
A Compressed-domain Processor for Seizure

Detection to Simultaneously Reduce Computation

and Communication Energy
Mohammed Shoaib, Niraj K. Jha, and Naveen Verma

Department of Electrical Engineering, Princeton University, NJ 08544

Email: {mshoaib,jha,nverma}@princeton.edu

Abstract— In low-power sensing systems, communication con-
straints play a critical role; e.g., biomedical devices often acquire
physiological signals from distributed sources and/or wireless
implants. Compressive sensing enables sub-Nyquist sampling for
low-energy data reduction on such nodes. The reconstruction
cost, however, is severe, typically pushing signal analysis to a base
station. We present a seizure-detection processor that directly
analyzes compressively-sensed electroencephalograms (EEGs) on
the sensor node. In addition to alleviating communication costs
while also circumventing reconstruction costs, it leads to compu-
tational energy savings, due to the reduced number of input
samples. This provides an effective knob for system power
management and enables scaling of energy and application-level
performance. For compression factors of 2-24×, the energy to
extract signal features (over 18 channels) is 7.13-0.11µJ, and the
detector’s performance for sensitivity, latency, and specificity is
96-80%, 4.7-17.8 sec., and 0.15-0.79 false-alarms/hr., respectively
(compared to baseline performance of 96%, 4.6 sec., and 0.15
false-alarms/hr.).

I. Introduction

In compressive sensing, an N-sample signal is multiplied by an
M × N projection matrixΦ to create an M-sample signal (with
M ≪ N) [1]. This approach for data compression is possible
under the following conditions: (1) the N-sample signal is
sparse in a secondary basis Ψ, and (2) Φ and Ψ are incoherent
with each other and satisfy the restricted isometry property
[2]. For signals that satisfy the first condition, a Φ whose
elements are set to ±1 randomly with a uniform probability
satisfies the second condition with high probability [2]. Such
a choice for Φ enables low-energy compression, applicable to
a broad range of signals; this has recently been exploited in
biomedical sensors [3]. However, the signal reconstruction cost
for compressive sensing is severe [4], limiting such devices
to primarily serve as nodes for transmitting raw data to a
base station. In advanced medical devices, however, there
is a need to also analyze signals on the node [5]. Such
devices typically work by extracting signal features based
on physical biomarkers and then feeding these features to
high-performance classifiers to detect targeted physiological
states [5], [6]. After compressive sensing, however, the critical
challenge for signal analysis is that the physical biomarkers
are obscured due to the random projection. In this paper, we
present an IC for EEG-based seizure detection that performs
analysis directly on the compressively-sensed signals.

Fig. 1 illustrates the concept. Nyquist-domain EEG is
known to be sparse in the Gabor basis ΨG [7]. This enables
low-energy compression using a random projection matrixΦG.
The resulting EEG signal is compressed, but also substantially
altered. Nonetheless, a representation of the desired signal

1 100 200 300 400 Samples
−80

−40

0

40

A
m

p
lit

u
d

e
(m

V
)

Nyquist−domain EEG

Reconstructed EEG (from ξ=5×)

0

1 100 200 300 400 Samples
−1

−0.5

0

0.5

1

N
o
rm

a
liz

e
d

a
m

p
lit

u
d
e

Sparse EEG in Gabor basis (Ψ
G

)

1 100 200 300 400 Samples
−1

−0.5

0

0.5

1

N
o
rm

a
liz

e
d

a
m

p
lit

u
d
e

Compressively−sensed EEG using
random projection matrix Φ

G
(ξ=5× fewer samples)

Fig. 1. Nyquist-domain EEG is sparse in the Gabor basis (center panel),
enabling substantial compression (bottom panel); although accurate recon-
struction is possible (as shown in top panel), reconstruction is computationally
intensive, motivating signal analysis directly using the compressed signal.

features can be obtained by transforming the feature-extraction
computations based on ΦG. This results in a compressed-
domain seizure detector. The resulting transformation not only
overcomes the limitations imposed by signal reconstruction,
but also leads to computational energy savings due to a
reduction in the number of input samples that need to be
processed (by an amount equal to the compression factor, ξ).
The IC thus provides a previously unexplored approach to
processor power management.

II. System Approach

Fig. 2(a) shows a block diagram of the baseline Nyquist-
domain seizure detector [8]. The biomarkers correspond to the
spectral energy distribution of each EEG channel, computed
over eight frequency bins for a 2-second epoch. FIR filtering
is an extremely common DSP operation in sensor applications.
In this case, a feature vector (FV) is extracted through a
bank of eight FIR band-pass filters (BPF0,. . . , BPF7) followed
by energy accumulators, applied to each EEG channel. The
resulting FVs are then used for training and classification by a
support vector machine (SVM) classifier. Next, the algorithmic
formulation for compressed-domain processing as well as the

Fig. 2. The seizure detection algorithm involves feature extraction and
classification using an SVM. In the compressed domain, we transform the
Nyquist-domain BPFs Hi to the compressed-domain BPFs Ĥi.



opportunity this offers for processor power management are
described.

A. Algorithmic Formulation

For transformation to the compressed domain, an FIR filter
(i) for an EEG channel ( j) can be formulated as matrix
multiplication, namely of an input signal uj by a matrix Hi

to compute the filtered signal fij [Fig. 2(a)]. As described in
[9], this makes possible the compressed-domain system shown
in Fig. 2(b). In the proposed system, a corresponding matrix
Ĥi is constructed such that the desired filtered signal can be

represented by f̂ij directly using the compressed input signal

ûj. The energy (xi j) of fij can then be derived from f̂ij by

exploiting the properties of random projections. Each Ĥi thus
effectively forms a compressed-domain band-pass filter (CD-
BPF).

First, to construct Ĥi, we specifically aim to find a matrix
that, using ûj (= Φuj), leads to the corresponding random

projection of the filtered signal f̂ij (= Φfij). This gives the
following relationship:

f̂ij = Ĥiûj ⇔ Φfij = ĤiΦuj ⇔ ΦHiuj = ĤiΦuj. (1)

Since Φ is not a square matrix (but rather an M × N matrix
with M ≪ N, to enable substantial compression), Eq. (1)
represents an overdetermined set of equations and cannot be
directly solved for Ĥi. It can, however, be solved in the least-
square sense as follows:

ĤiΦ = ΦHi

ĤiΦΦ
T = ΦHiΦ

T

⇒ Ĥi = ΦHiΦ
T
(

ΦΦT
)−1

︸          ︷︷          ︸

= ΦHiΦ
†

R
. (2)

where Φ
†

R
is called the right pseudo-inverse of Φ (since Φ is

not a square matrix, it does not have a true inverse).
To validate the end-to-end performance of this approach

and to compute the signal features, we must next derive the
energy of the band-limited signal. In order to do this, we
take advantage of the Johnson-Lindenstrauss theorem and a
resulting corollary, which states that for a subset of vectors, the
inner products are preserved under random projections [10].
In the seizure-detection application, the filtered epoch data can
be represented by a small set of basis vectors. This implies
that the inner product of fij with itself can be represented by

the inner product of f̂ij with itself. Since the inner product of
fij with itself represents the spectral energy, the desired signal
features can be computed as follows:

xi j ≈ x̂i j = f̂ij

T
f̂ij. (3)

Fig. 3 shows the performance of this approach using 558 hrs.
of patient data from [11]. As shown, performance very close
to the Nyquist-domain seizure detector [Fig. 2(a)] is retained
up to large compression factors ξ (= N/M).
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Fig. 3. Detector performance (shown over 21 patients) is maintained up to
large ξ (∼ 10×).

Fig. 4. Ĥi, derived using Hi and Φ, disrupts the regularity and zeros in Hi.
The complexity of the CD-BPFs thus scales quadratically with ξ.

B. Processor Architecture with Power Management

Given the performance vs. compression-factor profile of the
compressed-domain seizure detector, scalability in ξ can be
exploited as a knob for system power management. An
important consequence of the construction method described
above, however, is that the CD-BPF matrices Ĥi (which are
of dimensionality M × M) do not retain the regularity of Hi

(which are of dimensionality N × N). As shown in Fig. 4,
the rows of Hi are simply shifted to realize convolution with
the BPF impulse response, and several of the entries are zero,
depending on the filter order k. In Ĥi, however, the shifted
impulse responses and the zero entries are disrupted due to

multiplication by random matrices Φ and Φ
†

R
. As shown

in Fig. 4, the number of multiplications required thus no
longer depends on the filter order, but rather quadratically
on the number of input samples M used to represent each
epoch of EEG data. This scaling can potentially reduce the
number of multiplications required, leading to the energy-
scalable processor architecture whose block diagram is shown
in Fig. 5. The processor consists of a compressed-domain
feature extractor (CD-FE), which includes a CD-BPF and
energy-accumulator block. The coefficients for the CD-BPF
are pulled from a scalable SRAM bank. By disrupting the
regularity, the Ĥi matrices necessitate that a larger number
of distinct coefficients be stored, potentially increasing the
memory requirements. Scalability in the SRAM bank is thus
an important aspect of power management. This is achieved
through the use of multiple subarrays, which enable fine-
grained power-gating as well as reduced bit-line and word-
line access energy. The total bank size in our implementation
is 32kB. An SVM classifier is also integrated to perform real-
time seizure detection using the derived FVs. It is assumed that
compressed signals are input to the processor. However, for
the case of Nyquist inputs, a compressive-projection frontend
(CPF) is also included to explicitly multiply inputs by a
random projection matrix Φ to exploit a reduced number of
samples for processor energy savings.

III. Low-energy Compressed-domain Processor

Fig. 6 shows the circuits used in the compressed-domain pro-
cessor. Since FV computations are not throughput-limited (i.e.,

Fig. 5. Architecture block diagram of energy-scalable, compressed-domain
seizure detector.



Fig. 6. Circuits used in the compressed-domain processor for seizure detection.
Fig. 7. Die photo of IC.

TABLE I

IC performance summary.

Energy-scalable, compressed-domain processor in 0.13µm LP CMOS

Supply voltage: Logic (SRAM) 1.2-0.44 V (0.7/0.42 V) Subblock energy/feature vector

EEG sampling rate 256 Hz CPF 85-7.3 pJ
Clock frequency 10.2-0.3 MHz CD-FE 156-2 nJ

CPF compression factor 2-24× SRAM 7.0-0.1 µJ
Feature computation rate 0.5 Hz

SVM
RBF 16.9-26.8 µJ

BPF order 64 Poly4 11.1-17.2 µJ
CD-BPF memory size 0.3-32 kB Linear 55.6 nJ

one FV is derived every 2 seconds), the CD-FE sequentially
computes each feature. The CD-FE can be configured to com-
pute up to eight spectral features (i = 0, . . . , 7) for each EEG
channel ( j) over as many as 18 channels, yielding a maximum
FV dimensionality of 144. The control pulse S 0 initiates CD-
BPF computations. A multiply-accumulate (MAC) unit (M0)
is used to perform the matrix multiplications required for
Ĥi, with each output-vector element being registered by the
control pulse S 1. Energy accumulation over the output vector
is then performed by a second MAC unit (M1). After spectral-
energy extraction [which thus requires (N/ξ)(N/ξ + 1) MAC
operations], each feature (x̂i j) is derived and stored in an FV
buffer when triggered by control pulse S 2. Four subarrays are
used in the scalable SRAM bank. As described in Sec. IV,
this provides a substantial power-management range while also
balancing the hardware overheads incurred by finer SRAM
granularity. Each subarray can be independently power-gated
(from off-chip).

The derived FVs are classified for seizure detection using
the SVM block. The SVM can apply linear, polynomial, or
radial-basis function (RBF) transformations (via an embedded
CORDIC engine). The support vectors are derived from offline
training of the classifier and are provided through a dedicated
interface. The classification result is encoded in the MSB of
the SVM output (MSB = 1 for seizure detected, MSB = 0 for
no seizure detected).

The CPF is selectable for front-end signal compression. It

Fig. 8. Summary of energy components contributing to total SRAM energy
(the ξ = 6× case is shown for illustration).

uses a 16b linear feedback shift register (LFSR) to implement
multiplication with a random projection matrix Φ, as shown
in Fig. 6.

IV. Measurement Results

The IC was prototyped in a 0.13µm LP CMOS process
from IBM. The die photograph and performance summary
are shown in Fig. 7 and Table I, respectively. Nyquist EEG
signals are sampled at a rate of 256 Hz, and the CD-BPFs
are derived for Nyquist-domain BPFs of order k = 64 (based
on the filter specifications required for seizure detection [6]).
The CPF permits EEG compression by a factor of ξ = 2-
24×, consuming 85-7.3pJ of energy. The results presented next
consider the impact of compression-factor scaling on processor
energy.

SRAM Energy Components. The SRAM consumes a sub-
stantial portion of the total CD-FE energy. Its optimization
to exploit scalability with respect to ξ is thus a key focus.
The detector processes an EEG epoch every TEPOCH = 2 sec.
However, the optimal operating frequency (and supply voltage)
for CD-FE is determined by the minimum-energy point [12],
which yields a throughput that allows the active computations
to be completed in less than 2 seconds. The SRAM energy
is thus the sum of the active-mode (ES RAM,CD-FE ) and idle-
mode (ES RAM,IDL) energies for each subarray that is enabled.
During the active mode, the SRAM is operated at the minimum
operational supply voltage of 0.7 V, where it can operate at 920
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Fig. 9. Logic and SRAM energy for the CD-FE (with the optimal logic VDD in the range 0.5-0.44 V).
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Fig. 10. ξ and VDD scaling enable energy scalability in the processor.

kHz, providing sufficient performance for CD-FE operation at
the minimum-energy point. During the idle mode, the SRAM
is operated at its minimum data-retention voltage (VS RAM,DRV )
of 0.42 V. The duration of the active mode (TCD-FE ) depends
on the chosen compression factor and varies in the range 1.48-
0.02 sec. for ξ = 2-24×. Fig. 8 summarizes the SRAM operat-
ing modes and energies, where both active-access (ES RAM,ACT )
and leakage (ES RAM,LKG) energies are considered during the
active mode. Considering the subarray scalability, the total
SRAM energy is thus given as follows (where the number
of subarrays NS UB varies in the range 1-4 depending on ξ):

ES RAM = [ES RAM,CD-FE + ES RAM,IDL] · NS UB

Total Feature-extraction Energy vs. ξ. Figs. 9(a) and 9(b)
show the logic and SRAM energies and Fig. 9(c) shows the
total energy for compressed-domain feature extraction (results
are for 18 EEG channels with eight CD-BPFs). At ξ > 4×,
the total energy of compressed-domain processing is less than
that projected for Nyquist-domain processing (for the filter
orders considered). For each compression factor, the energy
is reported for the optimal supply voltage (VDD,OPT ), which
minimizes CD-FE’s active-switching and leakage energies as
well as the SRAM energy (including SRAM energy causes the
CD-FE VDD,OPT to change with ξ). Fig. 9(a) shows the CD-FE
energy, with VDD,OPT annotated. Fig. 9(b) shows that the total
SRAM energy, which scales significantly with ξ, eventually
begins to saturate due to the granularity limit of the four
subarrays; a finer granularity would enhance scaling at the
cost of hardware overhead.

Processor Energy vs. ξ. Fig. 10 shows the effect of
compression-factor scaling on the total processor energy,
where the SVM operates at its minimum-energy point of
0.48 V, the CD-FE operates at the minimum-energy points
specified in Fig. 9(a), and the SRAMs operate at 0.7/0.42 V
during the active/idle modes. Nonlinear SVMs (RBF and
Poly4) consume significant energy, while SVMs with a lin-
ear kernel incur minimal energy, causing the energy-scaling
characteristics to be dominated by CD-FE. For the nonlinear
cases, the SVM energy is considerable and actually leads
to an optimal compression factor of ξ = 5×. This happens
because the SVM models obtained from classifier training
become somewhat more complex as the compression factor
increases. The resulting increase in classifier energy opposes
the reduction in CD-FE energy.

V. Conclusions

Random projections in compressive sensing obscure the sensed
signals, thus preventing the use of Nyquist-domain algorithms

for signal analysis. Signal reconstruction, however, is energy-
intensive and is not desirable on low-power sensor nodes.
We presented the design of a processor that enables on-node
signal analysis directly using compressively-sensed data. The
approach relies on the analytical construction of a compressed-
domain BPF, and allows performance to be retained up to high
compression factors (ξ ∼ 10×). In addition to communication
energy savings through end-to-end data reduction in a system,
this enables a mode of power management where the com-
putational energy scales strongly with the compression factor
due to a reduction in the number of input samples that need
to be processed.
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