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1 Abstract 
RIoT (Robust Internet-of-Things) is an architecture for providing foundational trust services to 

computing devices.  The trust services include device identity, sealing, attestation, and data integrity.  

The term “Robust” is used because the minimal trusted computing base is tiny, and because RIoT 

capabilities can remotely re-establish trust in devices that have been compromised by malware.  The 

term IoT is used because these services can be provided at low cost on even the tiniest of devices. 

This paper describes RIoT’s hardware requirements and how the hardware supports a range of 

foundational trust services. 

2 Introduction 
Technology is rapidly evolving and enriching the modern world with numerous applications that make 

computing devices indispensable to our daily lives.  Many of these applications are extremely cost 

constrained and, since traditional approaches to hardware-based security add cost to the device, 

hardware-based security has often been deemed impractical.  Simultaneously, devices are frequently 

deployed in demanding environments without physical security guarantees.   Accelerated time to 

market, iterative refinements, and continually improving security research have created a need for 

frequent software updates to products in the field.  However, these updates must be administered and 

verified without human involvement.  RIoT addresses these new security realities, and can further 

augment traditional security techniques in use today.  

Cryptographic operations and key management underlie many security scenarios, and the central 

contribution of RIoT is to provide a secure and manageable foundation for these services.  

Authentication, integrity verification, and data protection require cryptographic keys to encrypt and 

decrypt, as well as mechanisms to hash and sign data.  Most internet-connected devices also use 

cryptography to secure communication with other devices and services.   More complex scenarios like 

asset management through device identity, access control, verification of device health, and 

deployment of manufacturer controlled updates to devices and verifying their installation was 

completed, are also best accomplished using cryptography.    

To support these and other scenarios, the fundamental cryptographic services provided by RIoT include: 
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Device identity  

Devices typically authenticate themselves by proving possession of a cryptographic key.  If the 

key associated with a device is extracted and cloned then the device can be impersonated, so 

protection of device identity keys is of paramount importance. 

Data protection  

Devices typically use cryptography to encrypt and integrity protect locally stored data.  If the 

cryptographic keys are only accessible to authorized code, then malware or unauthorized 

software that may adversely affect platform security will not be able to decrypt or modify the 

data. 

Attestation 

Devices often need to be able to report the code they are running as well as their security 

configuration – a process called attestation.  In particular, attestation is most often used to 

prove that a device is running up-to-date and patched code.   

Cryptography only contributes to overall system security if the cryptographic keys are not known to 

adversaries.   If keys are managed in software alone, then bugs in software components can result in key 

compromise, negating their security value.  For software-only systems, the primary way to restore trust 

following key-compromise is to install updated software and provision new keys for the device under 

conditions of physical security.  This is time consuming and expensive for typical PC, server, and mobile 

devices, and infeasible or impossible when devices are physically inaccessible.  

Today’s practical solutions to secure remote re-provisioning involve hardware-based security.  Software-

level attacks may allow adversaries to use hardware-protected keys but not extract them, so hardware-

protected keys are a useful building block for secure re-provisioning of compromised systems.  The 

Trusted Platform Module, or TPM, is an example of a low-cost security module that provides hardware 

protection for keys, and also allows the device to report (attest to) the software it is running. [1]  Hence, 

a compromised TPM-equipped device can be securely issued new keys, and can also provide attestation 

reports that prove an update was successful. 

TPMs are widely available on contemporary computing platforms, and the emergence of SoC-integrated 

and processor-mode-isolated firmware TPMs has reduced costs.  However, TPMs are still impractical in 

some circumstances.  For example, in a tiny IoT device that would not be able to support a TPM without 

a substantial increase in cost and power budgets.  Another example where TPM use is impractical is 

securing the TPM itself - TPMs are complex software systems that need to be field-updated.  If a TPM is 

compromised then it is unlikely that it has access to a second TPM to assist in re-provisioning and re-

keying, so an alternative approach is needed. 

RIoT has been developed to provide this sort of foundational device security for even the smallest of 

computing devices, although it can be applied to any processor or computer system.  The hardware and 

software requirements for RIoT are extremely modest and should not add to bill-of-materials cost of any 

device that is sufficiently powerful to run a network stack.  In particular, RIoT does not need a dedicated 

security processor or dedicated processor mode. 
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RIoT’s security foundation is extremely simple and can realistically be free of exploitable bugs (in the 

simplest case it is little more than an HMAC function).  If software components outside of the RIoT core 

are compromised, then RIoT provides for secure patching and re-provisioning 

RIoT is also very flexible: its simple hardware foundation can be used to bootstrap a wide range of 

software-based security services.  

Finally, RIoT takes a somewhat unusual approach to cryptographic key protection.  The best-protected 

cryptographic keys used by the RIoT framework are only available briefly during boot. This method of 

key management is both the reason for RIoT’s low cost, as well as the reason that long-lived RIoT keys 

are so well safeguarded.  However, some operations and protocols must be adapted to work within this 

limitation. 

3 RIoT in a Nutshell 
This section provides a brief overview of the principles of RIoT-based systems.  The detailed software 

and hardware architecture is more fully described in the sections that follow. 

In a RIoT system, boot progresses in stages.  An initial immutable loader program, referred to as L0 or 

layer zero (executing, say, in CPU-based ROM), loads and launches a second stage loader L1. This layer, in 

turn, loads and launches the next stage loader L2, and so on until the operating system (OS) and 

applications are running.  This type of progression is illustrated in Figure 1. 

RIoT system security is based on a secret value called the Device Secret that is set during manufacture 

(or later, provided it is set under conditions of physical security).  In a typical RIoT implementation, a 

Device Secret will only ever exist within the device on which it was provisioned.  However, in this 

pedagogical introduction, it will be assumed that the manufacturer maintains a database of Device 

Secrets. 

The Device Secret is accessible to the first stage ROM-based boot loader, L0, at boot time.  RIoT-capable 

systems provide a hardware mechanism that the ROM-based loader uses to render the Device Secret 

inaccessible until the next boot cycle. 

The ROM-based loader L0 could naively provide the Device Secret to L1 and so on up the boot chain.  

Software could then use the secret value to encrypt confidential data or to authenticate the device to 

Power On 
Reset 

L0 (ROM) L1 L2 OS

App1 App2 

Device Secret 

K1 = KDF (Device Secret, Hash (L1)) 

 K2 = KDF (K1, Hash (L2)) 

Figure 1: Simple RIoT-style key derivation for layered boot 
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the manufacturer.  The problem with this simple scheme is that if any software with access to the 

Device Secret is ever exploited and the Device Secret leaks, all device security is lost and there may be 

no way to securely re-provision the device. 

To avoid this weakness, the L0 code in a RIoT-compatible system never reveals the actual Device Secret.  

Instead, it provides a derived key to the next program in the boot chain.  Then, if L1 is compromised, the 

derived key may be compromised but the Device Secret remains secure.  Of course, a compromised L1 

might try to obtain the Device Secret on its own.  To thwart this, RIoT-capable systems must provide a 

hardware-mechanism to ensure that only the L0 boot loader can ever access the Device Secret. 

There are many possible choices for key derivation functions.  The simplest construction that has the 

necessary security properties is a function that depends on the hash of the next program in the boot 

chain.  For example: 

𝐾1 = 𝐾𝐷𝐹 (𝐷𝑒𝑣𝑖𝑐𝑒 𝑆𝑒𝑐𝑟𝑒𝑡,𝐻𝑎𝑠ℎ (𝐿1))  (1) 

Where, 𝐾𝐷𝐹 (𝐾,𝑆) is a cryptographic one-way key derivation function, e.g., an HMAC function.  The key 

produced, K1, is also referred to as the Fuse Derived Secret, or FDS.   

This operation is illustrated in Figure 2.  The “keyed diode” circuit element represents the one-way 

function, and the switch illustrates one mechanism for blocking access to the Device Secret during boot.   

ROMeFuses / 
Device 
Secret

L1 Code Hash
Fuse-Derived 
Secret (FDS)

 

Figure 2: Schematic representation of the behavior of RIoT ROM code 

This construction has two interesting characteristics.  First, the derived key K1 depends on both the 

Device Secret and the cryptographic identity of L1.  Since the Device Secret uniquely identifies the device 

hardware, the program L1 can use K1 in a proof-of-possession protocol to prove to the manufacturer 

both the identity of the platform and the cryptographic identity of the code that it is running.  In other 

words, K1 can be used for both device and software attestation. 

Second, consider an authorized update from a vulnerable version 𝐿𝐴,1  to 𝐿𝐵 ,1 as illustrated in Figure 3.  

Layer 𝐿𝐴 ,1 receives the key 𝐾𝐴,1.  If 𝐿𝐴,1  is compromised, then the manufacturer can push out a software 

update, 𝐿𝐵 ,1, that will receive a different derived key, 𝐾𝐵,1, that cannot be deduced from the leaked key 

(the KDF is a one-way function).  Now, the updated 𝐿𝐵 ,1can use this new derived key to attest to the 

manufacturer that the device is running the new and bug-fixed program. 

Practically, this means that pushing out a software patch also securely re-keys the device.  
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A layer’s derived keys can also be used to secure private data.1  L1 can use K1 to encrypt and integrity 

protect data that is stored locally - a security primitive that is referred to as sealing.  The simple KDF-

based key derivation scheme provides excellent protection against malware attempting to obtain 

decryption keys and decrypt the data.  For instance, if an attacker were able to replace L1 in an attempt 

to receive or extract K1, the attacker would obtain a different key and would not be able to decrypt 

previously stored data.  This is because the derived key is based on the identity of the component 

receiving the key.  This is also illustrated in in Figure 3. 

This simple key derivation scheme has one notable side effect.  When a manufacturer performs an 
authorized update, the updated program will also obtain a different key (𝐾𝐵,1 rather than 𝐾𝐴,1 in Figure 

3).  This means that the new component will not be able to decrypt data that was previously stored.  

There are a few ways to address this issue.  The simplest solution involves grouping programs that 

should be treated equivalently, for example, by means of digital signatures.  Another solution, which 

involves deriving data migration keys, is described in section 6. 

The handoff of derived keys from the initial boot loader L0 to L1 can be repeated at each stage of boot, 

where the “layers” may include a sequence of boot loaders, an operating system, or even an application. 

For instance, L1 can use the same KDF-based scheme to provide a second-stage derived key, K2, that 

relies on K1, as well as the identity of the program, L2, that L1 will load, measure, and to which control is 

transferred.  This is illustrated in Figure 4. 

 

Device 
Secret

ROM
Layer L1 with digest 

D1

Layer L2 with digest 
D2

Layer L3 with digest 
D3

K1 = KDF (DeviceSecret, D1) K2 = KDF (K1, D2) K3 = KDF (K2, D3)
 

Figure 4: Example RIoT key derivation for multi-stage boot 

                                                             
1 It is usually advisable to derive separate keys for the purposes of local encryption and device authentication.  This 
is covered more fully in section 6. 

Device Secret L0 (ROM)

Version A
(vulnerability)

Version B
(patched)

Malware

Figure 3: A manufacturer authorized update of a module with a vulnerability and malware 
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The only essential difference between L0 and the behavior of other layers is that L0 must use a hardware 

facility to hide the Device Secret before passing control to L1.  Since subsequent layers will usually obtain 

derived keys in RAM or registers, “hiding” keys prior to transferring control to subsequent layers is 

simply a matter of deleting them from memory. 

In this layered architecture, the KDF-derived keys at stage n of boot depend on both the Device Secret 

and all of the code that is part of the foundational TCB of level n.  As a result, if the nth-stage derived key 

is used in an attestation protocol, the manufacturer can determine exactly what code is part of the TCB 

of level n.  Additionally, if the nth-stage derived key is used for sealing, then protected data will only be 

accessible if the TCB does not change.  

4 RIoT Hardware and Firmware 
This section expands on the basic hardware and firmware requirements of a RIoT system. 

Startup of modern processors is complex, with substantial variation in behavior across devices and 

vendors.  RIoT-capable devices must satisfy the following set of minimal requirements.  

4.1 Reliable Reset 
An essential feature for building secure systems is a reliable processor and system reset.  The reset 

process must clear all processor, device, and volatile memory state that could adversely affect future 

execution.  The device must then restart execution in a well-defined manner.  Power-on will typically 

initiate a processor reset after necessary hardware subsystems have been initialized.  

4.2 Device Secret 
RIoT-enabled devices require a device-specific secret. This statistically unique secret may be generated 

externally and installed during manufacture, or may be generated internally during device provisioning 

(see Section 6). 

The Device Secret must be stored in non-volatile write-once memory on the device, e.g. eFuses, or any 

other suitably protected NV storage subsystem.  Its size will depend on the algorithms used as well as 

the desired security strength of these functions.  A 256-bit Device Secret should be considered the 

minimum at this time. 

4.3 Protection of the Device Secret 
The Device Secret must be available to early-stage bootstrap code, but the processor must also provide 

a mechanism to ensure that the Device Secret is inaccessible to later code.  There are a number of ways 

this may be accomplished.  For example, the processor or memory subsystem may include a latch 

controlling access to the Device Secret that is only opened during processor reset, but can be 

programmatically closed after the ROM loader has read the value. 

4.4 Immutable Measurement Code 
RIoT-capable processors must be manufactured with immutable code that can read the Device Secret 

and produce a derived key or keys that depends on the cryptographic identity of the next program in the 

boot chain.   
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In principle, a processor could be designed that performs complex functions like certificate verification 

to establish software identity.  In practice it is better to build processors with immutable/ROM code that 

performs extremely simple cryptographic operations, because simple code is more likely to be bug-free.   

In Section 6 it is demonstrated that a single derived value that depends on the Device Secret and the 

digest of the next program in the boot chain can be used to bootstrap sophisticated key-management 

schemes.  Therefore, in the remainder of this paper it is assumed that the processor provides a Fuse 

Derived Secret using Equation 1.   

Of course, it is essential that the immutable code hide the Device Secret (and delete any copies in RAM, 

registers, cache, etc.) before passing control to the next program in the boot chain. 

5 Fundamental Characteristics of RIoT Devices 
In this section some of the fundamental characteristics of the RIoT security architecture are explored. 

5.1 Resilience 
One of the main responsibilities of the boot measurement code (in ROM) is to protect the Device Secret.  

On the other hand, adversaries will seek to subvert operation of ROM code to leak the Device Secret to 

unauthorized entities.  If an attacker is not launching a physical attack, then the primary means of 

attacking computer systems is to provide inputs that were not foreseen by the program designer and 

cause the software system to malfunction, e.g., through a buffer overrun or other logical error.  The 

preferred implementation of boot measurement code is chosen to be extremely simple; it just computes 

the hash of a memory region.  Because of its simplicity, it is expected that code implementing this 

behavior can be free from exploitable bugs. 

Code that performs more complex functions will naturally have a greater attack surface.  Where possible 

these complex functions should be performed later in the boot sequence where system recovery, in the 

case of an exploit, can be accomplished with the help of earlier layers. 

RIoT security depends on software maintaining the security of cryptographic keys.  If software 

vulnerabilities allow keys to be extracted, then these keys can be used to impersonate the device or 

claim that the device is running a different software stack.  In this situation the recourse is to patch the 

device so that new derived keys are produced, and then revoke trust in the previous configuration.   

A primary consideration of the RIoT system architect is to design and build extremely robust 

foundational layers that can be used to securely re-provision the more complicated and bug-prone 

upper-layers.  

5.2 Protecting Secrets and Keys 
RIoT device resiliency is due, in part, to the approach the RIoT framework takes to securing secrets and 

keys.  A typical approach to maintaining the secrecy of a cryptographic key is to store and operate on 

the key within an isolation envelope provided by a combination of hardware and software, for example, 

a separate security processor or dedicated processor mode.  However, these keys are then available for 

use at any time.  This is referred to as spatial protection. 

RIoT is different in that it also relies on temporal protection for keys and secrets.  RIoT key security is 

based on receiving keys (or other secrets) from an earlier component in the boot chain, operating on 
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those keys, and then deleting them from memory before running the next boot program.  This means 

that crypto operations using these received keys can only be performed for a limited time.  That is, 

during boot and within the security boundary in which those keys were available.  

These differences are illustrated in Figure 5. 

Note that a program is not required to delete its RIoT-generated keys as long as it is able to prevent 

access to those keys.  An early boot component usually deletes its keys/secrets because it is passing full 

control of the system to another, usually more complex, program. 

A program executing at a higher layer may choose to retain its RIoT keys rather than delete them.  This 

may be because the program is a top-level application that needs to use the key to encrypt data or 

authenticate itself, or it may be because this layer can adequately protect this key so that even higher 

layers cannot access the key.  For example, a firmware TPM running in ARM TrustZone might retain a 

RIoT key within Secure World so that the TPM can use it to protect its important keys and state.  Upper 

level software can (directly or indirectly) use the RIoT key, but cannot access it directly, just like the 

Traditional Security Processor in Figure 5.  This further illustrates how RIoT technology can be used as 

the foundation for more traditional security processors. 

5.3 RIoT as a General Purpose Security Processor 
As illustrated in Figure 5, each layer in a RIoT boot-sequence performs some or all of these operations: 

 Receives a key or keys from earlier layers 

 Reads inputs from other sources (local storage, local interactive users, the network) 

 Measures and/or validates the identity of subsequent layers 

 Performs crypto operations on keys, layer-identities, and other inputs 

 Deletes layer-private keys from memory and registers 

 Transfers control to the next layer 

Crypto Ops (e.g. a TPM) 

Keys 

Command 
 

Command Response 

Time Traditional Security Processor 

Time RIoT Framework 

Input Output 

Crypto Ops 

Keys (layer n) 

Input Output 

Crypto Ops 

Keys (layer n+1) 

Keys and secrets erased before 

crossing trust boundary 

Response 

Figure 5: RIoT vs traditional security processors 
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Many cryptographic operations can be adapted for use in the RIoT framework.  For example, new keys, 

including asymmetric keys, can be created through key derivation functions.  Symmetric and asymmetric 

keys can be used to sign and decrypt data.  Keys can be used to certify other keys or other aspects of 

platform state.  In addition to secret key operations, RIoT layers can validate certificates and generate 

new keys. 

Much of the power of RIoT arises because system designers can directly implement precise 

requirements without having to work within the architectural confines of a pre-defined hardware 

security processor.  Additionally, complex functions (with correspondingly greater risk of compromise) 

can be implemented in upper layers so that security functions in lower layers can recover them if 

needed. 

The fact that some RIoT keys are only available during boot, however, will generally demand 

adjustments in the protocols and the way that keys are used. 

6 RIoT Operations 
In Section 3, simple key derivation schemes enabling device identity, attestation, and sealing were 

illustrated.  Some drawbacks of the simple schemes were also noted.  For instance, relying on a 

database of Device Keys for attestation, or the fact that software updates can render previously sealed 

data inaccessible.  In this section a more complete and practical RIoT implementation is described. 

For simplicity it is assumed that all RIoT functionality is implemented in a single layer:  L1 or, the RIoT 

Core.  This must be the first component measured and started by the processor’s boot-loader.  The 

remaining device firmware, implementing the main device functionality, is called the Application 

Firmware and runs at layer 2.  

This simplification, the assumption of a single-layer RIoT Core, does introduce a complication, however.  

That is, a single-layer RIoT Core would not be updateable without loss of device identity.  Exactly why 

will be described in Section 6.2.  In reality, more sophisticated RIoT implementations have only a small 

fraction of non-serviceable code. 

It is assumed, however, that the remaining Application Firmware will need to be updated to add 

functionality and fix potential issues.  Secure management of the upgrade process is the main subject of 

this section.  The components and data flows discussed in this section are illustrated schematically in 

Figure 6. 
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Device 
Secret

ROM
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(L1 with digest D1)
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(L2 with digest D2)
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Data for RIoT to be used on 

the next reboot (data may 

be internally generated, or 

obtained from network)RIoT inputs

FDS = KDF (DeviceSecret, D1 ) Data and keys 

provided by RIoT core 

 

Figure 6: Firmware modules and data flows 

6.1 Provisioning 
In the RIoT architecture, the simplest provisioning scheme requires the device manufacturer to keep a 

database of the Device Secrets that were installed on its devices.  However, this secret key database 

represents a single point of attack.  Further, even if there is no irreversible loss of device security and 

identity, this scheme still does not allow the device to keep secrets from the device manufacturer itself.   

A favored alternative is to furnish processors with a Device Secret that is not known outside the device.  

Ideally the Device Secret is internally generated early in the life of the processor using a good internal 

entropy source.  If external tools are used to generate and install the secret during device manufacture, 

then the vendor should not keep a record of Device Secrets. 

Since the Device Secret is not known externally, the simple attestation schemes in Section 3 cannot be 

used to identify the RIoT Core code in layer 1.  Instead, the RIoT Core must be installed under conditions 

of physical security during manufacture.    

6.2 Using the Fuse Derived Secret 
The Fuse Derived Secret (FDS) is the key provided to the initial boot code by the processor ROM.  The 

FDS will typically be used as the foundation for device identity, attestation, and data protection.  

Cryptographic best-practice demands that the same key is not used for multiple purposes.  This is most 

easily achieved by deriving additional keys with a cryptographically secure key derivation function.   

For example, device identity keys and operations can be based on KID, where:  

𝐾𝐼𝐷 = 𝐾𝐷𝐹 ( 𝐹𝐷𝑆, "identity" ) 

Other keys can be created similarly.  The “purpose” field is included, both explicitly and implicitly, in 

several of the RIoT primitives described in this section. 

The FDS itself is derived from the Device Secret and the software identity of the layer ROM will transfer 

control to, L1 (see Figure 6).  This is why a single-layer RIoT Core would be non-serviceable.  Updating 

RIoT Core as a single layer would cause the FDS to change.  A change in the FDS value would result in 

completely different keys in each derivation chain, including device identity. 

The solution to this is a multi-layered RIoT implementation with a very simple first layer that provides a 

stable identity and support for update of subsequent layers. 
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6.3 Device ID 
RIoT Core can generate a public key device identity by creating an asymmetric key pair at boot time 

using a deterministic key-generation function based on KID (or directly on the Fuse Derived Secret).  As 

long as the first stage RIoT firmware does not change, the device will always generate the same key pair, 

i.e., the Device ID will be stable for the life of the device.  See Figure 7. 

 Identity 

DeviceIDPublic

DeviceIDPrivate

Asymm
Key Gen

KPublic

KPrivate

E

FDS

KID

Used internally by RIoT and 
then deleted from memory

Exported from device

 

Figure 7: Deriving an asymmetric Device Identity from the Fuse Derived Secret  

The Device ID public key can be written to persistent storage or passed to the Application Firmware, and 

will eventually be securely exported to the manufacturer or to any other party that requires a long-term 

stable identifier for the device.  Manufacturers may also choose to certify the Device ID using a 

manufacturer PKI or keep a database of Device IDs of the devices that they have manufactured.   

Proof-of-knowledge of the Device ID private key can be used as a building-block in a cryptographic 

protocol to identify the device, as in the following examples. 

First, a server generates a challenge nonce that is signed by the RIoT Device ID key on the next reboot.   

Second, a server creates a symmetric key that is encrypted by the Device ID public key that can be 

decrypted by the RIoT Core on the target device on the next reboot (this option is discussed more in the 

next section). 

Third, the RIoT Core generates a new random asymmetric key pair, KL2, for use by the Application 

Firmware.  The RIoT Core can then certify the KL2,Public using the Device Identity key, and pass the new 

key pair as well as the Riot Core generated certificate that demonstrates that the key was generated 

securely.  However, now KL2,Private can be used at any time rather than just during reboots.  See Figure 8. 

In practice, the same Device ID key should not be used for more than one purpose without explicit 

qualification.  This can be accomplished by deriving keys specifically for signing and decryption, and by 

using distinguishing fields in the data structures that are being signed and decrypted.  



 

12 
 

KL2,Public

KL2,Private

Asymm
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Figure 8: RIoT code creating a key pair for use by layer 2 that is certified by the Device ID 

The Device ID private key must always be deleted from RAM and registers before RIoT passes control to 

the Application Firmware. 

6.4 Attestation 
The simple attestation scheme in Section 3 requires knowledge of the Device Secret to validate the 

proof-of-possession of the layer-identity based derived keys.  In this section several alternative schemes 

that use the Device ID as the foundation for attestation are described.   

The first scheme uses the Device ID to indirectly attest the identity of the Application Firmware by 

creating an asymmetric key that is certified (by the Device ID key) to be associated with Application 

Firmware with a specific digest. 

This is a variation on the Application Firmware identity key described in the previous section.  However, 

rather than a simple certificate associating KL2,Public with the Device ID, the certificate now includes the 

identity of the software that has access to KL2,Private.  See Figure 9, and the more detailed discussion by 

Lampson, et. al. [2] .   

KL2,Public

KL2,Private

Asymm
Key Gen

KPublic

KPrivate

E Provided to Layer 2

Entropy
Source

Signing 
Operation

DeviceIDPrivate

Signature Data 
Block

KL2,Public

Key

Data D2

DeviceIDPublic

D2

 

Figure 9: Creation of asymmetric key for layer 2 that is certified by the Device ID as being associated with firmware identity  D2 

An alternative scheme, which builds on the symmetric key style attestation described in Section 3, is for 

the manufacturer to encrypt a symmetric attestation seed value (the Attestation Seed) with the public 
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Device ID.  The Attestation Seed can be decrypted at boot time by the RIoT Core, and can then be used 

for KDF-type key derivation exactly as described in Section 3. I.e., 

𝐾𝐴𝑇𝑇𝐸𝑆𝑇,𝐿2 = 𝐾𝐷𝐹 ( 𝐴𝑡𝑡𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑆𝑒𝑒𝑑, 𝐷2) 

In this simple two-layer firmware example, the Application Firmware can use KATTEST,L2 in a proof of-

possession protocol to prove to the manufacturer (or any other entity providing an Attestation Seed 

value) that a particular device is running the expected firmware.  If the system has additional layers, 

then the key derivation procedure can be repeated at each phase of boot.  

Figure 10 illustrates this operation, together with an option to “seal” the attestation seed value (rather 

than simply encrypting it) so that the seed is only accessible to specified Application Firmware. 

Provided to Layer 2

Decryption or 
Unseal

Operation

DeviceIDPrivate

Encrypted Data 
Block

Attestation 
Seed Secret

Key

Data

D2 (optional)

DeviceIDPublic

D2

(optional)
Attestation 
Seed Secret

 

Figure 10: Secure import of an Attestation Seed value from the vendor or other party.  RIoT can perform a simple public key 

decryption operation, or a decryption operation followed by a check that the Application Layer is authorized to receive the 

encrypted secret. 

A third technique is a variation on this scheme, but rather than simply decrypting the Attestation Seed 

value, the RIoT Core interprets the encrypted data as a tuple consisting of an attestation secret together 

with the identity of the Application Firmware authorized to receive it (the optional D2 value in Figure 

10).  Now, the RIoT Core decrypts the tuple, but only reveals the Attestation Seed value to the layer 

above if it has the expected hash.  In this case the additional key morphing described earlier in this 

section is not needed.  This operation closely resembles how TPMs implement unsealing. 

6.5 Sealing and Data Protection  
The RIoT Core can a create a variety of keys with different security properties for Application Firmware 

to use for data encryption and integrity protection.  For example: 

𝐾𝑆𝐸𝐴𝐿𝐼𝑁𝐺,𝐴𝐿𝐿 = 𝐾𝐷𝐹( 𝐹𝐷𝑆,"𝑠𝑒𝑎𝑙𝑖𝑛𝑔") 

Creates a key that is unique to the device, but the same for any code that executes at layer 2.  This 

makes updates easy (the data protection key does not change), but if an attacker can extract this key 

though a vulnerability in Application Firmware, then this key loses value. 
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The alternative key derivation scheme: 

𝐾𝑆𝐸𝐴𝐿𝐼𝑁𝐺,𝐷 = 𝐾𝐷𝐹(𝐹𝐷𝑆,"sealing" | 𝐷 ) 

Creates a key that is specific to both the device and the exact identity, D, of the Application Firmware.2  

This is much more resilient to malware since, if malware boots on the device, it will obtain a different 

key because it has a different digest than the authorized software.  Also, if KSEALING,D leaks through 

compromise of authorized software, then a device update results in a new key that cannot be inferred 

from the compromised key (as long as the FDS is not known). 

The challenge in the latter case is that users and device vendors will normally want to allow newer 

firmware versions to access previously stored data.  The next section discusses options for enabling 

controlled access to previously sealed data. 

6.6 Sealing and Authorized Updates 
Consideration of updates is complicated because the device vendor, owner, and perhaps a user with 

physical presence, may need to be involved in the update decision.  Additionally, there are a number of 

choices that trade off security with manageability.  For example, some vendors may choose to allow 

devices to be “downgraded” to an earlier, possibly vulnerable, version of Application Firmware and 

other vendors may not.   

This paper refers to the source of updates and accompanying certificates as the vendor.  RIoT itself does 

not impose control over what entities are authorized to perform updates; the same scheme works if 

updates come directly from the device vendor or if they are created (or re-certified) by the owner of the 

device. 

6.6.1 Using Certificates to Authorize Updates 

Existing devices often use public key cryptography to authorize updates.  Each firmware version is 

accompanied by a vendor-provided certificate containing (typically) a firmware version number and the 

digest of the corresponding firmware.  Newer versions are usually downloaded by earlier versions, but 

the final decision on whether a new version is authorized to run on the device is handled in one of two 

ways: 

1) The current full stack (possibly with bugs) makes a policy decision based on the new version 

certificate, or 

2) The new version is staged in temporary non-volatile storage and the device is rebooted.  The 

(typically much smaller and simpler) loader for the full device firmware makes the final policy 

decision whether the new version is authorized to run. 

Similar strategies can be adopted for RIoT devices.  However, in addition to deciding whether to install 

and run a new version, the RIoT Core will also check whether the new version is authorized to access 

previously sealed keys and data by validating certificates. 

Within this basic framework there are still a number of implementation options.  A conceptually simple 

model is for the RIoT Core to derive a key that is the same for all Application Firmware with certificates 

signed by the same key, e.g., KPUB,VENDOR. 

                                                             
2 The ‘|’ operator indicates concatenation of some suitable representation of the parameters. 
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For example:  

𝐾𝐹𝐴𝑀𝐼𝐿𝑌 = 𝐾𝐷𝐹 ( 𝐹𝐷𝑆,"𝑓𝑎𝑚𝑖𝑙𝑦" | "𝑎𝑙𝑙" | 𝐾𝑃𝑈𝐵,𝑉𝐸𝑁𝐷𝑂𝑅 ) 

KFAMILY is available to all modules that have been signed by the vendor.  This “family” key can be used to 

encrypt data directly, or can be used by Application Firmware to transfer a subset of data between 

firmware versions. 

A straightforward extension is to create family keys that are only available to a subset of family 

members.  For example: 

𝐾𝐹𝐴𝑀𝐼𝐿𝑌,𝑁 = 𝐾𝐷𝐹( 𝐹𝐷𝑆,"family" |𝑛| 𝐾𝑃𝑈𝐵,𝑉𝐸𝑁𝐷𝑂𝑅 )    𝑤ℎ𝑒𝑟𝑒 𝑛 = 0,1,2… 𝑁  

Here N is a version number extracted from the certificate, and the vendor increments the version 

number for Application Firmware releases.  When the RIoT Core boots version n of the firmware, it 

creates all family keys up to and including N and passes them to the Application Firmware.  If this 

software uses KFAMILY,N to encrypt data then no earlier version will be able to decrypt the data, but future 

versions will.  This construction prevents rollback attacks. 

6.6.2 Alternatives to RIoT Core Certificate Based Updates  

The controlled update scheme in the previous section assumes certificate validation and parsing 

happens in the RIoT Core firmware.  The RIoT framework also allows Application Firmware to make an 

autonomous decision to migrate all or a subset of its data to a new version, new device, a backup server, 

etc.  It is outside the scope of RIoT to determine how these policy decisions are made by a vendor’s 

firmware, but two RIoT building blocks that can enable Application Firmware-initiated secure update 

and data migration, both within and between machines, are described next. 

Unsealing 

𝑈𝑛𝑠𝑒𝑎𝑙(𝑋):  
 𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝑋) → (𝑆, 𝐷) 
 𝑖𝑓(𝐷 ==  𝐷2) 𝑟𝑒𝑡𝑢𝑟𝑛 𝑆 𝑒𝑙𝑠𝑒 𝑟𝑒𝑡𝑢𝑟𝑛 𝑒𝑟𝑟𝑜𝑟 

 

To Unseal, Application Firmware running on the platform (or elsewhere) prepares a data structure - 

(S,D) - containing a secret value and the digest of the Application Firmware authorized to access the 

secret.  An authenticated encryption scheme is then used to encrypt the tuple with the public Device ID 

of the target device, and the resulting encrypted blob is placed in non-volatile storage on the platform.  

On the next reboot, the RIoT Core attempts to decrypt the blob and checks that the code that is about 

to run has the required identity.  If all is correct, then RIoT Core provides the secret to the authorized 

Application Firmware.  Practically, Unseal allows programs to migrate any or all of its protected data to a 

new configuration. 

Variations of this scheme also allow the identity of the (local) sealing program to be identified.  

Migration 

CreateMigrationKey (DA, DB): 

𝐼𝑓 ( (𝐷 == 𝐷𝐴 ) | ( 𝐷 == 𝐷𝐵)) 
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𝐾𝑀𝐼𝐺𝑅𝐴𝑇𝐸,𝐷𝐴 ,𝐷𝐵
= 𝐾𝐷𝐹 ( 𝐹𝐷𝑆,"migrate" |𝐷𝐴 | 𝐷𝐵) 

𝑟𝑒𝑡𝑢𝑟𝑛 𝐾𝑀𝐼𝐺𝑅𝐴𝑇𝐸,𝐷𝐴 ,𝐷𝐵
 

 

KMIGRATE is a software identity dependent key that is the same for either of a pair of specified versions of 

Application Firmware.  Once the hash of the new version is known (how this is determined is out of 

scope), version A creates the tuple (DA, DB) where DA is the current version identity and DB is the 

authorized future version.  

The platform is then rebooted.  RIoT Core provides KMIGRATE,A,B to version A (the source version).  Version 

A checks that DA is its current identity, and DB is the authorized future state.  If these checks succeed, 

then it uses KMIGRATE to encrypts all keys and state that need to be transferred to the new version.  The 

system is then rebooted into the new version, and if the new software has hash DB, the previous 

migration key is re-created and previously encrypted data can be recovered. 

6.7 Secure Boot and RIoT 
Most IoT devices will implement certificate-based secure boot to increase device resiliency against 

malware and other threats.  RIoT capabilities supplement secure boot systems by adding device identity, 

attestation, and sealed storage.  Secure boot and RIoT functionality can comfortably coexist; in fact, 

certificate parsing code and other cryptographic primitives can be shared between secure boot and RIoT 

subsystems. 

Both secure boot and RIoT-based systems typically require the correct operation of earlier software 

versions to download newer versions and initiate updates.  Certain classes of vulnerability can interfere 

with this step, leading to a bricked device.  All devices should provide for remediation in the case of such 

catastrophic failures.  Traditionally, remediation of a bricked device is accomplished through physical 

access, e.g., using an external port to download new firmware.  If remote/autonomous recovery is 

required, then the device must include ROM-based (or very well protected) recovery firmware that 

executes if normal boot fails.  The recovery firmware (and any additional programs downloaded by this 

firmware) will be treated exactly as any other program booting on a RIoT device.  Notably, the recovery 

firmware will get a Fuse Derived Secret (FDS) that it can use for any purpose.  If the recovery firmware 

restores an earlier backup of the main firmware and state, then all RIoT derived keys will be precisely 

restored on the next reboot. 

Finally, it is noted that RIoT can improve the performance of secure boot systems.  For example, systems 

are typically rebooted many times between updates.  A RIoT-equipped system can validate a full code 

signature on the first boot after an update, and then create a local symmetric certificate, e.g., an HMAC, 

using a device-specific RIoT key.  Subsequent boots can check the validity of the locally created 

certificate and only fall back to asymmetric certificate validation during the next update, or if the local 

cached certificate is lost. 

7 Conclusions 
RIoT provides fundamental device security services at close to zero materials cost.  RIoT also allows an 

exceptionally small and simple foundational trusted computing base for computing devices and allows 

devices to be updated securely if any other code on the device is compromised.  While RIoT is ideally 
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suited to the smaller and cheaper processors that power the Internet of Things, it is of equal value in all 

computing devices. 
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