adopting these new platforms
is for the entire team to benefit from the availability of event
data. This leads to the following research questions:

RQ1 How are different team roles using event data and for
what work activities?

RQ2 Does the use of event data cause organizational issues,
or tensions, between teams or team roles?

RQ3 What challenges do software engineers face when work-
ing with event data?

To address these questions, we conducted a mixed-methods
study of how teams at Microsoft use event data. First, we
conducted 28 semi-structured interviews with software en-
gineers in a variety of roles, namely, software developers,
program managers, operations engineers, content creators,
data scientists, and managers. We coded the interview tran-
scripts to form a grounded theory of how teams use event
data, which we then confirmed with a survey with 1,823
respondents. Our findings are:

1. The use of event data spans every job role in our inter-
views and survey. Software engineers work with event data
in eight activities: (1) engineering the data pipeline (imple-
menting and maintaining infrastructure for event data); (2)
instrumenting for event data (adding logs to the code base);



(3)“doing data science” (performing experiments to make rec-
ommendations); (4) troubleshooting problems (debugging the
cause of an issue); (5) monitoring system health (inspecting
event data for performance and uptime); (6) improving the
user experience (understanding user behavior); (7) triaging
work items (prioritizing and assigning bugs); and (8) making
business decisions (planning about products and technology
investments). Our expectation was that job roles would
mostly focus on subsets of these work activities, for example,
developers doing troubleshooting, program managers doing
triaging, and operations doing monitoring. Surprisingly, our
study shows that these activities crosscut job roles.

2. The event data act as a boundary object between roles,
that is, the data are shared among roles and are sufficiently
flexible to be used for different purposes. For instance, the
same event data can allow one team member to find the
root cause of a crash, another to rank the most frequent
features that customers use, and another to decide whether
to open a new data center in China. Occasionally, these
different perspectives create conflict between roles or teams.
For example, the desire to scrub personal information from
the data can lose details that are useful to find the root cause
of a problem.

3. Software engineers report a number of challenges across
all work activities. The worst-rated problem for all but one
activity was combining data from multiple sources (for data
science, it was the second-worst problem). Other problems
that rate highly include the ease of use of the tools, the
amount of clerical work required, the difficulty of getting
relevant insights, and the amount of time that the activ-
ity requires. These challenges suggest open problems for
researchers to address.

2. BACKGROUND
Previous research on logging has focused on its use and

production by developers for troubleshooting [15, 19, 13].
Two previous empirical studies document logging in practice.
Yuan et al. mined the revision history of four large, long-term
open-source projects and found that logging statements are
pervasive and that project developers revise those statements
a third of the time to get them right. Fu et al. analyzed
millions of lines of Microsoft source code to build an empirical
model of where developers choose to log, which they validated
with a survey of 54 developers [6]. Other research makes the
use of logs for troubleshooting more productive, for example,
by automating the process of finding likely executions [22]
and by enhancing the program’s trace statements [24].

The use of log data for software analytics is part of a larger
trend of software companies adopting data science. Kim et
al. interviewed 16 data scientists at Microsoft and found five
distinct working styles: insight providers, who work with en-
gineers to provide answers to managers’ questions; modeling
specialists, who consult with teams about building predictive
models; platform builders, who engineer the infrastructure
to collect, store and analyze data; polymaths, who did a
little of everything on their own; and team leaders, who run
data science teams [9]. While this previous study focused
on the emerging role of the data scientist, the study in this
paper widens the lens to look at how data is affecting all roles
across the entire company, including the boundaries between
roles. Other studies have documented the work practices and
pain points of data scientists, outside of software engineering.
Fisher et al. describe data science workflows with long waits

Table 1: Interview Participants by Role, with Their
Years at Microsoft and Current Team

Developers (DEV) (n = 10, µ = 9.2 yrs)
Albert (16, productivity tools), Austin (5, games), Chad
(9, operating systems), Dylan (11, development tools),
Gary (8, productivity tools), Ida (5, productivity tools)
Keith (7, games), Mark (4, databases), Ryan (15, produc-
tivity tools), Sean (12, operating systems)

Program Managers (PM) (n = 9, µ = 10.7 yrs)
Amanda (19, R&D), Amber (15, databases), Anna (5,
operating systems), Blake (9, games), Desmond (15, op-
erating systems), Henry (12, operating systems), Jon (3,
operating systems), Steve (9, cloud platform), Ulysses (8,
mobile device)

Operations Engineers (OPS) (n = 2, µ = 10.5 yrs)
Caleb (7, sales and services), Ronald (14, cloud platform)

Content Developers (CD) (n = 2, µ = 12.5 yrs)
Dale (15, productivity tools), Marvin (10, development
tools)

Data Scientists (DS) (n = 4, µ = 13 yrs)
Brian (1, productivity tools), Jerry (7, operating systems),
Paul (18, operating systems), Rudy (26, data pipeline)

Service Engineer (SRV) (n = 1, µ = 9 yrs)
Arthur (9, games)

on batch-style data query systems and frequent tool switch-
ing [5]. Kandel et al. organized 35 interviewed data analysts
into three personas based on tool usage—hackers, scripters,
and application users—and describe the dominance of data
preparation (“data wrangling”) in the work practice [8].

3. STUDY
Our study methodology consisted of two phases. In the first

phase, we conducted qualitative, semi-structured interviews
across a variety of roles at Microsoft. In the second phase,
we used the transcribed interviews to generate a quantitative,
closed-end survey to verify and generalize the results.1

3.1 Semi-structured Interviews
Initial recruitment survey. To identify potential inter-

view participants, we randomly deployed an initial recruit-
ment survey to 1,897 employees at Microsoft’s corporate
headquarters in Redmond, Washington, USA. This short
survey provided a definition of event data, asked participants
if they used these types of sources, and requested permission
for us to follow-up with them. We received 211 responses
(response rate of 11%), of which 166 (79%) consented to
follow-up. We filtered out participants who had less than
three years of experience, since employees with less than that
experience are often still learning their roles [18].

Participant selection. We scheduled one-hour inter-
views over a five-week period in June and July of 2015.
Consistent with grounded theory, we used an iterative theo-
retical sampling approach that attempts to maximize new

1The initial recruitment survey, semi-structured interview
guide, and quantitative survey materials are available online
at http://aka.ms/ckel58.



information gained and obtain diverse coverage about event
data perspectives from each additional participant [21]. We
obtained theoretical saturation, that is, the point at which
we were obtaining interchangeable stories, at 28 participants
(see Table 1).

Interview protocol. We conducted semi-structured in-
terviews that focused on the informants’ recent experiences
with event data. The use of “storytelling” from actual
projects, rather than general discussion, has been shown
to be more accurate and offer rich, contextualized detail
over standard interviews [11]. Using guidelines from Hova
and Anda, we conducted interviews in pairs, with one inter-
viewer taking the lead while the other takes notes and asks
additional questions [7]. In the style of contextual inquiry,
we interviewed participants in their own offices, where they
often showed us relevant artifacts, like log files and telemetry
reports. We recorded all interviews for later transcription,
and interviews typically lasted just under an hour.

Analysis. We used a grounded theory approach to analyze
the interview data [21]. After transcribing the interviews, we
used the ATLAS.ti2 data analysis software for qualitatively
coding the data [16]. We performed coding over multiple iter-
ations. In the first cycle, we used descriptive coding, that is,
assigning short phases or labels to data, and process coding,
using gerunds to classify actions in the transcripts. From
first-cycle coding, we identified eight activities performed by
individuals using event data sources. In the second cycle,
we performed axial coding within each activity to ground
and characterize the description of the activity. We stratify
these activities through the analytical framework of boundary
objects, which we elaborate in Section 4.

Member checking. We used member checking to raise
the trustworthiness of our interpretation of the participants’
interview remarks. In this strategy, participants are offered
an opportunity to approve our interpretation to determine
“whether the data analysis is congruent with participants’
experiences” [4]. Following Carlson’s guidelines [2], we con-
ducted a single-event member check using a preprint version
of this paper, which gave the participants an opportunity
to review their quoted remarks in the context of the larger
work. We received five replies from the participants, of which
only one required minor changes to their quotation.

3.2 Follow-up Survey
We conducted a quantitative survey to help triangulate,

generalize, and increase the credibility of our qualitative
findings.

Protocol. We asked participants basic demographic ques-
tions about their profession and experience at Microsoft. For
each of the eight activities, we asked the participant the
frequency of performing the activity on a standard 6-point
frequency scale. We also provided participants an oppor-
tunity specify an “Other” activity, in order to help assess
whether we had reached theoretical saturation.

For each activity performed once or more per week, the
participant received an additional page about the challenges
and team dependencies of the activity. We asked participants
about the most recent time in which they performed the
activity. The challenges were drawn from the interviews and
presented as statements on a 5-point agreement Likert scale.
To understand how event data serve as a boundary object,

2http://atlasti.com/

we asked participants to identify which teammate’s activity
prompted them to perform their current activity.

Participant selection. We randomly sampled 6,451 par-
ticipants from the corporate address book, from all locations
worldwide. To increase the role diversity of our responses,
we weighted the sampling based on the overall distribution
of professions. We received 1,823 responses (28% response
rate).

4. OVERVIEW OF FINDINGS
In this section, we use the analytic framework of boundary

objects as a method of understanding how event data flow
through organizations:

Boundary objects are objects which are both plas-
tic enough to adapt to local needs and the con-
straints for the several parties employing them,
yet robust enough to maintain a common iden-
tity across sites. They are weakly structured in
common use, and become strongly structured in
individual-site use. [20]

As we argue in this paper, event data act as boundary
objects. In our grounded theory analysis of activities, we
find that event data not only serve to “iteratively coordinate
perspectives and to bring disparate communities of practice
into alignment” [10], but are also “woven into the fabric of
organizational life” [17] and “do not work as stand-alone
deliverables; they need to be explained and elaborated” [1].

Event data activities. Our open and axial coding of the
interview data revealed eight distinct activities, which we
organized in terms of distance from the data. The activities
are: Data Engineering : Engineering the Data Pipeline (PIP),
Instrumenting for Logs or Telemetry (INS); Data Analysis:
“Doing Data Science” (DS); Software Maintenance: Monitor-
ing Services (MON), Troubleshooting Problems (TS); Deci-
sion Making : Improving the User Experience (UX), Triaging
Work Items (TRI), Making Business Decisions (BUS).

Frequency of activities. Most respondents do these
activities weekly: 66% do troubleshooting once or more per
week; 63%, monitoring; 56% triaging; 54%, data pipeline;
50%, instrumentation; 47% for business decisions; and 44%
for data science. Between 91-94% of respondents report us-
ing event data in these eight activities. Respondents rarely
selected the other option in the activity survey, which in-
creases our confidence that we reached theoretical saturation
for activities in our interviews. In all cases, the other re-
sponses were specialized versions of the eight activities, for
example, “debugging issues” for Troubleshooting Problems
and “tracking outages” for Monitoring. We discuss these
activities in in detail in Section 5.

Activity challenges. In our interviews, we heard many
stories about challenges faced while performing activities. To
generalize these challenges, we aggregated the survey data
for each activity and present challenges for which over 50%
of respondents agree or strongly agree with the challenge
statement (Table 2). These responses show that combining
multiple sources of data is the biggest challenge for almost
all activities, that those who make business decisions face
a significant number of challenges, and that instrumenting
event data is the only activity free of significant challenges.

Activity distribution among professions. Initially
we expected event data activities to cluster around profes-
sional disciplines, e.g., program managers triage work items



Table 2: Challenges Reported in Follow-up Survey Responses

Likert Resp. Counts1

% Agree SD D N A SA Distribution2

Troubleshooting Problems (4) 50% 50%0%

Combining multiple sources of data is difficult. 65% 15 39 32 87 73

The tools for this activity are too slow. 52% 13 59 49 69 62

The tools for this activity aren’t easy to use. 51% 12 61 49 79 50

The activity involves too much clerical effort. 50% 5 12 13 13 17

Monitoring System Health (1)

Combining multiple sources of data is difficult. 58% 6 37 23 45 46

Doing Data Science (5)

The tools for this activity aren’t easy to use. 69% 3 7 5 22 11

The tools for this activity are too slow. 60% 2 3 14 17 12

The activity requires more effort than I have time for. 59% 3 9 6 15 11

I have to do a lot of coordination with other people. 58% 3 9 7 15 11

I have to wait on other people. 51% 3 11 9 17 7

Making Business Decisions (11)

Combining multiple sources of data is difficult. 73% 2 8 4 22 16

The activity requires more effort than I have time for. 69% 2 7 7 25 11

The tools for this activity aren’t easy to use. 68% 0 10 7 21 15

The activity involves too much clerical effort. 67% 0 10 7 21 14

The tools for this activity are too slow. 67% 0 9 8 22 12

The tools for this activity are flaky or unreliable. 58% 0 12 10 19 12

I have to do a lot of coordination with other people. 57% 5 9 9 17 13

The tools make it difficult for me to get the insights I want. 56% 1 15 7 18 11

I have to wait on other people. 55% 5 10 9 19 10

The activity involves too much mental effort. 51% 3 14 8 17 9

The data doesn’t contain the information I want. 50% 2 18 6 17 9

Improving the User Experience (5)

The activity requires more effort than I have time for. 52% 4 12 13 22 10

The tools for this activity aren’t easy to use. 52% 3 17 9 19 13

The activity involves too much clerical effort. 51% 4 14 12 17 14

The tools for this activity are too slow. 51% 3 14 13 16 15

Combining multiple sources of data is difficult. 50% 5 12 13 13 17

Engineering the Data Pipeline (1)

Combining multiple sources of data is difficult. 53% 5 13 11 18 15

Instrumenting for Logs or Telemetry (0)

Triaging Work Items (1)

The activity requires more effort than I have time for. 52% 9 13 7 18 14

1 Likert responses: Strongly Disagree (SD), Disagree (D), Neutral (N), Agree (A), Strongly Agree (SA).
2 Net stacked distribution removes the Neutral option and shows the skew between positive (more challenging) and negative
(less challenging) responses. Strongly Disagree, Disagree, Agree; Strongly Agree.



Table 3: Top Activities by Profession

Profession Primary Secondary

Business Operations (42) BUS 20% UX 19%

Engineering
Software Engineering (393) TS 20% MON 16%
Software Development (241) TS 20% MON 17%
Program Management (195) TRI 16% TS 15%
Service Engineering (71) MON 20% TS 19%
Software Testing (23) TS 21% TRI 15%
Applied Sciences (18) DS 20% PIP 17%
Content Publishing (17) UX 30% TRI 19%

IT Operations
Service Engineering (36) TS 21% MON 21%
Program Management (31) TRI 19% BUS 17%
Service Operations (28) TS 24% TRI 19%
Software Development (9) TS 18% MON 18%
Solution Management (9) BUS 25% TRI 19%

Research (19) DS 24% BUS 18%

Sales (55) BUS 29% UX 25%

Services
Support Engineering (127) TS 28% MON 19%
Delivery Management (35) MON 18% BUS 16%
Technical Delivery (34) TS 21% MON 19%
Support Delivery (29) TS 23% MON 22%
Services Leadership (7) BUS 23% TS 15%

and developers troubleshoot. Instead, we find that activities
crosscut professions and that a single profession conducts
multiple activities (Table 3).

Co-occurring activities. Individual respondents re-
ported doing a mix of activities on a weekly basis ( , 1-8
activities). The most frequently reported pair of activities
was Monitoring and Troubleshooting (46% of respondents).
All of the other pairs of activities were reported by 11–26%
of respondents, so no pair of activities can be considered
rare. The lack of clustering of activities among individuals
and professions may be due to the emerging nature of data
science. These activities have not yet reached a stage of
professionalization.

Collaboration with event data. In the interviews, the
informants often reported that their activities with event data
were prompted by colleagues working with the data. For
example, a program manager improving the user experience
might prompt a developer to instrument the software to
see how often a feature is used. In the survey, for each
reported activity, we asked whether it was prompted by a
colleague’s activity and, if so, which one (Figure 1). The
clearest trend is task delegation, where the same activity is
passed from colleague to colleague (diagonal line). Further,
troubleshooting is a frequent prompt for all activities, and
many activities lead to work on the data pipeline.

5. ACTIVITY DESCRIPTIONS
We detail the eight activities, and present them in terms of

distance from the data. Through our qualitative interviews,
we characterize the nature of each activity. Through the
informants’ experiences, we offer additional depth to the
challenges identified from our follow-up survey (Table 2).
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Figure 1: Collaboration diagram of how activities
flow from one activity to another.

5.1 Data Engineering

5.1.1 Engineering the Data Pipeline (PIP)
This activity involves designing, implementing, and main-

taining the infrastructure to collect, store, and query data.
This infrastructure acts as a bridge between a product team’s
customers and its engineering team. It involves both data
collection software running on the customers’ devices, as well
as APIs and tools by which a team’s engineers can clean,
filter, and aggregate the data. As the scale and velocity of the
data increases, assigning this activity to a centralized, expert
team has many advantages. As Austindev explains, “Whereas
in the past, you could maintain your own system, the volume
of traffic coming through, the volume of storage required,
and then the amount of processing needed makes it difficult
to really make sense of any of that data. It’s becoming more
than individual teams are capable of handling.”

Shared pipelines also improve team coordination: “I think
having each team own individual telemetry when not look-
ing at the whole, holistic picture can be a little dangerous”
(Ulyssespm). One approach to coordination is to standardize
data collection. Jonpm argues, “The [pipeline teams] are
trying to get everyone to agree on what goes into a standard
log, so at least it’s uniform.”

Centralizing this activity also means that improvements
to the data pipeline benefit many teams, for example, work
to improve data quality and curation. Rudyds says, “I would
say that our number one amount of work effort goes into
data quality. That’s quality of the data that’s being sent up,
that’s quality of the data that’s coming through the system,
quality of the data that’s cooked, quality of the code to pull
the data.” Centralizing tool efforts can also solve common
problems across many teams. For example, Garydev’s team
is working on the common challenge of combining data from
multiple sources: “We have tools that consume these logs
and combines them into a single view. You can do things like



mesh timelines together, like if two logs are both running at
the same time, it can combine the timelines so you can see
all the events that happen in order” (Garydev).

This coordination is a two-way street, and teams often have
to deal with limits that centralized data pipelines impose,
like restricted sampling rates. Rudyds says, “Right now one
of my big projects is really about sampling of events. . .We’re
looking at all events coming from PCs and phones, and [game
consoles] — they have already had their own sample rates
in their work. It [now] flows through the same telemetry
system.” Data pipelines similarly impose retention policies.
Rudyds adds, “We have some retention policies in place that
kind of spans all of our data. We haven’t updated that based
on what we’re actually seeing for event flow coming in. So if
the event flow is massive, way beyond what we can handle
long term, we might change our retention policy.”

5.1.2 Instrumenting for Logs or Telemetry (INS)
The activity of instrumenting is “basically print statements

which are manually added to the code base” (Idadev). As
Ulyssespm says, “They essentially will put something in like
Log.AddLine. That’s the most common form of logging
that we use for our testing.” The format of instrumentation
varies wildly in its formality — from unstructured, “manually-
crafted” (Idadev) strings, to semi-structured log events (e.g,
having “tags” (Garydev) in conjunction with custom strings),
to structured schemas containing a core set of values, like
correlation identifiers (Keithdev).

Instrumenting is the genesis of the event data. The requests
for events funnel in from a variety of other activities: from
collaborators who improve the user experience, make business
decisions, and do data science. “It’s generally the developers
who are enriching the code” (Briands). These developers are
either in quality teams (“Given that I’m a PM, I work with
folks on the quality to make sure that all our data points are
logged.” (Annapm)), or in product groups.

Often, full-time quality teams will take their own initiative
and preemptively instrument relevant metrics (Annapm and
Idadev). In data-driven environments, such instrumentation
is moving towards rule-based approaches, where instrumen-
tation can be added once and then toggled without having
to change the code itself. This functionality has enabled
data-driven organizations to collect data not just during test-
ing, but long after the product is deployed into retail. As
Austindev remarks, “What’s really great for us is to be able to
real-time turn on and off what log stuff you’re collecting at a
pretty granular level. And to be able to get the performance
back when it is turned off is a big thing for us.”

Our survey responses indicated that individuals who in-
strument don’t experience significant challenges (Table 2).
Certainly, at times adding instrumentation is rather mundane.
Jonpm comments “It’s like: I know I have to do this, I see the
value in it, but I’d rather go build something shiny and not
do that. We were never big into logging until they said [after
reorganization], we need to be better with our data, we need
to be data-driven.” However, the effects of instrumentation
are absorbed and felt by other activities, as those collabo-
rators must combine multiple data sources, or spend effort
parsing unstructured event data records. Chaddev explains,
“I think the telemetry is being done too piecemeal in the way
the data is organized. There’s a lot of duplication.”

5.2 Data Analysis

5.2.1 “Doing Data Science” (DS)
Our name for this activity, “doing data science,” is taken

directly from the interviews of Jerryds and Briands. Our
interviews revealed two organizational models for data scien-
tists. The first model is a “hub-and-spoke” (Rudyds) model,
in which the scientists act as consultants or partners (the
hub) for other teams (the spokes) who need analysis services.
The second model is embedded, in that “each team has their
own [data science] group for giving these insights” (Marvincd).
In both organizational models, data scientists help to take
abstract questions and turn them into a concrete, actionable
process or recommendation. Jerryds says, “If I can answer
your question in an organized way, then actually I probably
can solve the problem. Because I can just run a script. I
think this kind of problem that we face every day is really
case-by-case.”.

To make these recommendations, data scientists perform
experiments, such as A/B testing or flighting, or exploratory
data analysis (Briands). Desmondpm tells us that “these
recommendations can be quite precise and narrow, or they
can be quite broad, impacting core scenarios, either at the
marketing level or the engineering level. They are always
backed with data. Often backed with analysis. And they are
also coupled with business impact associated with following
the recommendation.”

For a data scientist, coordination with other teams or roles
is a necessity and a challenge (Figure 2). Jerryds argues, “if
you get more data then you are more powerful in terms of
doing your machine learning. If you get more friends, like
on teams, you have more tools to take actions on users.” For
collaborating teams, their analysis services are essential. As
Henrypm remarks, “data scientists are really domain experts.”

Unfortunately, as Briands describes, centralizing the data
science team means that “you have customers that greatly
outnumber you, who want to ask questions of the data”
(Briands) and data scientists “get asked to consult on a lot of
projects” (Rudyds). Because of the high number of requests,
many data scientist teams have explicit processes to prioritize
these demands, in which they might “have a formal form,
called an investigation, in which I pose it to them [a question],
and then they go out and analyze all these different data
that they might have and report back” (Marvincd).

Data science teams are attempting to offload some of these
time sinks by encouraging more “informal”, self-service data
scientist roles. Briands explains, “Any time that we have a
new data set, we identify very quickly when these become
interrupters. We rapidly try to move them into the self-
service mode. We provide them the queries we’re using to
get the data. We let them to play with the report and change
the parameters they want.” An example of this role is the
Content Analyst, who are “junior data scientists in some
ways, [having] some basic analysis skills. Because they’re
former editors, they’re able to find a lot of insights into what
we can change” (Dalecd).

5.3 Software Maintenance

5.3.1 Troubleshooting Problems (TS)
This activity involves debugging to diagnose the root cause

of an issue, reproducing bugs, and looking for patterns in log
data or telemetry to explain execution behavior. Typically,



individuals who are troubleshooting have access to the source
code, although in some situations, such as operations, they
only have the telemetry data. This activity’s goal is either
solving the problem or re-assigning it to a more appropriate
person or team. Idadev elaborates, “The way I personally
use [logs] is usually for debugging. I get a report of a bug,
and now I’m trying to reproduce it on my machine. . . .when
there is lots of communication with external components and
callbacks are involved, that’s . . .when I enable a whole set of
logs on my machine.”

The informants were remarkably similar in their clerical
approach to working with log data, often using basic text
editors (“You just open it in Notepad and browse through
it.” (Garydev)). Troubleshooters performed a common set
of activities using their tools. (1) Filtering data. “Because
as you saw, our logging is very verbose, when you go to
the feature-specific level, and when you enable it all, it just
becomes unbearable” (Idadev). (2) Searching data. “In those
cases, you can easily open the log, CTRL+F, look for the word
unexpected, and that takes you pretty much to where some
of the errors have happened” (Garydev). (3) Identifying
patterns. “There’s so many different data points and right
now, figuring things out or seeing patterns is all in people’s
heads” (Ulyssespm). (4) Correlating data. “And this is where
the correlation becomes very important. It’s not that they
are saying ‘select this particular character position and place
it,’ they are saying ‘we have this text range, with that ID,
with that memory address, and we want to select that text
range”’ (Idadev). (5) Combining data. “I think being able to
take multiple log files and combine them together into a single
timeline is very helpful, because it can get very difficult to try
and go back and forth between multiple windows” (Garydev).
(6) Comparing data. “The other thing that’s tough is if
you have something that’s succeeding and failing, trying to
compare two similar runs can be tough” (Chaddev).

5.3.2 Monitoring Services (MON)
On the operations side, monitoring is a service-oriented

activity to inspect telemetry and logs to determine whether a
“service is healthy or not” (Jonpm), or examine “uptime, per-
formance, and reliability” (Calebops) and “blips and outages”
(Calebops). Henrypm uses a plumbing analogy, “If you look at
me or our team, we own pipelines where the water flows. We
try to see: Is the water flowing in all places smoothly?” For
our informants, monitoring and troubleshooting are distinct
activities, though one activity often feeds into the other.
A key difference is that monitoring is about the status of
services, whereas troubleshooting is about root cause. As
Ulyssespm comments, “A lot of that logging would flow in
front of you in real-time. One of the common things that
happened there was that you always look for patterns. It
wasn’t really a root cause of what was going on, but it was
essentially: hey things are not going bad yet, but what’s the
status of the run as it is ongoing? . . .it was a lot of mental
pattern recognition to say: things are looking good, things
are not looking good.”

Monitoring is proactive. Prior to the data-driven cul-
ture, remarks Ulyssespm, “logging was never considered to
be an important thing . . .people were reactive.” Logging was
primarily used to “try and get to the root-cause. Things
happened, postmortem, and then we would slowly react to
them” (Ulyssespm). Jonpm provides further insights on this
proactive shift in thinking: “It’s a shift in a lot of ways. I

believe in ‘services thinking’ for a services company . . .You
don’t have to test as much as you think you do, if you can
deploy fast, fix fast.”

Telemetry is presented through real-time, interactive inter-
faces, called dashboards. Unlike reports, which are “typically
something pre-canned” (Keithdev), dashboards enable the
user to actively explore the data. One essential capability
of these dashboards are visualizations that display specific
indicators, such as CPU usage. Visualizing data over time,
or trending, is particularly important (Austindev, Jonpm).
“Being able to visualize what’s happening with performance
and what’s going on with the system has been valuable”
(Austindev).

One of the challenges in monitoring is combining data
(Table 2), which arises because information necessary for
monitoring must be aggregated from many different sources.
Keithdev has observed that “metrics are hard to correlate
with other things” and Calebops expands on what makes
combining data so challenging: “And we have so many de-
pendencies. In the environment we support, there are 16
different dependencies, 16 different breakpoints. All these
different stacks, and it can break anywhere. That’s the hard
part — is getting them a dashboard that looks across that
entire ecosystem.”

When “blips and outages” (Calebops) do happen, key indi-
viduals are alerted to a potential anomaly. When an actual
alert occurs, this is a natural boundary point for transitioning
to the troubleshooting activity. These alerts trigger as they
exceed the tolerance of defined thresholds. But before doing
so, the individual must “identify with fairly high confidence”
(Briands) that the event is actually occurring.

Calebops suggests that with the scale of monitoring today,
more sophisticated machine learning approaches are essential.
Otherwise, we’re simply throwing “more bodies at the alerts”
(Calebops). Keithdev agrees: “We could be missing other
indicators, we just don’t know about it. Who has time to
dig into it all the time? I’m sure a computer could figure it
out.”

Monitoring also feeds into other activities besides trou-
bleshooting. From informants from service engineering (a
bridge between engineering and operations), we heard that
monitoring plays a role in business decisions, such as for
capacity planning — “to build up our servers” (Calebops).
Other professions, like project managers, have become more
involved in monitoring for improving the user experience.
Ulyssespm says, “PMs will essentially say, here’s the trending
in the system. And then they’ll surface that to the dev leads,
. . .in a formal format like a weekly meeting.” Jonpm indicated
similar thoughts: “We’re relying more on the logging that
generates the passive monitoring so that if things break in
production we can respond quickly” (Jonpm).

5.4 Decision Making

5.4.1 Improving the User Experience (UX)
During this activity, event data is consumed in order to

understand user behavior, such as learning how users interact
with features. For example, Ulyssespm uses event data to
understand “if people are going from my tool and abandon-
ing my tool and going to someone elses’ tool” (Ulyssespm),
while project managers “get involved [with improving user
experience] when they define for a new feature what kind of
data they would like to collect for that feature” (Idadev).



Typically, individuals in this activity do not look at event
data directly. Instead, collaborating quality teams produce
reports. These reports play a significant role in how indi-
viduals in this activity interpret and make decisions about
improving the user experience. As Dalecd indicates, “I only
saw the reports, I didn’t actually do the queries.” Garydev

adds, “As we share out those reports, anyone who can read
a table with percentages in it can get an idea as to how
the product is working. The audience is all over the place.
Usually the raw data logs don’t get looked at much beyond
the engineering side of things.”

While they often have to wait on other people (e.g., quality
teams and “Sherlockers” (Marvincd)) for their UX questions,
we found that individuals in this activity accept this waiting
time, which, “depending on what their queue looks like, takes
between a few days to a couple of weeks. I’m okay with
that . . .they have specialized knowledge, they’re spending
the time trying to understand the numbers, and they have
expertise in the content field, so they can actually provide
me feedback that is very actionable on my part” (Marvincd).

One challenge we identified in the interviews is that cer-
tain UX roles, like designers, don’t have extensive technical
experience. This makes using tools difficult (Table 2). Dalecd
says, “There’s an OLAP cube, and I have to re-teach myself
how to use it. It’s kinda a pain. [Though] once it’s in Excel,
we can do whatever we want.” Austindev explains, “We have
some more technical designers that are able to get in and
play with scripts a little and understand some of that. It
would be great if there was a way for them to be able to go
in and be able to go in and create those queries themselves.
It’s just as simple as writing a SQL query for example, but if
you don’t understand SQL you can’t do that. I think that’s
where the tools in general are weak.”

A second challenge from our interviews is that self-service
is an additional time and resource commitment over their
existing responsibilities. As Marvincd tells us, “If I feel like
I have a space of open time and I’m really inspired, then
I’ll go learn it and I’ll surprise my boss, but if I fail then
it’s a waste of time. There are so many data sources and so
many roles, you have to invest the time or have the resources
allocated that specialize in these areas.”

In this transition, others, however, are more optimistic.
Dalecd says “I love playing around with stuff like that. It may
not lead to anything, but sometimes you get these interesting
insights. I love getting the data because I’m always learning
something, and it’s always something surprising.”

5.4.2 Triaging Work Items (TRI)
Triaging prioritizes bugs or features and assigns activities

to team members. Annapm notes how event data sources are
used: “I triage a lot of bugs, so it’s important for me to have
a general understanding of what to look for in the log files
to help route bugs the right way.” Triage can be as much
about what work is rejected as accepted: “I tend to be what
we call the shield for some of these escalations” (Garydev).

Reports are also used extensively to triage work items,
but our interviewers indicate that for triaging, using and
making reports to inform triage decisions is time consuming
(Table 2). Henrypm says, “Defining reports and visualization
is extremely difficult. It takes about a week’s time for one
report.” He continues, “If I had this report it would have
been great. But there’s no tool to easily generate that. It’s
just raw data, it’s like looking at a water molecule.” Annapm

concurs. “We want to use data to empower decision making,
but we need the training to make the right decisions and to
ask the right questions. People love data, but then nobody
knows exactly how to use it, or we don’t trust people to use
it properly in addition to the reporting being clear, updated,
explaining things in the way that they should be explained
so it’s easy to consume.”

Even though some triagers are technical, they tend, as a
matter of time constraints, to look at the surface-level details
to triage a particular issue. After that, they delegate the
item to a more specific person. Garydev says: “A lot depends
on how busy I am myself versus how many escalations there
are going on in parallel. If it’s a slow period I might actually,
even though it’s not necessarily my feature area, go through
and figure it out myself.”

Another challenge is trusting reports. Annapm comments,
“One of my greatest challenges, though, is having confidence
in the data that’s being collected as well as confidence in my
ability as well as my peers’ ability to analyze it. To identify
where oh are there weird things that we’re seeing in the data,
from the data quality perspective, or are these legitimate
events that were captured from the user.”

In turn, lack of confidence and trust in the data results in
uncertainly in the triaging process. At times, it’s difficult to
be proactive because of this. “When we’re planning, so far, I
have found that we’re in super scary reactive mode. So it’s
like we found something through problems in logs, and we’re
fixing it right now, so it’s not a plan. Because someone has
already hit a problem” (Blakepm).

Another significant time effort results from having to
make triage decisions based on multiple sources of infor-
mation. Participants identified correlation as one of the
time-consuming challenges, particularly when information is
incomplete. Blakepm comments, “It’s hard because, at least
at this point so far, it’s not something that I could glean
from processing a log. It really is a thing where I look at the
number of bug reports we’ve gotten and make a subjective
call of: how much more investigation do we want to do on
this particular report?”

5.4.3 Making Business Decisions (BUS)
This activity involves making business decisions regarding

product planning, marketing strategies, technology invest-
ments, customer retention, and product release planning.

Our informants described the iterative nature of business
decision making, in particular, how business questions are
answered collaboratively. The questions are answered using
event data sources by product-level teams or partner data
science teams, and these answers are funneled back to leader-
ship as reports, and discussed at meetings (e.g., “ship rooms”
(Garydev)). Desmondpm, explains how this process works,
saying, “We developed the questions first. We said: what
are the things that we want to know? What hooks do we
need to put into the system and what kind of reports do we
need to get back out in order to answer those questions? We
didn’t just take raw dumps and then try and figure out what
we could learn, we were targeting specific learnings.”

Because questions are higher-level, they require combin-
ing multiple data sources to provide a recommendation or
decision (Table 2). Often, Henrypm indicates, “Correlation
is manual and there are two separate organizations who are
looking and working on it, and then nobody knows. And
there is a lot of effort.” Desmondpm says, “There’s no clear



way to tie multiple data sources together to drive business de-
cisions.” Ulyssespm adds, “When you start joining it against
multiple data sources, that’s when you get key insights.”

The collaborative nature of answering business questions
often require waiting on other people. Desmondpm describes
why multiple rounds are needed to get the necessary informa-
tion, noting, “An engineer who is trying to build something
for a business person who cares about it understands the
code but they don’t truly understand the business. The
business person truly understands the business need, but
they don’t know how to actually go do the implementation.
So you always lose something in translation. You also lose
something in efficiency, because now you’ve got two people
involved and the latency that occurs in that relationship.”

To avoid this coordination, teams are looking towards a
self-service model for answering business questions. However,
the barrier to self-service is the technical nature of data tools.
Blakepm discusses this friction: “I feel like it’s a pretty heavy
weight process to go write the scripts and [batch] jobs that
distill the telemetry data that we have and then put it into
a dashboard. And if you ask the wrong question, suddenly
it was really expensive to go get that indicator and then try
and tweak that question a little bit.” Desmondpm describes
similar difficulties with these tools: “If you don’t have enough
technical depth, you’re creating an ask for somebody with
adequate technical depth, and then you lose context.”

6. LIMITATIONS
This case study was conducted at a single software com-

pany, hence the results may not generalize to other insti-
tutions. One focus on the study is to understand the or-
ganizational implications of adopting data-driven decision
making, like coordination and the division of tasks across
roles. Recruiting participants from a single company allowed
us to hear about these issues from diverse perspectives, in
a way that recruiting unrelated participants from different
companies would not. To mitigate the threat to generalizabil-
ity, we recruited participants across all the company’s major
job roles and its diverse businesses, including devices, games,
online services, desktop software, and operating systems.

To mitigate threats to internal validity, particularly re-
searcher bias, we chose participants at random and used
grounded theory techniques. We recruited our participants
based on random samples of the corporate address book to
avoid presuming which roles or teams would have relevant
experiences. The invited employees who chose to participate
are likely more interested in event data than the general pop-
ulation (self-selection bias). We defined “event data” quite
broadly to encourage a wide-range of participation and con-
sistently began our interviews with open-ended questions (e.g.
“Tell us about a recent experience in which you worked with
event data”) to avoid biasing what the participant shared.

7. DISCUSSION

7.1 Activity Tensions
In this section, we describe tensions that materialize as a

result of the interaction of event data between activities.
Privacy is cross-cutting. Privacy encompasses not only

customer privacy, but also security and compliance. Privacy
policies have a ripple effect throughout all of the activities.
For example, Amberpm comments that “in troubleshooting,

we’re not even allowed, as per the terms, to move it from one
data center to another, because it’s a different geographical
boundary.” She adds that these processes can add additional
complexity to activities: “This obfuscating, encrypting, hash-
ing, and then bringing it back and then finish the job, that’s
the worst, hated, the most hated thing.”

Compliance has effects on other activities and their ability
to work with event data, one of which is the ability to share
data between partners. Austindev comments, “For a lot of
the internal stuff, it proved invaluable at times to look at
but our partners absolutely did not access to it.”

Balancing instrumentation and retention. Storing
data has a cost, although this cost is not always made explicit
to other activities. This creates tension between Engineering
the Data Pipeline, and activities such as Troubleshooting
Problems and Monitoring System Health, which give rise to
event data. Jonpm remarks, “everyone said, just log this and
it’s in Cosmos forever, but it’s actually not true.” What’s
difficult about the trade-off between instrumentation and the
data pipeline is that in order to proactively monitor, one has
to be able to speculate about future data that they don’t
immediately require in the present.

Furthermore, in organizations that have a centralized data-
driven approach, individuals performing instrumentation can
unintentionally impact other parts of the organization. Jonpm

comments, “[Instrumentation] is one of those things where
you’re getting penalized for everyone else.”

Making business decisions requires investments in
telemetry. Prior to the data-driven culture, Desmondpm

remarks, “It’s almost always true, in our past, that logging
and telemetry took second fiddle to new feature work. If
I had limited developer resources, and I could invest in
understanding better how the existing code was working, or
adding new code that lit up new features, I’m always going
to choose new features. Getting telemetry running inside
a code base is often neglected for those reasons.” In turn,
there’s a cost-benefit tension in the cost of instrumenting
the necessary telemetry, and the benefit of the answer for
making business decisions.

Identifying consumers and producers of the event
data. Another tension that occurs between the consumers of
event data and the event producers (that is, Instrumenting)
is a lack of knowledge of what event data is added to the
system, and who is consuming it. Austindev notes, “I don’t
know it’s that we can’t share. You don’t know who to ask to
find out if you can. And it’s kind of hard to find somebody
who is authoritative who can say yes.” Because event data
is often generated as an independent event, such as from
proactive instrumentation, professionals aren’t always aware
that the data exists. Ulyssespm observes, “So a lot of it is
just a ton of time wastage. People have to get to what they
are looking for, and we don’t show it to them. And that’s a
key failure, at least in my opinion.”

7.2 Implications for Tool Designers
In this study, all roles across the company, including no-

tably non-engineering roles, report seeking insights from
event data. While professionals in non-engineering roles of-
ten have domain knowledge and role-specific questions, they
may lack the technical skills currently required to analyze
event data to answer those questions. Participants reported a
variety of coping strategies for these skill gaps, which amount
to different divisions of labor. For example, some of our



interviewees had a centralized data science team, which take
formal requests and issue reports. Other teams had engineers
set up dashboards or periodic reports that provide the whole
team with pre-determined measures. Other teams relied on
form-based, interactive tools that provide answers to a fixed
set of queries. The downsides to this approach are the lack
of flexibility for dealing with new information needs and the
bottleneck of having too few experts. An open research ques-
tion is the degree to which we can “democratize” data science,
that is, allow non-technical team members to analyze data
to get high-confidence answers to unanticipated questions.

8. CONCLUSIONS
Event data in large organizations, such as Microsoft, act

as boundary objects that flow through activities within the
organization. Each activity adapts the event data to their
requirements, yet the identity of the event data is maintained.
In our interviews and surveys, we found that all activities
leverage event data.

Several challenges have emerged in Microsoft’s transition
to a data-driven culture. First, the non-specialization of ac-
tivities suggests that responsibilities within the organization
are fluid, and that these fluid boundaries create tensions be-
tween activities. Second, we found that professionals within
each activity experience several challenges in performing the
activity, for example, coordinating with others to obtain
insights, the amount of clerical effort required to work with
the event data, and limited or difficult to use tools. As more
companies transition to a data-driven culture, we expect that
researchers will need to develop novel processes and tools to
meet these emerging challenges.
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