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ABSTRACT

One of the fundamental problems in image search is to rank
image documents according to a given textual query. Exist-
ing search engines highly depend on surrounding texts for
ranking images, or leverage the query-image pairs annotat-
ed by human labelers to train a series of ranking functions.
However, there are two major limitations: 1) the surround-
ing texts are often noisy or too few to accurately describe
the image content, and 2) the human annotations are re-
sourcefully expensive and thus cannot be scaled up.
We demonstrate in this paper that the above two funda-

mental challenges can be mitigated by jointly exploring the
cross-view learning and the use of click-through data. The
former aims to create a latent subspace with the ability in
comparing information from the original incomparable views
(i.e., textual and visual views), while the latter explores
the largely available and freely accessible click-through data
(i.e., “crowdsourced” human intelligence) for understanding
query. Specifically, we propose a novel cross-view learning
method for image search, named Click-through-based Cross-
view Learning (CCL), by jointly minimizing the distance
between the mappings of query and image in the latent sub-
space and preserving the inherent structure in each orig-
inal space. On a large-scale click-based image dataset, C-
CL achieves the improvement over Support Vector Machine-
based method by 4.0% in terms of relevance, while reduc-
ing the feature dimension by several orders of magnitude
(e.g., from thousands to tens). Moreover, the experiments
also demonstrate the superior performance of CCL to several
state-of-the-art subspace learning techniques.
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1. INTRODUCTION
Keyword-based image search has received intensive re-

search attention since the early of 1990s [20]. The signif-
icance of the topic can be partly reflected from the huge
volume of published papers, particularly for addressing the
problems of learning the rank or similarity functions. De-
spite these efforts, the fact that the queries (texts) and
search targets (images) are of two different modalities (or
views) has resulted in the open problem of “semantic gap.”
Specifically, a query in the form of textual keywords is not
directly comparable with the visual content of images. The
commercial search engines to date primarily reply on tex-
tual features extracted from the surrounding texts of im-
ages. However, the text description might not fully depict
the salient aspect of visual content, not to mention that some
images actually do not come along with any text descrip-
tion. One feasible solution is learning image rankers from
the query-image pairs labeled by human subjects. Howev-
er, the labeling process is generally time consuming, and
in practice difficult to ensure the quality of labels. Further-
more, as the user search intents are not likely to always align
with these pre-defined labels, image rankers used to suffer
from the poor generalization performance.

Inspired by the success of multi-view embedding [31], this
paper studies the cross-view (i.e., text to image views) search
problem by learning a common latent subspace that allows
direct comparison of text queries and images. Specifically,
by mapping to the latent subspace, the relevance or simi-
larity between a textual query and an image can be directly
measured between their projections, making the information
from the original incomparable cross-view space comparable
in the shared subspace. In addition, the dimensionality of
the latent subspace is significantly reduced compared with



that of any input view, making the memory costs much saved
for existing search systems.
Moreover, we consider exploring user click-through data,

aiming to bridge the user intention gap for image search.
In general, image rankers obtain training data by manually
labelling the relevance of query-image pairs. However, it is
difficult to fathom user intent based on the queries, espe-
cially for those ambiguous queries. For example, given the
query “mustang cobra,” experts tend to label the images of
animal “mustang” and “cobra” as highly relevant. However,
empirical evidence suggests that most users wish to retrieve
images of a car of brand “mustang cobra.” The experts’ la-
bels therefore could be erroneous. This will bias the training
set and the ranker will be learned sub-optimal. On the other
hand, the click-through data provide an alternative to ad-
dress this problem. In an image search engine, users browse
image search results before clicking a specific image. The
decision to click is likely dependent on the relevance of an
image. Therefore, the click data can serve as a reliable and
implicit feedback for image search. We hypothesize that,
most of the clicked images are relevant to the given query
judged by the real users.
By jointly integrating cross-view learning and click-through

data, this paper presents a novel Click-through-based Cross-
view Learning (CCL) approach to image search, as shown
in Figure 1. Specifically, a bipartite graph between the user
queries and images is constructed based on the search logs
from a commercial image search engine. An edge between
a query and an image is established when the users who is-
sued the query clicked the image. Moreover, the textual and
visual space is formed by constructing a graph on each view,
respectively. The link between every two nodes in each space
represents the query or image similarity. The spirit of CCL
is to learn a latent subspace in the way of minimizing the
distance between the mappings of query and image, while
preserving the inherent structure in each original space. Af-
ter the optimization of subspace learning, the relevance s-
core between a query and an image in the original spaces
can be directly computed based on their mappings. For any
query, the image search list will be returned by sorting their
relevance scores with the query.
In summary, this paper makes the following contributions:

• We study the problem of keyword-based image search
by jointly exploring cross-view learning and the use
of click-through data. To the best of knowledge, this
paper represents one of the first efforts towards this
target in the information retrieval research community.

• We propose a novel click-through-based cross-view learn-
ing (CCL), which aims to learn a latent subspace by
simultaneously minimizing the distance between the
mappings of query and image in the latent subspace,
and preserving the structure in each original space. By
mapping to the subspace, text queries and visual im-
ages can be directly compared.

• We evaluate the proposed click-through based image
search approach on a large-scale click-based image dataset
with over 23 millions of log records, which were sam-
pled from one-year click data of a commercial image
search engine.

The remaining sections are organized as follows. Section
2 describes related work on multi-view embedding and the

use of click data, while Section 3 presents our click-through-
based cross-view learning method. Section 4 provides empir-
ical evaluations, followed by the discussions and conclusions
in Section 5.

2. RELATED WORK
We briefly group the related work into two categories:

multi-view embedding, and search by using click data. The
former draws upon research in integrating multiple views
to improve learning performance by exploiting either the
consensus or the complementary principle, while the latter
investigates Web search by mining click-through data.

2.1 Multi-view Embedding
The research in this direction has proceeded along three

dimensions: co-training [16][22][33], subspace learning [2][9][25],
and multi-kernel learning [5][14][17].

Co-training seeks consensus on two distinct views of the
data. Muslea et al. combined active learning with co-
training and proposed robust semi-supervised learning al-
gorithms [22]. Yu et al. developed a Bayesian undirect-
ed graphical model for co-training and a novel co-training
kernel for Gaussian process classifiers [33]. Kumar et al.
advanced co-training for data clustering and designed effec-
tive algorithms for multi-view data [16]. The idea of sub-
space learning is similar to co-training except the consensus
is solved by learning a latent subspace shared by multiple
views by assuming that the input views are generated from
this latent subspace. Canonical correlation analysis (CCA)
[9], a classical technique, explored the mapping matrices by
maximizing the correlation between the projections in the
subspace. Similarly, Partial Least Squares (PLS) also aims
to model the relations between two or more sets of data by
projecting them into the latent subspace [25]. The differ-
ence between CCA and PLS is that CCA utilizes cosine as
the similarity function while PLS learns dot product. Lat-
er in [2], polynomial semantic indexing (PSI) is performed
by learning two low-rank mapping matrices in a learning to
rank framework, and then a polynomial model is considered
to measure the relevance between query and document.

Different from co-training and subspace learning, multi-
kernel learning exploits different kernels to different views
and fuses them either linearly or non-linearly for exploring
complementary properties of different views. In [17], a linear
(or convex) combination of a set of predefined kernels were
learned to identify a good target kernel for the applications.
Later in [5], Kernel target alignment was proposed to learn
the entries of a kernel matrix by using the outer product of
the label vector as the ground-truth. Kloft et al. extended
the multi-kernel learning framework to arbitrary lp-norm by
adding a regularizer over the mixing coefficients [14].

In summary, our work belongs to subspace learning. D-
ifferent from these aforementioned subspace learning meth-
ods, our approach contributes by studying not only forming
the shared latent subspace with the standard objective of
subspace learning (i.e., the consensus between views is max-
imized) but also preserving the inherent structure in each
original space.

2.2 Search by Using Click Data
Click-through data has been studied and analyzed wide-

ly with different Web mining techniques for improving the
efficacy and usability of search engines. The use of the click-
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Figure 1: Click-through-based image search framework (better viewed in color). (a) Latent subspace learning between

textual query and visual image: click-through-based cross-view learning by simultaneously minimizing the distance

between the query and image mappings in the latent subspace (weighted by their clicks) and preserving the inherent

structure in each original feature space. (b) With the learned mapping matrices Wq and Wv, queries and images are

projected into this latent subspace and then the distance in the latent subspace is directly taken as the relevance of

query-image.

through data for query clustering was suggested by Beffer-
man and Berger [3], who proposed an agglomerative clus-
tering technique to identify related queries and Web pages.
Wen et al. combined query content information and click-
through information and applied a density-based method to
cluster queries [28]. Mei et al. proposed an approach to
query suggestion by computing the hitting time on a click
graph [19]. Li et al. presented the use of click graphs in
improving query intent classifiers [18].
There are also several approaches that have tried to mod-

el the representation of queries or documents on the click-
through bipartite. In [1], the authors introduced another
vectorial representation for the queries without considering
the content information. Queries were represented as points
in a high dimensional space, where each dimension corre-
sponds to a unique URL. The weight assigned to each di-
mension was equal to the click frequency. Poblete et al.
proposed the query-set document model by mining frequent
query patterns to represent documents rather than the con-
tent information of the documents [24].
In addition, click-through data have also been used to

learn the rank function [12]. Joachims et al. observed
the relationship between clicked links and the relevance of
the target pages by an eye tracking experiment [13]. Wu
et al. formalized the learning of similarity as learning of
mappings that maximize the similarities of query-documents
pairs from the click-through bipartite graph [30]. For image
search, click-through data has been found to be very reli-
able [6][11]. In [6], Craswell et al. built a query-image click
graph and performed backward random walks to determine
a probability distribution over images conditioned on the
given query. In [11], Jain et al. reranked the image search
results so as to promote images that are likely to be clicked
to the top of the ranked list. Later in [27], an in-depth anal-
ysis of several ranking algorithms was performed on Flickr
user log data to investigate the importance of many factors,

including internal and external image popularity, the overall
attentions, diversity, semantic categories and visual appear-
ance. In [23], Pan et al. employed neighborhood graph
search to find the nearest neighbors on an image similari-
ty graph and further aggregated their clicked queries/click
counts to get the labels of the new image. In another work
by Yao et al. [32], by combining click-through and video
document features for deriving a latent subspace, the dot
product of the mappings in the latent subspace is taken as
the similarity between videos and the similarity is further
applied for video tagging tasks.

Most of the above approaches focus on leveraging both
the click data and the features only from the textual view.
Our work is different that we aim to compute the distance
between the textual query and visual features from two d-
ifferent views on the observed query-image pairs and apply
the learned distance for image search purpose.

3. CLICK-THROUGH-BASED CROSS-VIEW

LEARNING
The main goal of click-through-based cross-view learning

is to construct a latent common subspace with the abili-
ty of directly comparing textual query and image content.
The training of CCL is performed simultaneously by mini-
mizing the distance between query and image mappings in
the latent subspace weighted by their clicks, and preserving
the structure relationships between the training examples in
the original feature space. In particular, the objective func-
tion of CCL is composed of two components, i.e., distance
between views in the latent subspace, and the structure p-
reservation in the original space. After we obtain the latent
subspace, the relevance between query and image is direct-
ly measured by their mappings. The approach overview is
shown in Figure 1.

In the following, we will first define the bipartite graph
that naturally encodes user actions in the query log, followed



by constructing the two learning components of CCL. Then
the joint overall objective and its optimization strategy are
provided. Finally, the whole algorithm for image search is
presented. It is worth noticing that although the two views
here are visual (image) and textual (query), our approach is
applicable to any other domain.

3.1 Notation
Let G = (V, E) denote a click-through bipartite. V =

Q ∪ V is the set of vertices, which consists of a query set Q
and an image set V . E is the set of edges between the query
and image vertices. The number associated with the edge
represents the clicked times in the image search results of the
query. Suppose there are n triads {qi, vi, ci}

n
i=1 generated

from the click-through bipartite in total, where ci is the
click counts of image vi in response to query qi. Let Q =
{q1,q2, . . . ,qn}

⊤ ∈ R
n×dq and V = {v1,v2, . . . ,vn}

⊤ ∈
R

n×dv denote the query and image feature matrix, where
qi and vi are the textual and visual feature of query qi
and image vi, and dq and dv are the feature dimensionality,
respectively. The click matrix C is a diagonal n× n matrix
with its diagonal elements as ci. Please note that the query
qi and image vi may not be unique in each view as one single
query can correspond to multiple clicked images.

3.2 Cross-view Distance
We assume that a low-dimensional common subspace ex-

ists for the representation of query and image. The linear
mapping function can be derived from this subspace by

f(qi) = qiWq, and f(vi) = viWv, (1)

where d is the dimensionality of the common subspace, and
Wq ∈ R

dq×d and Wv ∈ R
dv×d are the transformation ma-

trices that project the query textual semantics and image
content into the common subspace, respectively.
To measure the relations between the textual query and

image visual content, one natural way is to measure the
distance between their mappings in the latent subspace as

min
Wq ,Wv

tr
(

(QWq −VWv)
⊤C(QWq −VWv)

)

s.t. W⊤
q Wq = I, W⊤

v Wv = I
(2)

where tr(•) denotes the trace function. The matrices Wq

andWv have orthogonal columns, i.e.,W⊤
q Wq = W⊤

v Wv =
I, where I is an identity matrix. The constrains restrict Wq

and Wv to converge to reasonable solutions rather than go
to 0 which is meaningless in practice.
Specifically, we view the click number of a query and an

image as an indicator of their relevance. As most image
search engines display results as thumbnails. The users can
see the entire image before clicking on it. As such, barring
distracting images and intent changes, users predominant-
ly tend to click on images that are relevant to their query.
Therefore, click data can serve as a reliable connection be-
tween the queries and images. The underlying assumption
is that the higher the click number, the smaller the distance
between the query and the image in the latent subspace. To
learn this shared latent subspace, we intuitively incorporate
the distance as a regularization on the mapping matrices
Wq and Wv weighted by the click numbers.

3.3 Structure Preservation
Structure preservation or manifold regularization has been

shown effective for semi-supervised learning [21] and multi-

view learning [7]. This regularizer indicates that similar
points in the original space should be mapped to the po-
sitions closely in the shared latent subspace. The estima-
tion of the underlying structure can be measured by the ap-
propriate pairwise similarity between the training samples.
Specifically, it can be given by

n
∑

i,j=1

Sq
ij‖qiWq − qjWq‖

2+

n
∑

i,j=1

Sv
ij‖viWv − vjWv‖

2
,

(3)
where Sq ∈ R

n×n and Sv ∈ R
n×n denote the affinity matri-

ces defined on the queries and images, respectively. Under
the structure preservation criterion, it is reasonable to mini-
mize Eq.(3), since it will incur a heavy penalty if two similar
examples are mapped far away.

There are many ways of defining the affinity matrices Sq

and Sv. Inspired by [7], the elements are computed by Gaus-
sian functions in this work, i.e.,

St
ij =







e
−
‖ti−tj‖

2

σ2
t if ti ∈ Nk(tj) or tj ∈ Nk(ti)

0 otherwise

,

(4)
where t ∈ {q, v} for simplicity, i.e., t can be replaced by any
one of q and v. σt is the bandwidth parameters. Nk(ti)
represents the set of k nearest neighbors of ti.

By defining the graph Laplacian Lt = Dt − St for t ∈
{q, v}, where Dt is a diagonal matrix with its elements de-
fined as Dt

ij =
∑

j
St
ij , Eq.(3) can be rewritten as

tr
(

(QWq)
⊤Lq(QWq)

)

+ tr
(

(VWv)
⊤Lv(VWv)

)

. (5)

By minimizing this term, the similarity between exam-
ples in the original space can be preserved in the learned
latent subspace. Therefore, we add this regularizer in our
framework for optimization.

3.4 Overall Objective
The overall objective function integrates the distance be-

tween views in Eq.(2) and structure preservation in Eq.(5).
Hence we get the following optimization problem

min
Wq ,Wv

tr
(

(QWq −VWv)
⊤C(QWq −VWv)

)

+λ
(

tr
(

(QWq)
⊤Lq(QWq)

)

+ tr
(

(VWv)
⊤Lv(VWv)

))

s.t. W⊤
q Wq = I, W⊤

v Wv = I

,

(6)
where λ is the tradeoff parameter. The first term is the cross-
view distance, while the second term represents structure
preservation.

For simplicity, we denote L(Wq,Wv) as the objective
function in Eq.(6). Thus, the optimization problem can be
rewritten as

min
{Wq ,Wv}

L(Wq,Wv), s.t. W⊤
q Wq = I, W⊤

v Wv = I.

(7)
The optimization above is a non-convex problem. Never-

theless, the gradient of the objective function with respect
to Wq and Wv can be easily obtained as follows:

{

∇WqL(Wq,Wv) = 2Q⊤C(QWq −VWv) + 2λQ⊤LqQWq

∇Wv
L(Wq,Wv) = 2V⊤C(VWv −QWq) + 2λV⊤LvVWv

.

(8)



3.5 Optimization
To address the difficult non-convex problem in Eq.(7) due

to the orthogonal constrains, we use a gradient descent op-
timization procedure with curvilinear search [29] for a local
optimal solution in this work.
In each iteration of the gradient descent procedure, given

the current feasible mapping matrices {Wq,Wv} and their
corresponding gradients {Gq = ∇WqL(Wq,Wv), Gv =
∇WvL(Wq,Wv)}, we define the skew-symmetric matrices
Pq and Pv as

Pq = GqW
⊤
q −WqG

⊤
q , Pv = GvW

⊤
v −WvG

⊤
v . (9)

The new point can be searched as a curvilinear function
of a step size τ , such that

Fq(τ) = (I+
τ

2
Pq)

−1(I−
τ

2
Pq)Wq,

Fv(τ) = (I+
τ

2
Pv)

−1(I−
τ

2
Pv)Wv.

(10)

Then, it is easy to verify that Fq(τ) and Fv(τ) lead to
several characteristics. The matrices Fq(τ) and Fv(τ) satis-
fy (Fq(τ))

⊤Fq(τ) = (Fv(τ))
⊤Fv(τ) = I for all τ ∈ R. The

derivatives with respect to τ are given as
{

F′
q(τ) = −(I+ τ

2
Pq)

−1Pq(
Wq+Fq(τ)

2
)

F′
v(τ) = −(I+ τ

2
Pv)

−1Pv(
Wv+Fv(τ)

2
)

. (11)

In particular, we can obtain Fq
′(0) = −PqWq and Fv

′(0) =
−PvWv. Then, {Fq(τ),Fv(τ)}τ≥0 is a descent curve. We
use the classical Armijo-Wolfe based monotone curvilinear
search algorithm [26] to determine a suitable step τ as one
satisfying the following conditions:

L(Fq(τ),Fv(τ)) ≤ L(Fq(0),Fv(0))

+ρ1τLτ
′(Fq(0),Fv(0)),

Lτ
′(Fq(τ),Fv(τ)) ≥ ρ2Lτ

′(Fq(0),Fv(0)),

(12)

where ρ1 and ρ2 are two parameters satisfying 0 < ρ1 < ρ2 <
1. Lτ

′(Fq(τ),Fv(τ)) is the derivative of L with respect to τ

and is calculated by

Lτ
′(Fq(τ),Fv(τ)) =

−
∑

t∈{q,v}

tr
(

Rt(τ)
⊤(I+

τ

2
Pt)

−1
Pt

(Wt + Ft(τ)

2

)

)

,
(13)

where Rt(τ) = ∇WtL(Fq(τ),Fv(τ)) for t ∈ {q, v}. In par-
ticular, we have

Lτ
′(Fq(0),Fv(0)) = −

∑

t∈{q,v}

tr
(

G⊤
t (GtW

⊤
t −WtG

⊤
t )Wt

)

= −
1

2
‖Pq‖

2
F
−

1

2
‖Pv‖

2
F

.

(14)

Please refer to [29] for the theoretical proof details of curvi-
linear search algorithm.

3.6 CCL Algorithm
After the optimization of Wq and Wv, we can obtain

the linear mapping functions defined in Eq.(1). With this,
original incomparable textual query and visual image be-
come comparable. Specifically, given a test query-image pair
(q̂ ∈ R

dq , v̂ ∈ R
dv ), we compute the distance value between

Algorithm 1 Click-through-based Cross-view Learning (C-
CL)

1: Input: 0 < µ < 1, 0 < ρ1 < ρ2 < 1, ε ≥ 0, and initial
Wq and Wq.

2: for iter = 1 to Tmax do
3: compute gradients Gq and Gv via Eq.(8).
4: if ‖Gq‖

2
F
+ ‖Gv‖

2
F
≤ ε then

5: exit.
6: end if
7: compute Pq and Pv by using Eq.(9).
8: compute Lτ

′(Fq(0),Fv(0)) according to Eq.(14).
9: set τ = 1.
10: repeat
11: τ = µτ
12: compute Fq(τ) and Fv(τ) via Eq.(10).
13: compute Lτ

′(Fq(τ),Fv(τ)) via Eq.(13).
14: until Armijo-Wolfe conditions in Eq.(12) are satisfied
15: update the transformation matrices:

Wq = Fq(τ)
Wv = Fv(τ)

16: end for
17: Output:

distance function: ∀q̂, v̂, r(q̂, v̂) = ‖q̂Wq − v̂Wv‖2.

the pair as

r(q̂, v̂) = ‖q̂Wq − v̂Wv‖2. (15)

This value reflects how relevant the query could be used
to describe the given image, with lower numbers indicating
higher relevance. For any query, sorting by its corresponding
values for all its associated images gives the retrieval ranking
for these images. The algorithm is given in Algorithm 1.

3.7 Complexity Analysis
The time complexity of CCL mainly depends on the com-

putation ofGq, Gv, Pq, Pv, Fq(τ), Fv(τ), and Lτ
′(Fq(τ),Fv(τ)).

Obviously, the computation complexity of Gq and Gv is
O(n2 × dq) and O(n2 × dv), respectively. Pq and Pv take
O(d2q × d) and O(d2v × d).

The matrix inverse (I+ τ

2
Pq)

−1 and (I+ τ

2
Pv)

−1 dom-
inate the computation of Fq(τ) and Fv(τ) in Eq.(10). By
forming Pq and Pv as the outer product of two low-rank ma-
trices, the inverse computation cost decreases a lot. As de-
fined in Eq.(9), Pq = GqW

⊤
q −WqG

⊤
q and Pv = GvW

⊤
v −

WvG
⊤
v , Pq and Pv can be equivalently rewritten as Pq =

XqY
⊤
q and Pv = XvY

⊤
v , where Xq = [Gq,Wq],Yq =

[Wq,−Gq ] and Xv = [Gv,Wv],Yv = [Wv,−Gv]. Accord-
ing to Sherman-Morrison-Woodbury formula, i.e.,

(A+ αXY⊤)−1 = A−1−αA−1X(I+ αY⊤A−1X)−1Y⊤A−1
,

the matrix inverse (I+ τ
2
Pq)

−1 can be re-expressed as

(I+
τ

2
Pq)

−1 = I−
τ

2
Xq(I+

τ

2
Y⊤

q Xq)
−1Y⊤

q .

Furthermore, Fq(τ) can be rewritten as

Fq(τ) = Wq − τXq(I+
τ

2
Y⊤

q Xq)
−1Y⊤

q Wq.

For Fv(τ), we can get the corresponding conclusion. S-
ince we typically have d ≪ dq, the cost of inverting (I +
τ

2
Y⊤

q Xq) ∈ R
2d×2d is much lower than inverting (I+ τ

2
Pq) ∈

R
dq×dq . The inverse of (I + τ

2
Y⊤

q Xq)
−1 takes O(d3), thus



the computation complexity of Fq(τ) is O(dqd
2) + O(d3).

Similarly, Fv(τ) is O(dvd
2) + O(d3). The computation of

Lτ
′(Fq(τ),Fv(τ)) has a cost of O(n2 × dq) +O(n2 × dv) +

O(dqd
2) +O(dvd

2) +O(d3).
As d ≪ dq, dv ≪ n, the overall complexity of the Al-

gorithm 1 is Tmax × T × O(n2 × max(dq, dv)), where T is
the number of searching for appropriate τ which satisfies
the Armijo-Wolfe conditions and it is usually less than ten
in our experiments. Take the training of Wq and Wv on
one million {query, image, click} triads with dv = 1, 024
and dq = 10, 000 for example, our algorithm takes about 32
hours on a server with 2.40GHz CPU and 128GB RAM.

3.8 Extensions
Although we only present the distance function between

query and image on the learned mapping matrices in the Al-
gorithm 1, the optimization actually can also help learning
of query-query and image-image distance. Similar to the
distance function between query and image, the distance
between query and query, image and image, is computed as
(∀q̂, q̄, r(q̂, q̄) = ‖q̂Wq − q̄Wq‖2) and (∀v̂, v̄, r(v̂, v̄) =
‖v̂Wv − v̄Wv‖2), respectively. Furthermore, the obtained
distance can be applied for several IR applications, e.g.,
query suggestion, query expansion, image clustering, image
classification, and so on.

4. EXPERIMENTS
We conducted our experiments on the Clickture dataset

[10] and evaluated our approaches for image search.

4.1 Dataset
The dataset, Clickture, is a large-scale click based image

dataset [10]. It was collected from one year click-through
data of one commercial image search engine. The dataset
comprises two parts, i.e., the training and development (dev)
sets. The training set consists of 23.1 million {query, image,
click} triads, where query is a textual word or phrase, image

is a base64 encoded JPEG image thumbnail, and click is an
integer which is no less than one. There are 11.7 millions
distinct queries and 1.0 million unique images of the train-
ing set. Figure 2 shows a few exemplary images with their
clicked queries and click counts in the Clickture. For ex-
ample, users clicked the first image 146 times in the search
results when submitting query “obama” in total. It is worth
noting that there is no surrounding text or description of
images provided in the Clickture.
In the dev dataset, there are 79,926 〈query, image〉 pairs

generated from 1,000 queries, where each image to the corre-
sponding query was manually annotated on a three point or-
dinal scale: Excellent, Good, and Bad. In the experiments,
the training set is used for learning the latent subspace, while
the dev set is used for performance evaluation.

4.2 Experimental Settings
Task. We investigate whether our proposed approach can

be used to improve image search in this work. Specifically,
we use Clickture as “labeled” data for semantic queries and
train the ranking model. The task is to estimate the rele-
vance of the image and the query for each test query-image
pair, and then for each query, we order the images based on
the prediction scores returned by our trained ranking model.
Textual and Visual Features. We take the word in

queries as “word features.” Words are stemmed and stop
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Figure 2: Examples in Clickture dataset (upper row:
clicked images; lower row: search query with click
times on the upper image).

words are removed. With word features, each query is repre-
sented by a tf vector in the query space. In our experiments,
we use the top 10,000 most frequent words as the word vo-
cabulary. Inspired by the success of deep neural networks
(DNN) [4], we use it to generate image representation in this
work, which is a 1024-dimensional feature vector. Specifi-
cally, similar to [15], the used DNN architecture is denoted
as Image−C64−P −N −C128−P −N −C192−C192−
C128 − P − F4096 − F1024 − F1000, which contains five
convolutional layers (denoted by C following the number of
filters) while the last three are fully-connected layers (denot-
ed by F following the number of neurons); the max-pooling
layers (denoted by P ) follow the first, second and fifth convo-
lutional layers; local contrast normalization layers (denoted
by N) follow the first and second max-pooling layers. The
weights of DNN are learned on ILSVRC-20101, which is a
subset of ImageNet2 dataset with 1.26 million training im-
ages from 1,000 categories. For an image, its representation
is the neuronal responses of the layer F1024 by input the
image into the learned DNN.

Compared Approaches. We compare the following ap-
proaches for performance evaluation:

• N-Gram SVM Modeling (N-Gram SVM). We use all
the clicked images of a given query as positive samples
and randomly select negative samples from the rest of
the training dataset to build a support vector machine
(SVM) model for each query, and then use this model
to predict the relevance of the query to a new image.
In addition, in order to extend the capability of the
training data to model queries that are not covered in
the dataset, n-gram modeling, which attempts to mod-
el each n-gram as a “query,” is used. In other words,

1 http://www.image-net.org/challenges/LSVRC/2010/
2 http://www.image-net.org/
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Figure 3: The average overall objective value of Eq.
(6) for each query-image pair with the increase of
the iteration. The changes of the value are given at
different dimensionality of the latent subspace.

if a query is not in the training set, but its n-grams
appear in some queries of the training set, we can gen-
erate the model by linearly fusing the SVM models of
these queries. No latent subspace is learned in this
baseline. We name this run as N-Gram SVM.

• Canonical Correlation Analysis [8][9] (CCA). A clas-
sical and successful approach for mapping visual and
textual features into a latent subspace where the cor-
relation between the two views is maximized. This run
is named as CCA.

• Partial Least Squares [25][30] (PLS). Similar to CCA,
PLS aims to learn linear mapping functions to project
two views into a common latent subspace as well. But
different from CCA, PLS learns dot product as the
similarity function while cosine similarity is used in C-
CA. Deriving from the ideas in [30], the learning of the
mappings is performed by maximizing the similarities
of the observed query-image pairs on the click-through
data here. We name this run as PLS.

• Polynomial Semantic Indexing [2][32] (PSI). Similar
in spirit, PSI first chooses a low dimensional feature
representation space for query and image, and then a
polynomial model is discriminatively learned for map-
ping the query-image pair to a relevance score. This
run is named as PSI.

• Click-through-based Cross-view Learning (CCL). We
designed the run, CCL, for our proposed approach de-
scribed in Algorithm 1.

Parameter Settings. N-Gram SVM is a baseline with-
out low-dimensional latent subspace learning, thus the rele-
vance score is predicted on the original visual features. For
the other four subspace learning methods, the dimensionali-
ty of the latent subspace is in the range of {40, 80, 120, 160}.
The k nearest neighbors preserved in Eq.(4) is chosen with-
in {100, 500, 1000, 1500, 2000}. The tradeoff parameter λ in
the overall objective function is set within {0.1, 0.2, ..., 1.0}.
We set µ=0.3, ρ1=0.2, and ρ2=0.9 in the curvilinear search
by using a validation set.
Evaluation Metrics. For the evaluation of image search,

we adopted Normalized Discounted Cumulative Gain (NDCG)
which takes into account the measure of multi-level relevan-
cy as the performance metric. Given an image ranked list,
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Figure 4: The NDCG of different approaches for im-
age search. The numbers in the brackets represent
the feature dimension used in each approach.

the NDCG score at the depth of d in the ranked list is
defined by:

NDCG@d = Zd

∑d

j=1

2r
j

− 1

log(1 + j)
(16)

where rj = {Excellent = 3, Good = 2, Bad = 0} is the
manually judged relevance for each image with respect to
the query. Zd is a normalizer factor to make the score for
d Excellent results 1. The final metric is the average of
NDCG@d for all queries in the test set.

4.3 Optimization Analysis
As we choose the step τ satisfying the Armijo-Wolfe condi-

tions to achieve an approximate minimizer of L(Fq(τ),Fv(τ))
in Algorithm 1 instead of finding the global minimization
due to its computationally expense, we depict the average
overall objective value of Eq.(6) for one query-image pair
versus iterations to illustrate the convergence of the algo-
rithm. As shown in Figure 3, the value does decrease as
the iterations increase at all the dimensionality of the la-
tent subspace. Specifically, after 100 iterations, the average
objective value between query mapping and image projec-
tion is around 10 when the latent subspace dimension is 40.
Thus, the experiment verifies that our algorithm can always
reach a reasonable local optimum.

4.4 Performance Comparison
Figure 4 shows the NDCG performances on image search

of five runs averaged over 1,000 queries in Clickture dev
dataset. It is worth noting that the prediction of N-Gram
SVM is performed on the original image visual features of
1,024 dimensions and for other four methods, the perfor-
mances are given by choosing 80 as the dimensionality of
the latent subspace.

Overall, our proposed CCL consistently outperforms the
other runs across different depths of NDCG. In particular,
the NDCG@10 of CCL can achieve 0.5738, which makes
the improvement over N-Gram SVM model by 4.0%. More
importantly, by learning a low-dimensional latent subspace,
the dimension of the mappings of textual query and visual
image is reduced by several orders of magnitude. Further-
more, CCL by additionally incorporating structure preser-
vation leads to a performance boost against PLS and CCA.
The result basically indicates the advantage of minimizing
distance between views in the latent subspace and preserv-
ing similarity in the original space simultaneously.
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Figure 5: Examples showing the top 10 image search results by different methods of queries “mustang cobra,”
“golden anchor cabins,”“women bicycle,” and “pumpkin faces” (better viewed in color). The relevance scale
is provided at the top left corner for each image.

There is a performance gap between CCA and PLS. Though
both runs attempt to learn linear mapping functions for
forming a subspace, they are different in the way that C-
CA learns cosine as a similarity function, and PLS learns
dot product instead. As indicated by our results, maxi-
mizing the correlation between the mappings in the latent
subspace can lead to a better performance. Moreover, PSI
utilizing click-through data as relative relevance judgements
rather than absolute click numbers is superior to PLS, but
is still lower than CCL. Another observation is that the per-
formance gain is almost consistent when going deeper into
the list. This further confirms the effectiveness of CCL.
Figure 5 shows the top 10 image search results by d-

ifferent approaches for the query “mustang cobra,” “gold-
en anchor cabins,” “women bicycle,” and “pumpkin faces.”
We can easily see the proposed CCL method gets the most
satisfying ranking results. Specifically, compared to other
baselines, the top images by CCL are more visually simi-
lar to each other, especially of the query “women bicycle”
and “pumpkin faces.” That is mainly caused by the effect
of structure preservation regularization term in the overall
objective, which restricts the similar images in the original s-
pace to remain close in the low-dimensional latent subspace.
Therefore, the ranks of these group of images are likely to
be moved up.

4.5 Effect of the Dimensionality of the Latent
Subspace

In order to show the relationship between the performance
and the dimensionality of the latent subspace, we compared
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Figure 6: The NDCG@25 performance with differ-
ent dimensionalities of the latent subspace. We can
see that CCL achieves the best performance among
the four methods.

the results of the dimension in the range of 40, 80, 120, and
160. As the method N-Gram SVM performs training and
prediction by only using the original features rather than
learning a latent subspace, it is excluded in this comparison.

The results are shown in Figure 6. Compared to the oth-
er three runs, performance improvement is consistently ob-
served at each dimensionality of the latent subspace by our
proposed CCLmethod. Furthermore, CCL achieves the best
result at the latent subspace dimensionality of 80, and the
results at other dimensionality are pretty close to the best
one. This observation basically verifies that CCL has a good
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Figure 7: The NDCG@25 performance curve at d-
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property of being affected very slightly with the change of
the dimensionality of the latent subspace.
Another important observation is that when the dimen-

sionality of the latent subspace increases, the performances
of all the methods are not always improved accordingly. For
example, the best performance of CCL happens at the di-
mensionality of 80 and for the method CCA, the highest
NDCG@25 is observed at the dimensionality of 40. This
somewhat indicates a general conclusion that the selection
of the latent subspace dimensionality is related to the opti-
mized objective considered in learning the subspace.

4.6 Effect of the Number of Nearest Neigh-
bors

The number of nearest neighbors considered in the struc-
ture preservation is another parameter in CCL. In the pre-
vious experiments, the number was fixed to 2,000. Next, we
conducted experiments to evaluate the performance of our
CCL method with the number of nearest neighbors in range
of {100, 500, 1000, 1500, 2000} at different dimensionality of
the latent subspace.
The NDCG@25 with the different number of nearest neigh-

bors are shown in Figure 7. As illustrated in the figure, the
optimal k differs at different dimensionality of the laten-
t subspace. However, at each dimensionality of the latent
subspace, the performance difference by using different num-
ber of nearest neighbors is within 0.0002, which softens the
difficulty on choosing the optimal number of nearest neigh-
bors in practice.

4.7 Effect of the Parameter λ

A common problem with multiple regularization terms in
a joint optimization objective is the need to set the param-
eters to tradeoff each component. In the previous experi-
ments, the tradeoff λ is optimally set in order to examine
the performance of CCL on image search irrespective of the
parameter influence. We further conducted experiments to
test the sensitivity of λ towards search performance.
Figure 8 shows the NDCG@25 performance with respec-

t to different values of λ at different dimensionality of the
latent subspace. Similar to the effect of the number of n-
earest neighbors, we can see that the performance curve is
very smooth when λ varies in a range from {0.1, 0.2, ..., 1.0}
at each dimension of the latent subspace. Specifically, when
the dimension of the latent subspace is 80, the performance
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Figure 8: The NDCG@25 performance curve at d-
ifferent dimensionalities of the latent subspace with
different λ.

fluctuates within the range of 0.001. Thus, the performance
is not sensitive to the change of the tradeoff parameter.

5. DISCUSSION AND CONCLUSION
In this paper, we have investigated the issue of directly

learning the multi-view distance between a textual query
and an image by leveraging both click data and subspace
learning techniques. The click data represent the click rela-
tions between queries and images, while the subspace learn-
ing aims to learn a latent common subspace between mul-
tiple views. We have proposed a novel click-through-based
cross-view learning to solve the problem in a principle way.
Specifically, we use two different linear mappings to project
textual queries and visual images into a latent subspace. The
mappings are learned by jointly minimizing the distance of
the observed query-image pairs on the click-through bipar-
tite graph and preserving the inherent structure in original
single view. Moreover, we make orthogonal assumptions on
the mapping matrices. Then the mappings can be obtained
efficiently through curvilinear search. We take l2 norm be-
tween the projections of query and image in the latent sub-
space as the distance function to measure the relevance of a
pair of (query, image).

Our future works are as follows. First, the two learned
mapping matrices can be extended to the learning of query-
query and image-image distances. Next, the learned dis-
tances will be further explored for applications such as query
expansion, query suggestion, and image clustering, in the
learned low-dimensional space. Furthermore, we will inves-
tigate the kernel version of our method, making it applicable
when kernel matrices instead of features are available.
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