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ABSTRACT
Virtual reality head-mounted displays (VR HMDs) are attracting
users with the promise of full sensory immersion in virtual environ-
ments. Creating the illusion of immersion for a near-eye display
results in very heavy rendering workloads: low latency, high framer-
ate, and high visual quality are all needed. Tethered VR setups in
which the HMD is bound to a powerful gaming desktop limit mo-
bility and exploration, and are difficult to deploy widely. Products
such as Google Cardboard and Samsung Gear VR purport to offer
any user a mobile VR experience, but their GPUs are too power-
constrained to produce an acceptable framerate and latency, even
for scenes of modest visual quality.

We present FLASHBACK, an unorthodox design point for HMD
VR that eschews all real-time scene rendering. Instead, FLASH-
BACK aggressively precomputes and caches all possible images
that a VR user might encounter. FLASHBACK memoizes costly
rendering effort in an offline step to build a cache full of panoramic
images. During runtime, FLASHBACK constructs and maintains
a hierarchical storage cache index to quickly lookup images that
the user should be seeing. On a cache miss, FLASHBACK uses fast
approximations of the correct image while concurrently fetching
more closely-matching entries from its cache for future requests.
Moreover, FLASHBACK not only works for static scenes, but also
for dynamic scenes with moving and animated objects.

We evaluate a prototype implementation of FLASHBACK and
report up to a 8⇥ improvement in framerate, 97⇥ reduction in
energy consumption per frame, and 15⇥ latency reduction compared
to a locally-rendered mobile VR setup. In some cases, FLASHBACK
even delivers better framerates and responsiveness than a tethered
HMD configuration on graphically complex scenes.

1. INTRODUCTION
Driven by recent advances in the mobile computing hardware

ecosystem, wearable Virtual Reality (VR) is experiencing a boom
in popularity, with many offerings becoming available. Wear-
able VR head-mounted displays (HMDs) fall into two device
classes: (i) Tethered HMDs: HMDs tethered to powerful, ex-
pensive gaming desktops, such as the Oculus Rift, HTC Vive,
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and Sony Playstation VR; (ii) Mobile-rendered HMDs: Self-
contained, untethered HMDs that run on mobile phones slotted
into head mounts, e.g., Google Cardboard and Samsung Gear VR.

However, both device classes present significant drawbacks.
Tethered HMDs are capable of rendering rich graphical scenes
at high framerates and visual quality, but require significant GPU
and compute resources in the form of a dedicated gaming desktop
or console co-located with the user. Tethered HMDs obviously
limit mobility and come with a high barrier to entry, but also suf-
fer the risk of tethered cords wrapping around a user’s neck.

Mobile-rendered HMDs are widely available but suffer from
low graphical quality, poor battery life, and uncomfortable ther-
mal radiation, all of which break the illusion of immersion. Mo-
bile GPU rendering can consume up to 20W of peak power [20],
making thermal output a safety concern for near-eye devices with-
out active cooling. Limiting mobile GPU power (and thus, perfor-
mance) is highly undesirable because (i) mobile GPUs are already
over an order of magnitude slower than desktop GPUs, and (ii) a
near-eye display exacerbates any performance degradations, often
causing motion discomfort or simulator sickness.

In addition, we believe that affordability is vital to widespread
VR adoption. Tethered HMDs are clearly cost-prohibitive, but
even mobile-rendered HMDs require high-end phones with high-
end GPUs. Providing immersive VR experiences on widely avail-
able, affordable devices will enable exciting new use cases: vir-
tual field trips for low-income or remote classrooms, enhanced
training simulations, medical education and examination, thera-
peutic rehabilitation, and many more beyond VR gaming [6].

The FLASHBACK Design
In this paper, we present FLASHBACK, a system that overcomes
the limitations of both Tethered and Mobile-rendered HMDs to of-
fer a full-quality VR experience on weak mobile devices. FLASH-
BACK does so by serving all of a VR application’s high data rate
rendering requests from a local cache of pre-rendered HD frames,
effectively memoizing prior rendering efforts. We are agnostic as
to what machine generates the cache — it could be a dedicated
cloud rendering server, a nearby desktop, or the HMD device it-
self (given plenty of time) — as long as the cached contents can
be downloaded to the HMD device before run time.

Pre-caching avoids the struggle of real-time rendering on a
weak mobile GPU while leveraging a prevailing trend among mo-
bile devices: storage is low-power, increasingly abundant, cheap,
and often underutilized, while graphical processing remains re-
stricted due to thermal and energy constraints. In fact, we show
that storage is sufficient to fully cache entire VR scenes.



Moreover, FLASHBACK fundamentally changes how VR appli-
cations can be deployed and executed on mobile devices. Instead
of running the application binary itself, one simply downloads
the application’s pre-rendered results (or generates them locally
ahead of time) for future use during playback, similar to down-
loading a movie. However, unlike a movie, the VR experience is
highly non-linear and interactive.

FLASHBACK builds a three-tier frame cache across GPU video
memory (VRAM), system RAM, and secondary storage to store
the set of frames needed for a given VR application. The cache
is indexed by the player’s current pose, its 3D position in the en-
vironment. As the player moves around, FLASHBACK retrieves
and displays a new frame from the cache that matches the up-
dated pose, using a nearest-neighbor algorithm to quickly search
the 3D space. Based on R-trees, our index is optimized to quickly
return results in GPU memory for immediate display while con-
currently fetching better cache entries from deeper in the storage
hierarchy for future requests. On a cache miss, FLASHBACK uses
cheap and fast approximations of the correct image based on well-
established mesh warping techniques from the computer graphics
community [24]. We further introduce cache compression tech-
niques to not only fit more cache entries in storage, but also to
increase system throughput. Section 4 explains the layout, usage,
creation, and compression of the frame cache in greater detail.

In addition to handling a static background scene, FLASHBACK
even supports dynamically-moving, animated objects (e.g., a per-
son walking, or n cars driving) using a per-object cache data struc-
ture. Dynamic object caches are indexed by the object’s anima-
tion stage, orientation, and relative distance from the player pose
for a given time- or movement-based trigger. Unlike the static
scene cache, a dynamic object cache stores frames that contain a
view of the dynamic object only, allowing FLASHBACK to com-
bine the static frame with multiple dynamic frames using pixel
depth metadata embedded in each frame. With support for both
static scenes and dynamic objects, FLASHBACK can handle many
types of VR applications. Section 5 provides a deeper exploration
of dynamic animated objects.

We develop a prototype implementation of FLASHBACK on
Windows 10 that supports rendering memoization of VR applica-
tions created with Unity, the most popular commercial game and
virtual reality creation tool. Our implementation is in three parts:
a Unity-side instrumentation suite that automates offline cache
generation, a CacheManager library that controls local cache
contents on the HMD, and a runtime based on DirectX 11 that
issues cache queries, composites cache entries into final scenes,
and displays rendered content onto the HMD. Our implementa-
tion does not require modifying the Unity VR application or the
HMD’s VR drivers, as described in Section 6.

Finally, we investigate the performance limits of FLASHBACK
with a thorough evaluation of our prototype on an Oculus Rift VR
headset powered by a weak HP Pavilion Mini device. FLASH-
BACK achieves up to a 15⇥ reduction in end-to-end latency, an
8⇥ increase in overall framerate, and a 97⇥ reduction in per-
frame energy consumption compared with a Mobile-rendered con-
figuration running a complex, fully-fledged VR environment. The
graphical quality, framerate, and latency of FLASHBACK are even
on par with — and sometimes better than — that of a strong gam-
ing desktop. We also show that FLASHBACK’s cache can scale
to large virtual environments and can handle a reasonable number
of concurrently visible dynamic objects. Therefore, FLASHBACK

is well-positioned to bring immersive VR experiences to mobile
devices through its novel rendering memoization techniques.

As VR is a visceral experience better seen than described, we
provide a video demonstration of FLASHBACK at [26].

2. BACKGROUND
Basic Operation of a VR System: A modern HMD, like the
Oculus Rift, has a variety of internal sensors, e.g., IMUs, that
track the player’s pose, comprised of 3D position and 3D orien-
tation. Some systems also have external sensors or cameras that
track the position of the HMD on the user’s face with respect to
the surrounding physical room. The display of the HMD is often
the same class as those used on smartphones and tablets. HMDs
use the tracked position to render the corresponding virtual envi-
ronment to the display.
Virtual Environment Creation Tools: The virtual environment
can be rendered from any computer-generated scene. Commer-
cial virtual environment creation tools are often the same as game
creation IDEs, such as Unity and Unreal. These IDEs provide a
convenient WYSIWYG way to rapidly construct and script scenes
based on pre-existing game objects. We leverage two important
properties of these tools. First, they clearly delineate static objects
from dynamic objects. Static objects in the virtual environment
do not change. Examples include buildings, terrain, landscape
and other immutable objects. A static scene consists of all static
objects rendered together. Dynamic object examples include vehi-
cles, animals, people, and anything with motion animations. Sec-
ond, the camera that generates the rendered result is conceptually
abstracted from the scene. As a result, it is straightforward to re-
place a scene’s camera with a custom camera, which we do to
generate cache entries.
VR as a mobile workload: VR HMD systems place heavy ren-
dering and power demands on computing systems. Modern VR
systems target:

• low latency: total end-to-end (motion-to-photon) latency of
under 25ms, half that of previous VR systems;

• high framerate: throughput of at least 60 frames per second
(FPS) to ensure smooth playback;

• scene complexity: visually rich, photo-realistic scenes.
These requirements are among the most demanding for con-

sumer mobile applications. In the temporal dimension, the la-
tency and framerate requirements derive from the fact that we
are physiologically very sensitive to lag in near-eye displays be-
cause the human visual and vestibular sensory systems are tightly
coupled. Even minor motion-to-photon latency can induce oscil-
loscopia (the sensation that your view and vestibular signals are
mismatched), and eventually motion sickness or simulator sick-
ness [7, 22, 4]. While classic studies found tolerance thresholds of
50ms (which coincided with measurement resolution) [3], more
recent anecdotal evidence suggests that 10-20ms is a better target,
depending upon the scene and user [25].

In the spatial domain, scene complexity refers to substantive de-
tail in a graphical scene, such as rich geometry and texture detail.
A near-eye display intensifies the importance of scene complexity
because the HMD’s pixels are mere centimeters from the eye and
magnified on the retina; thus, graphical detail (or lack thereof) be-
comes immediately more noticeable. Delivering photo-realistic
scenes requires substantial GPU processing capabilities.
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Figure 1: FLASHBACK runtime operation. FLASHBACK uses
the HMD pose to query the cache and decode the retrieved
megaframe if necessary, then it combines that static megaframe
with any dynamic object megaframes, and finally warps the
megaframe into a single final frame for the HMD.

The core challenge facing an untethered mobile HMD system
such as FLASHBACK is to provide all of the above properties —
low latency, high framerate and graphical quality — simultane-
ously at low power. Unfortunately, in Mobile-endered (and even
Tethered) HMDs, latency and high framerate are at odds with res-
olution and scene complexity: striving for higher quality scenes
impinges upon latency and framerate, and vice versa.

3. SYSTEM OVERVIEW
Figure 1 depicts the high-level operation of FLASHBACK, from

sampled input to displayed output. First, the current player pose
is read in from the HMD driver, comprising position and view ori-
entation. The position is the location of the player in 3D world
space; the view orientation is a rotation vector that represents
where the player is looking.

FLASHBACK then finds and reads multiple cache entries that
are needed for the user’s view. One of these cache entries cor-
responds to the static scene and the other entries correspond to
the dynamic objects in the scene. The cache lookup encompasses
GPU memory, system memory, and non-volatile secondary stor-
age, with varying levels of access speed. We optimize this lookup
with cache indexing (Section 4.4) and cache compression (Sec-
tion 4.3). When required, entries are pulled from higher to lower
levels of the cache hierarchy, evicting older entries. The matched
cache entries are then composited into a final view.

Upon a cache miss, instead of rendering the correct view in
real time, we synthesize an approximation of the correct view
from available cache entries with a computer graphics technique
known as mesh warping (Section 4.5). Warping is significantly
lighter-weight than rendering. Most importantly, unlike render-
ing, warping speed is not dependent on scene complexity; it is
only a fixed function of the screen resolution and runs efficiently
even on mobile GPUs. As a result, the scene can have arbitrar-
ily complex visual detail and effects, yet warping speed remains
constant.

As a final step, the HMD device driver performs lens-offsetting
barrel distortion and displays the final frame to the screen. The
components of this entire process are the main contributors to
the system’s end-to-end motion-to-photon latency, so we strive
to make them as efficient and performant as possible.
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Figure 2: Each cache entry contains a megaframe. The twenty-
four faces of the megaframe represent the left and right eye
cube maps for RGB color and depth.

4. CACHE ORGANIZATION
In this section, we describe the overall design of FLASHBACK’s

rendering memoization mechanism, its cache structure and behav-
ior, and optimizations for scalability and performance of static
scenes.

4.1 A Single Cache Entry: The Megaframe
Each entry of the cache consists of a high resolution megaframe

as shown in Figure 2. A megaframe is defined with respect to a
pose p = ((x, y, z), (✓,�, )). The parameters (x, y, z) represent
the position in 3D world coordinates. The parameters (✓,�, )
represent the orientation (sometimes referred to as rotation) as a
Euler angle comprising yaw, pitch, and roll, respectively. With
appropriate warping (Section 4.5), the megaframe allows us to
reconstruct nearby views that are translated or rotated with respect
to the megaframe’s pose.

Internally, a megaframe is composed of four cube maps. A
cube map is a classic computer graphics 360� representation of
an environment [14]. The cube map draws a panoramic image
on the six sides of a cube, with the centerpoint of the cube be-
ing the current pose. The four cube maps in a single megaframe
include:

• Left eye color (RGB) cube map,
• Left eye depth cube map,
• Right eye color (RGB) cube map, and
• Right eye depth cube map.

The left and right eye cube maps exist separately in order to gen-
erate a proper stereo view. Their positions are each offset from
the megaframe’s pose by half the inter-pupillary distance (IPD),
which is a user-specific anatomical property that represents the
distance between human eyes. The depth cube maps are not nec-
essary for representing the RGB pixel content of the scene, but
are useful during the warping step. All four cube maps in every
megaframe are stored consistently at a fixed, canonical orienta-
tion looking straight ahead, i.e., (✓,�, ) = (0, 0, 0). With four
cube maps and six faces per cube, the megaframe consists of 24
faces, as illustrated in the megaframe layout of Figure 2.

4.2 Cache Layout and Hierarchy
Figure 3 provides a visualization of how the cache is laid out

in logical 3D space. The megaframes conceptually occupy the
3D point matching the pose at which they were rendered; as a



Figure 3: Logical layout of megaframes. Each cube represents
a megaframe’s cache index visualized in 3D space. Arrows de-
pict the distance from the closest few megaframes to the current
pose query, represented by the camera icon.

player (camera icon) moves throughout the environment, it be-
comes closer to certain cubes and further from others. Distance
is defined with respect to the position difference in Euclidean
space. It is not necessary to consider orientation differences since
megaframe cube maps are panoramic; in fact, cube maps inher-
ently contain all possible orientations for a given position.

In terms of physical layout in memory or on storage, FLASH-
BACK builds a three-tier cache of megaframes, depicted in Fig-
ure 1 as an inverted triangle consisting of GPU VRAM as L1,
system RAM as L2, and persistent secondary storage, like SSD
or Flash, as L3. Although the size of each tier in Figure 1 is
not to scale, GPU VRAM is the smallest, followed by a larger-
sized RAM, and finally a massive secondary storage unit. Current
mobile SoCs have GPU VRAMs statically allocated from system
memory, typically a few hundred MBs on integrated chips. Sys-
tem RAM is usually 0.5–2GB (excluding GPU VRAM carve out).
Secondary storage sizes of flash can be up to several hundred GBs.
SSDs, a composition of multiple flash chips, can be thousands of
GBs. While SSDs are not common on mobile devices today, they
are worth consideration as they provide a point of extrapolation
for future device storage trends. As such, a moderate number of
megaframes are on the GPU VRAM, while all other megaframes
are relegated to the other two layers.

We initially considered how the physical storage layout of
cached frames would affect performance, believing that retriev-
ing a cached frame from disk could incur a substantial and unpre-
dictable latency penalty due to random reads with poor locality.
However, as demonstrated in §7, decoder latency (explained be-
low) dominates storage read latency by 2-3 orders of magnitude.
Therefore, we find it unnecessary to optimize the cache’s on-disk
layout.

4.3 Cache Compression
Cache compression provides for better performance and spa-

tial efficiency. Were we to store megaframes in a raw, uncom-
pressed format, we would rapidly saturate the data transfer band-
width between stages [9], as megaframes must be passed between
GPU VRAM and system RAM. Saturation leads to low framer-
ates and high latency. Note that even though GPU and system
memory share the same physical memory banks in mobile SoCs,
data transfer between the two still entails data copy because of for-
mat incompatibility and pointer swizzling. Therefore, we elect to
store megaframes in a compressed format (equivalent to a single-
frame H.264 video) when in system memory and stable storage.

We only decompress frames in GPU memory when they are most
likely to be displayed to the user. For efficiency, we leverage
the dedicated hardware H.264 decoder available in all modern de-
vices (typically used for video playback).

Another benefit of storing encoded frames on stable storage is
that each cache entry is smaller in size. As an example, a de-
coded 4k texture consumes over 8MB of memory, but encoding
that texture reduces it to under 100KB, allowing FLASHBACK to
maintain vastly larger caches.

Even with frame compression at the L2 and L3 layer, the per-
formance gap between L1 access and L2 or L3 access is large,
as demonstrated in Section 7. This is because decoding frames
still takes time, even with a dedicated hardware-accelerated de-
coder. On balance, trading data transfer time for decompression
time and an increase in the maximum number of cache entries is
an important part of the FLASHBACK design.

4.4 Cache Lookup and Indexing
FLASHBACK appoints a CacheManager to control the be-

havior of the cache and the flow or eviction of megaframes be-
tween different cache levels. The CacheManager’s primary
function is to accept a request in the form of a CacheKey (CK)
structure, containing player pose, and return a CacheValue
(CV) structure containing a reference to a retrieved megaframe, de-
coding it if necessary. The arrows in Figure 3 show the Euclidean
distance vectors used to locate the closest matching megaframe
cube for a given requested CK pose.

We realize this querying semantic via a nearest-neighbor
search using R-trees [17]. The R-tree algorithm constructs a set
of minimally-overlapping bounding boxes that each contain sub-
sets of points (in our case, the megaframe positions) in the 3D
space, helping to rapidly eliminate large portions of the search
space. When the correct box is located, the algorithm calculates
the distance from each existing point to the target point (the de-
sired pose’s position) and selects the closest one. We choose R-
trees because they support: (i) fast lookup; (ii) queries across stor-
age hierarchies, better than other nearest-neighbor indexes like
quad-trees and kd-trees, and (iii) good support for insertions and
deletions.

We design our use of R-trees in such a way that whenever we
receive a new pose request, we can always immediately return a
megaframe result from the GPU cache for display. At the same
time, if there is an even closer megaframe that exists in either L2
or L3 cache, it is fetched asynchronously to the GPU such that
it is available to service future pose requests, taking advantage of
temporal locality. As such, the notion of a cache miss refers to the
requested megaframe not having an identical match in the GPU
cache.

To support this goal, we use a dual R-tree data structure. Specif-
ically, we maintain two distinct R-trees: a GPU R-tree and a uni-
versal R-tree. The GPU R-tree only indexes cache entries that are
currently resident in the GPU cache, whereas the universal R-tree
indexes all cache entries across all three storage levels. A pose
request is issued to both the GPU R-tree and universal R-tree in
parallel. The nearest neighbor megaframe in the GPU R-tree is re-
turned immediately for display. The nearest neighbor megaframe
in the universal R-tree is also looked up. If it is the same as the
megaframe returned from the GPU R-tree, no further action is
taken. If it differs, it is then transferred from secondary storage
(if it was on L3, from RAM if L2) and then decoded to L1 asyn-



chronously. When a new megaframe is decoded, it is inserted into
the GPU R-tree and updated in the universal R-tree.

FLASHBACK’s CV structure must be kept to a minimal size be-
cause there are potentially millions of instances, one for every
cached megaframe. A CV holds a pointer to either a file location
on persistent storage (L3), byte array in system memory (L2), or
raw texture on GPU VRAM (L1), depending on which cache level
it resides. In fact, a CV can exist in multiple cache levels simul-
taneously, offering redundancy if the CV must be evicted from
VRAM or RAM cache to relieve memory pressure. Since our
cache contents are read-only, we never need to write back cache
entries into stable storage. Furthermore, cache eviction is simply
a matter of removing a cache entry from the index, a fast operation
for R-trees. We currently provide a flexible eviction mechanism
and a simple LRU policy, but future policies could be more in-
telligent, e.g., evicting the furthest cache entry from the player’s
current position.

4.5 Cache Miss and Approximate Results
An embedded assumption in FLASHBACK is that every possi-

ble rendering request can be served by cached contents in one of
the cache layers. Of course, even plentiful stable storage is fi-
nite. Therefore, in order to handle cache misses, we reuse nearby
cached entries to approximate the desired result. This allows us
to substantially increase FLASHBACK’s effective cache hit rate.

However, naïvely substituting a view centered at pose p in lieu
of a desired view at pose p0 results in a poor experience with un-
comfortable visual stuttering. Therefore, we apply a mesh warp
to the megaframe at p in order to derive an appropriate view
for p0. Mesh warping is a classic technique from the family of
computer graphics techniques known as Image-Based Rendering
(IBR) [24]. We explain the mechanics, limitations, and advan-
tages of mesh warp below.

Given an RGB cube map and matching depth cube map both
at pose p (say, of the left eye), we can generate a novel view v0

as if it had been taken from a new pose p0. At a high level, each
pixel of the original view is mapped to a 3D position (since p
and the depth map are known), and then the 3D position is repro-
jected to a pixel in the new view (since p0 is known). The final
view v0 resolution is proportional to the size of the megaframe.
Assuming a typical HMD field of view (106� height, 94� width),
a 4k megaframe (3840⇥ 2160) generates 720p final view frames
(1280⇥ 720).

However, if translation is too great (i.e., the position of p and
the position of p0 are too far apart) then v0 will suffer from vi-
sual artifacts such as disocclusions. Imagine looking at an open
doorway and then stepping forward; from the original view, it is
unclear what should appear in the disoccluded “holes” that are
now visible. This suggests that we may desire additional cube
maps to handle translations that are beyond a threshold, which is
precisely what our additional megaframes provide. On the other
hand, since our cube map covers a panoramic view, mesh warp-
ing is robust to arbitrary changes in rotation without introducing
artifacts.

4.6 Populating the Cache
We now discuss how FLASHBACK actually generates the

megaframes that will occupy the cache. These frames are gen-
erated offline, either on the mobile device itself (given enough
time) or alternatively downloaded much like a video file from a

desktop computer or powerful rendering server in the cloud. De-
ploying a dataset as large as the megaframe cache from a cloud
server to the mobile device seems prohibitive at first, but is in
actuality quite tractable due to the cache’s extremely high com-
pressability. The cache can be greatly compressed on the server
due to adjacent megaframes having largely identical blocks, and
then decompressed (decoded) on the mobile device in an ahead-
of-time cache unpacking step.

Logically, FLASHBACK performs a 3D grid sweep across the
virtual space constituting the static scene. At each grid point,
FLASHBACK captures a panoramic stereo image of the world and
writes this to a cube map. It does this again for depth, and then
composites the corresponding megaframe. The megaframe is then
encoded as an individual key frame (I-frame) using the H.264
codec. Finally, FLASHBACK writes the encoded megaframe to
secondary storage with a unique identifier linking back to the
pose from which it was generated. This fully-automated proce-
dure repeats for every possible pose in the environment, which
is potentially n3 combinations due to the three dimensions of the
pose’s position value. The density of the grid, or quantization, im-
pacts both the final cache size and the visual artifacts encountered
during the warping approximation, as well as latency and framer-
ate. We found that a virtual grid density between 0.02 and 0.05
virtual-world units (e.g., 2-5cm) offers a good trade-off between
unnoticeable visual artifacts and cache size (§8).

Furthermore, we can aggressively cull the set of possible pose
values based on the geometry and restricted movement paths of
the environment. For example, for a virtual environment in which
the player walks on the ground, we can limit the potential height
values to a smaller range, e.g., five to seven feet above the ground.
This technique significantly reduces the pose state space by elim-
inating impossible values, such as being underground or inside of
a solid wall. Thus, while the worst case complexity of generating
the megaframe cache is O(n3), the typical case is much less.

5. HANDLING DYNAMIC OBJECTS
In addition to caching the static environment’s megaframes,

FLASHBACK supports dynamic objects complete with freeform
motion paths and animations. Dynamic object caching extends
the base semantics of static caching with a more complex cache
key structure and querying procedure.

5.1 Generating the Dynamic Object Cache
Rendering memoization for dynamic objects involves a proce-

dure similar to that of static scenes. Offline, FLASHBACK iterates
over the input space and renders megaframes. However, instead
of only iterating over possible positions, dynamic objects have
more dimensions: position, orientation, and animations. This re-
sults in a massive input space for each object, but fortunately it
can be pruned along all three dimensions.

Capturing Dynamic Object Megaframes
We now describe the full procedure for populating a dynamic ob-
ject’s cache. As a preprocessing step, we extract and treat each
dynamic object independently by placing it in an otherwise empty
virtual world. This is important for megaframe composition free
from side effects, described in Section 5.3 below.

Next, we iterate over all possible values along the position, ori-
entation and animation dimensions in a set of nested loops. The



Figure 4: FLASHBACK caches dynamic objects by rendering a
megaframe from all possible relative player positions and view-
ing angles, depicted here as camera icons. This repeats for all
object animations and rotations.

outer loop is position. This position value consists of the same 3D
point format but has a different semantic meaning from a static
megaframe’s position: it is the position of the player relative to
that of the object, which is calculated by the Euclidean distance
between the object position and the player camera position. We
prune the position dimension in the same way as for static frames:
the dynamic object is only visible to the player from a limited ge-
ographical area (e.g., distance). It is important to understand that
the position value used for dynamic objects is not the physical lo-
cation of the dynamic object itself in world space, but rather the
position of the player relative to the dynamic object. This vastly
reduces the position-dimension state space. For example, when
the player stands 5 meters north (in a bird’s-eye view) of the dy-
namic object, this configuration results in the same player view
of that object no matter the absolute position of the two bodies in
the virtual environment.

The next inner loop iterates over all possible values along the
orientation dimension. Just like the player, a dynamic object can
have its own view orientation, commonly referred to as the ob-
ject’s rotation. We prune the orientation dimension according to
both the potential player viewpoints as well as the possible rota-
tions of the object itself. For example, if the object rotates along
the vertical y-axis only, a very common behavior for animated
objects, we only need to iterate over angles in the y direction.

The final inner loop iterates over all possible animation stages
in the object’s animation sequence. There are up to as many
stages as there are frames in the animation sequence; stages can
be a downsampling of the number of frames in the animation.
For example, the horse-drawn cart in Figure 4, which is a profes-
sionally produced dynamic object with animations, has a detailed
“trotting” animation sequence, but we were able to represent it as
a periodically repeating set of 36 stages with no loss in anima-
tion fidelity. If an object has multiple animation sequences (e.g.,
walking, running, or standing), the procedure is repeated for every
sequence.

Capturing Dynamic Object Pose Traces
In order to know which megaframe should be used for a dy-
namic object at a given point in time, FLASHBACK records a pose
trace of the dynamic object during offline playback of the origi-
nal VR application. This trace defines the object’s motion path
and stage in the animation sequence for a given timestamp. Note

CK.orientation

CK.pos

Anim.	List Anim.	List

Top-level	R-tree,	
position-indexed

Dynamic	
CacheKey

Mid-level	R-tree,	
orientation-indexed

Last-level	animation	list,
timestamp-indexed

Anim.	List

Retrieved
megaframe

Figure 5: Nested R-Trees for Retrieval of Dynamic Objects. Dy-
namic objects are indexed by relative position (top-level R-tree),
orientation (nested R-trees), and animation stages (simple lists).

that this means dynamic objects appear deterministically based
on the timeline. For example, a horse always trots along the same
path in the virtual environment, independent of where the user is
positioned or looking. Future work includes extending the cache
index to support different dynamic object behavior based on the
player’s actions and pose.

5.2 Dynamic Object Index and Lookup
The query execution for dynamic object caches is a two-step

process. First, the object’s pose trace is queried using the current
timestamp to determine at what view orientation and animation
stage that object should appear.

Once the dynamic object pose descriptor is acquired, step two
is to query the actual megaframe cache using a dynamic cache key
(dynamic CK), consisting of the pose descriptor from the trace in
step one (orientation and animation) and the relative player posi-
tion. The dynamic CK consists of 7 values: a 3D position vector,
3D orientation vector, and scalar animation stage.

While it is possible to construct a 7 dimension R-tree, it would
suffer because a high-dimension data structure is ill-suited for use
with spatial indexing algorithms. Instead, we construct a nested R-
tree as shown in Figure 5 that reduces the R-tree to 3 dimensions
at most. It consists of a top-level R-tree indexed by position (sim-
ilar to the universal R-tree for static scenes). However, instead of
its leaf nodes pointing to megaframes, each leaf node points to a
second-level R-tree indexed by orientation; there are n such ori-
entation R-trees, one for each node in the position R-tree. Finally,
each leaf node of the orientation R-tree points to a simple list that
maps a timestamp to an animation stage pointer. Finally, the an-
imation stage pointer points to a megaframe that was captured
with the corresponding 7-tuple.

The logic behind the nesting ordering of position, orientation
and animation stage is that it prioritizes position distance. Sud-
denly seeing a large translation jump in a dynamic object will
throw off the player’s inner balance more so than seeing that ob-
ject at an unexpected rotation angle or a strange animation frame.

To execute a query, the CacheManager first queries the top-
level (position-indexed) R-tree using the relative position value to
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Figure 6: Compositing Dynamic Objects With Static Scenes.
Croppings of the megaframes (a single cube face) for one static
scene and one dynamic object are shown.

obtain a reference to the mid-level R-tree of orientation indices.
It then queries that mid-level R-tree using the dynamic object’s
current orientation to obtain a reference to the lowest level list
of animation frame sequences, which is finally indexed using the
animation stage timestamp to obtain the actual megaframe that
best matches the dynamic CK’s values.

5.3 Compositing Dynamic Objects
Once a megaframe has been retrieved for every visible dy-

namic object, all of their megaframes along with the static scene
megaframe are overlaid into a single composite megaframe. Re-
call that each megaframe includes not only the cube faces rep-
resenting the actual scene pixels, but also the depth values for
each pixel (see Figure 2). We utilize these depth values in a pixel
shader to determine which objects should occlude other objects
and components of the static scene, and vice versa. Therefore,
FLASHBACK can support a complex layering of both dynamic
and static objects, e.g., placing a sprite in front of one building but
behind another. An illustrative example is shown in Figure 6. Af-
ter composition is complete, the composite megaframe is handed
off to the cube map warp routine to construct the final view.

5.4 Look-ahead Decoding
When we have idle decode cycles (e.g., when many requests

are hitting the GPU cache), it is worthwhile from an energy and
performance perspective to speculate on which megaframes will
be requested in the near future. That way, we can preemptively
decode the chosen megaframes and have them ready on GPU
VRAM by the time they are needed. We employ a relatively
straightforward speculation mechanism that looks n frame peri-
ods into the future (e.g., 5 frames from now) by reading n fu-
ture values of the dynamic object’s pose trace. FLASHBACK
then instructs the CacheManager to lookup those n future
megaframes and decode as many as time permits.

Though this is particularly well-suited for dynamic objects due
to their predictable motion pattern known ahead of time, we can
also apply it to the static scene by speculating on the player’s
movement. This turns out to be less successful than for dynamic
objects (§7) because it relies on accurately predicting the user’s
future pose, which has much more uncertainty than deterministic
dynamic object poses [21].

5.5 Limitations of Dynamic Objects
As FLASHBACK composites the pixel representation of dy-

namic objects, it is more limited than general rendering.
Lighting Models: Our approach cannot support certain lighting
models and special effects for dynamic objects: these include
scene-dependent lighting and reflections. For example, if the ap-
pearance of a dynamic object depends on where it is relative to
the scene’s light sources, our caching mechanism will fail to cap-
ture the object’s lighting variations. These limitations stem from
the fact that we construct the cache entries for the dynamic ob-
ject in isolation from the static scene. It is conceivable that the
cache can also be augmented to include indexing by relative light
source positions and orientations, much like it is already indexed
by relative player pose. We leave this as future work.
Scalability: FLASHBACK’s technique for handling dynamic ob-
jects has unique scalability properties; we quantify and explain its
behavior in Section 8.2.

6. IMPLEMENTATION
Our prototype implementation of FLASHBACK runs on Win-

dows 10 using the Oculus Rift DK2 HMD. It is powered by a
weak HP Mini computer equivalent in compute and GPU power
to a mid-range smartphone (§7). Our implementation is in three
parts: the Unity cache generator that automates the rendering
memoization process, the CacheManager on the HMD, and the
lightweight playback client on the HMD.
Unity-side Cache Generation: We implement Unity-side cache
generation by adding a special array of rendering cameras that au-
tomatically generate megaframes. A series of scripts coordinate
the camera behavior with the automated pose enumeration (§5.1),
which can be either manually bounded or automatically inferred
based on the collision boxes and environment geometry of the
Unity application. Every megaframe is encoded with an external
ffmpeg toolchain and saved to cache storage. In total, we pack-
age 3900 lines of C# code into a Unity prefab that simplifies the
incorporation of our caching scripts down to a simple drag-and-
drop import operation. Thus, any Unity game or VR application
can be quickly and easily transformed to work with FLASHBACK.
CacheManager: We implement the CacheManager, including
all querying, organization, and handling of cached megaframes,
with approximately 1200 lines of C++ code. In addition to the
functions described in Sections 4 and 5, the CacheManager
provides raw megaframes to the playback program for display,
meaning that it must handle decoding. The CacheManager is
also responsible for parsing the cache contents from storage. Be-
cause FLASHBACK’s caches can scale to very large proportions,
parsing them must also perform well at scale. Iterating through
every cached file is prohibitively slow, so FLASHBACK creates a
special index file for each cache instance once the cache is fully
generated, enabling the playback program to bypass the parsing
process altogether. Instead, it memory maps or reads each index
file directly into a pre-allocated R-tree instance, using an initial
packing algorithm to create the whole R-tree in one batch, offer-
ing better query performance as a side benefit.
Lightweight Playback Program: The cache population proce-
dure effectively flattens a VR application’s complex behavior into
a collection of data structures on storage. As such, the program
needed to “play” the application on the mobile device is relatively
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Figure 7: Four GFXBench benchmarks across three devices
demonstrate that the HP Pavilion Mini is less capable than a
Galaxy S6, and that both devices are an order of magnitude
weaker than a VR-capable desktop [1].

simple. We develop a reference implementation of the playback
program atop a remote desktop client framework with skeleton
code for decoding and displaying VNC-like screenshots. The
playback program is responsible for initializing and interfacing
with the CacheManager, reading pose information from the
HMD driver, and driving the display with frames obtained from
the CacheManager.

Due to its simplicity, our playback program is wholly applica-
tion agnostic; the single executable can play any memoized VR
application without modification or recompilation. To switch be-
tween different VR applications, one simply redirects the program
to a different set of cached files.

7. EVALUATION
We evaluate FLASHBACK’s ability to improve the framerate

and reduce the end-to-end latency and energy consumption of full-
quality VR applications on mobile devices, using a combination
of macrobenchmarks (§7.2) and microbenchmarks (§7.3).

7.1 Setup and Methodology
As mentioned in Section 6, we use the HP Pavilion 300-030

Mini as our mobile device that powers an Oculus Rift DK2 HMD.
The HP Mini is a small, weak computer equipped with a mobile-
class Intel HD 4400 GPU, an Intel i3 1.9GHz dual-core processor,
4GB of RAM, and a 240GB OCZ Arc 100 SSD. This setup is
compatible with our existing Windows-based software stack, and
as Figure 7 shows, is a suitable approximation for the state-of-the-
art Samsung Galaxy S6 Gear VR mobile HMD, with HP Mini
being outperformed by the Gear VR in all benchmarks. Similarly,
the OCZ ARC SSD that we used presents sequential and random
read speeds approximately equivalent to that of the Galaxy S6’s
secondary storage [33].

We evaluated FLASHBACK with Viking Village [2], a demand-
ing virtual-world Unity application designed for high-end desktop
PCs, with complex scenes that exceed the capabilities of current
mobile devices. We augmented Viking Village to support virtual
reality and generate megaframes; a 4K (3840x2160) megaframe
allows our prototype to display 720p final frames on the HMD.
Unless otherwise mentioned, all experiments are performed with
two independent dynamic objects in addition to the static scene.
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Figure 8: FLASHBACK achieves an end-to-end latency up to
15X shorter than a weak mobile device rendering locally, with
worst-case latency no higher than that of a gaming desktop.

We measured energy consumption of our HP Mini setup, includ-
ing the Oculus Rift DK2 HMD, using a P3 P4460 Kill-A-Watt
Electricity Usage Monitor.

7.2 Macrobenchmarks
We evaluate FLASHBACK’s real-world performance with as-

sessments of four target objectives: (i) low end-to-end latency, (ii)
high framerate, (iii) good visual quality, and (iv) low energy con-
sumption. The following sections demonstrate that FLASHBACK
compares favorably to locally rendering the VR application on
both a strong desktop PC and a weak mobile device.

FLASHBACK achieves low end-to-end latency
Figure 8 demonstrates the low end-to-end latency of FLASHBACK
compared to other systems. This represents the elapsed time from
when the latest pose is received from the HMD until when the
frame corresponding to that pose is sent to the display. It does
not include the latency contributed by the input subsystem and the
display hardware, as FLASHBACK has no impact on these compo-
nents; those latencies are equally present when VR applications
execute locally and therefore do not affect the contributions of our
work.

As shown in Figure 8, FLASHBACK achieves a median end-
to-end latency of 12.4ms for GPU cache hits. FLASHBACK can
achieve such low latency on a GPU hit because the player pose
can be sampled right before choosing a texture to display. Even
when the requested megaframe is absent from the GPU cache and
must be retrieved and decoded, FLASHBACK still incurs lower
end-to-end latency than a strong desktop PC.

FLASHBACK delivers high framerates
Figure 9 presents a framerate comparison of three different VR
configurations running Viking Village: local rendering on our mo-
bile device (HP Mini), local rendering on a strong desktop PC,
and FLASHBACK on the HP Mini. For a truly immersive expe-
rience, it is necessary for the system hardware running the VR
application to deliver as high a framerate as the HMD supports.
Figure 9 indicates that a mobile device’s capabilities are insuffi-
cient to deliver a satisfactory framerate when locally rendering
on a demanding VR application. In contrast, our unoptimized
FLASHBACK prototype delivers a framerate 8⇥ higher than a mo-
bile device and even exceeds that of a desktop PC with a high-end
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Figure 9: FLASHBACK delivers framerates up to 8X higher
than a mobile HMD rendering locally.

VR implementation Visual Quality
Standalone mobile device 0.81
FLASHBACK 0.932

Table 1: SSIM metrics showing that FLASHBACK does not neg-
atively affect visual quality, delivering great image quality at
much higher framerates. An SSIM of 1.0 indicates perfect im-
age fidelity, and values above 0.9 are very good [12].

GPU. On a GPU hit for a static scene, FLASHBACK’s framerate is
limited not by our system but by the hardware refresh rate limita-
tions of the display on the Oculus Rift DK2. We note that the per-
formance of FLASHBACK decreases with more visible dynamic
objects, which we discuss and quantify in Section 8.2.

FLASHBACK offers higher visual quality
Thus far, we have used the term visual quality loosely; now
we provide a more rigorous definition. Structural Similarity
(SSIM) [34] score is a standard criterion from the video com-
pression community used to quantify the perceived loss in video
quality between a pristine image f⇤ and a distorted version of
that image, f . For example, the images f⇤ and f might repre-
sent the same scene rendered with a High graphics setting and
a Low graphics setting, respectively. The function SSIMf⇤(f)
outputs a real value in [0, 1], where a lower values indicates lower
fidelity to the pristine image. By definition, SSIMf⇤(f⇤) = 1
and SSIMf⇤(f) = 0 when f is random noise. While SSIM
is not perfect representation of human quality assessment, it is
more accurate than alternative measures such as SNR and PSNR,
and maps reasonably to the standard subjective measure for video
quality based on user studies, Mean Opinion Score [34].

SSIM extends from still images to video in a straightforward
way: a frame-by-frame comparison of a pristine video v⇤ against
a distorted video v, with each frame’s SSIM scores averaged
to obtain an overall score. In our case, v⇤ is the pristine video
generated by our high-end desktop PC tethered to the HMD, and
v is the video generated and displayed by FLASHBACK.

Table 1 shows FLASHBACK’s effect on Viking Village’s visual
quality using SSIM. We recorded a trace of head movements and
replayed it on our FLASHBACK prototype to obtain v⇤, and again
on a stock Viking Village implementation to obtain v. Figure 10

Figure 10: Sample frames outputted at the same trace pose
(post-alignment), used as SSIM inputs. The left frame is the
pristine image (f⇤) from stock Viking Village. The right frame
(f ) represents a worst-case GPU cache miss in FLASHBACK,
demonstrating the quality of our graphical warp.

shows a side-by-side comparison of two sample frames as out-
putted by Viking Village and FLASHBACK. Due to an inalterable
Oculus SDK difference between Viking Village and our imple-
mentation of FLASHBACK, the images are rendered with slightly
different pose values, resulting in a minor translation-only pixel
misalignment. This difference stems from a Unity-specific im-
plementation of the Oculus library that is unavailable outside of
Unity and is not unique to Viking Village. We correct this align-
ment issue with Hugin [27], a well-known panoramic stitching
tool that we configure to crop each unaligned image to the same
aligned bounds. We restrict Hugin to simply shift and crop the im-
ages by a few pixels, disabling stretching, re-projection, or warp-
ing of any kind. Configured as such, Hugin does not alter the
quality of either image nor unfairly affects the SSIM test results.

We found that FLASHBACK does not adversely affect visual
quality, but rather achieves a higher SSIM score while delivering
a much higher framerate; it also does not significantly degrade
the quality as compared to stock Viking Village. Our prototype
of FLASHBACK obtained a median SSIM score of 0.932 with a
standard deviation of 0.015, which falls within the “great quality”
threshold of the SSIM scale [34, 12]. In order to be as critical
of FLASHBACK as possible, we chose to compare undistorted
eye textures instead of the final frame displayed on the HMD.
Eye textures are rendered at a much higher resolution than the
final frame and thus represent the worst-case degradation due
to FLASHBACK. On the other hand, the standalone mobile de-
vice rendering Viking Village locally obtained a poor SSIM score
of 0.81, falling beneath the 0.86 threshold of “visually accept-
able” [34, 12].

FLASHBACK significantly improves energy efficiency
We evaluate FLASHBACK to exemplify the energy-saving bene-
fits of rendering memoization. Figure 11 shows that FLASHBACK
consumes significantly less energy — under 250mJ per frame —
than local execution on both a mobile device and desktop PC. As
a frame of reference, the HP system has a minimum power con-
sumption of 6.6W when idling with the screen on, and a maxi-
mum consumption of 28W under full utilization. Energy-efficient
VR playback enables FLASHBACK to run longer on an untethered
mobile HMD, providing a more immersive VR experience.
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Figure 11: FLASHBACK significantly reduces the energy con-
sumed per frame displayed even when a frame must be decoded
first. Desktop measurements were conducted on a different,
less energy-efficient machine.

7.3 Microbenchmarks
We now characterize the behavior of FLASHBACK with the fol-

lowing microbenchmarks that test query scalability to large-size
caches and retrieval performance of the cache.

Cache Scalability and Performance
To determine whether the performance and scalability of FLASH-
BACK’s frame cache satisfies the requirements of demanding VR
applications like Viking Village, we designed several microbench-
marks with caches of different sizes. Figure 12a plots the median
lookup time to query the cache using our universal R-tree, where
all cache values are indexed at a single hierarchical level. There-
fore, locating (not retrieving) a cached frame in RAM is equally
as fast as locating one on disk or GPU. Figure 12a also shows that
FLASHBACK’s additional GPU R-tree lookup will always have a
very low query time, because the on-GPU cache never exceeds a
few hundred entries due to limited VRAM.

We present the cache retrieval performance from the three dif-
ferent sources in our current FLASHBACK implementation: the
disk, system memory, and the GPU. Figure 12b shows the re-
trieval results for 4k megaframes. A GPU cache hit is very fast,
taking less time than a vsync refresh interval. In fact, this is the
reason that FLASHBACK’s performance on a GPU hit is limited
not by the cache itself but by the HMD’s refresh rate. On the other
hand, the cost of retrieving from memory and the disk is higher
because the cache entry must first be decoded, the bottleneck in
both cases.

Typical Cache Storage Requirements
We present in Figure 12c the cache storage size necessary to sup-
port a virtual environment of varying dimensions and complexi-
ties using our preferred quantization of 0.02 virtual-world units.
As discussed in Section 4.6, the size of the static cache depends
not only on the range of possible position values but also on the
granularity with which we quantize the virtual environment. At
this quantization granularity, while not modest, our requirements
for a complex VR environment like Viking Village can fit well
within the flash storage of a modern smartphone; this can be
reduced significantly with selective post-deployment decompres-
sion (§4.6). In addition, while our preferred granularity is 0.02,

for some users, the visual inconsistencies introduced by a granu-
larity of up to 0.05 or 0.1 may be too small to distinguish, further
reducing FLASHBACK storage requirements vastly.

8. DISCUSSION
In this section, we discuss unique aspects of FLASHBACK’s

behavior and analytically characterize its limitations.

8.1 Cache Hit Ratios
In FLASHBACK, the latency of delivering the most accurate

megaframe for a given pose is dependent upon cache hit ratios.
Note that a frame will always be displayed, but it may not be the
closest match for a given pose if that frame was not yet decoded
in GPU VRAM. As our evaluation has shown, the performance of
FLASHBACK on a GPU hit is much higher than on misses due to
decoding. While it is difficult to provide hard numbers for cache
hit ratios with VR being a novelty in the consumer market, we can
provide estimates. The average effective latency Lavg is given by
the following equation:

Lavg = (hit%)⇥ (Lhit) + (1� hit%)⇥ (Lmiss)

For example, a 40% GPU cache hit ratio would produce an ex-
pected latency of 34ms. Energy savings are similarly propor-
tional to this hit ratio. In our anecdotal experience, we play-tested
both a simple, single-room VR application as well as the complex
Viking Village application in an informal experiment, and expe-
rienced GPU cache hit ratios from 18-47% depending on motion
path and player behavior.

8.2 Scalability to Multiple Dynamic Objects
Figure 13 demonstrates that FLASHBACK can scale to com-

positing a moderate number of concurrently visible dynamic
objects. The performance degradation is due to our unopti-
mized pixel shader comparing every pixel of a dynamic object’s
megaframe with the static scene’s megaframe in the backbuffer.
The current FLASHBACK prototype drastically reduces the num-
ber of pixel comparisons by merging it with the graphical warp
shader, such that only pixels appearing in the final frame are pair-
wise compared instead of all pixels in the megaframe. Future
improvements are possible by comparing only pixels within the
dynamic object’s active region instead of the entire frame.

Though the number of visible dynamic objects can be a bot-
tleneck, this limitation warrants clarification. FLASHBACK is
performance-limited by the number of currently-visible dynamic
objects with independent motion paths or animation characteris-
tics. Thus, if there are 50 instances of a rotating sprite that all
rotate together or in some deterministic pattern — a rather com-
mon scenario — all 50 of those object instances can be clustered
into a single dynamic object for FLASHBACK’s display purposes,
and quickly rendered as such. When the visible dynamic objects
are truly independent, as in Figure 13, our approach is scalable
only to tens of simultaneously visible dynamic objects. Anecdo-
tally, this is a reasonable number for many virtual environments.

In the case of Figure 13, our HP setup reaches 100% phys-
ical memory usage when rendering 8 or more independent dy-
namic objects. This causes a memory thrashing effect where de-
coded textures fill GPU memory, which subsequently causes sys-
tem RAM pages to be rapidly swapped to/from disk. This phe-
nomenon occurs because our HP setup has an integrated graphics
card, meaning that GPU memory is physically shared with system
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VR Environment Cache Size
Car interior 115 MB
10x10 bedroom 730 MB
20x25 lounge 2.8 GB
2500 sqft. house 8.7 GB
Basketball arena 29 GB
Viking Village [2] 54 GB
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Figure 12: (a) Cache query time scales well with the size of the cache, allowing FLASHBACK to performantly support very large
caches. (b) Performance when retrieving 4k megaframes from all three cache levels. The y-axis break shows very small retrieval
times from GPU. (c) Cache size on Flash storage (uncompressed) for various static virtual environments.
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Figure 13: FLASHBACK scales well to a moderate number of
visible dynamic objects, maintaining a high framerate until in-
sufficient memory causes page thrashing.

RAM, so the HP’s 4GB of RAM must be split between the OS,
other applications, our VR application, and FLASHBACK’s cache.
Even with poor memory management behavior, FLASHBACK is
still able to maintain approximately 37 FPS for 10+ visible dy-
namic objects. Note that we did not observe this thrashing behav-
ior on systems with dedicated graphics VRAM, as the contents of
under-pressure GPU memory cannot force system RAM pages to
be evicted to swap space.

8.3 Speculative Decoding Tradeoffs
As indicated in Figure 12b, decoding cached frames is among

the most expensive operations on the critical display path. Fortu-
nately, both low- and high-end mobile devices today feature an op-
timized hardware codec that outperforms our HP device’s codec.
Nevertheless, we evaluate the utility of speculative decoding to
mask the decoder latency.

Figure 14 shows the effect of our simple speculative decoding
method in terms of the percent framerate change for a given looka-
head distance, as described in §5.4. As expected, dynamic objects
are much more amenable to speculation because their poses can
be easily predicted, at least when they do not interact with the
player. Predicting a static frame pose is much more difficult be-
cause it depends on the player’s movement, which requires a more
advanced speculation algorithm to be truly effective. Our specu-
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Figure 14: Speculative decoding offers some improvement for
dynamic objects at moderate lookahead distances, but is inef-
fective when overly aggressive. All framerates are >50 FPS.

lation turns out to be less accurate and even counter-productive
when looking further ahead, as it causes frames with a higher like-
lihood of usage to be prematurely evicted from the GPU cache in
favor of unused speculative frames.

8.4 Quantization Affects Performance
The choice of quantization granularity has an impact on

FLASHBACK’s performance, as seen in Figure 15. Towards the
left side, coarser quantizations increase cache hit ratios, maximiz-
ing framerate and minimizing latency, but reduce visual quality
because the graphical warp must stretch the image to a further per-
spective. Towards the right, finer quantizations maintain excellent
visual quality but reduce cache locality, degrading performance.

The worst-case effect of superfine quantization is that every
new pose results in a new megaframe, i.e., zero GPU cache hits.
Thus, the theoretical lower bound on performance is equivalent
to decoding every megaframe, shown in the third column of Fig-
ures 8 and 9. It is therefore important to select a quantization that
represents the sweet spot between performance and visual qual-
ity. We have found that a quantization 0.05 virtual units (e.g.,
5cm) offers playback free from noticeable visual artifacts, and
that quantizations finer than 0.02 offer diminishing returns that
are visually indistinguishable, hence why we chose a quantization
of 0.02 when evaluating FLASHBACK.
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Figure 15: The effects of quantization (cache density) on
FLASHBACK’s performance: framerate and latency.

9. RELATED WORK
The general idea of precomputing or pre-caching results to ser-

vice interactive requests on mobile devices has appeared in nu-
merous forms [15]. For example, work has looked at precom-
puting statistical models for mobile appointment reminders [19],
pre-caching web search results on mobile devices [23], and pre-
caching database query results on mobile devices [5]. Our sce-
nario is highly targeted at VR rendering, and therefore makes
many domain-specific choices to improve graphical quality, la-
tency, and framerate.

Instead of precomputation, an alternate way to enhance the ca-
pabilities of a mobile device is to offload computation to more
powerful computers. The mobile computing community has
a rich history of exploring computation offload to supplement
resource-constrained devices. Among these, Maui, Clone Cloud,
and Comet investigated the implications of general purpose com-
pute offload [11, 10, 16]. In the domain of wearable visual aug-
mented reality offload, the authors of [18] evaluated computa-
tion offload for visual and cognitive assistance tasks with Google
Glass. The timing, compute, bandwidth, and quality requirements
for full resolution, wide field of view, high-framerate HMDs are
qualitatively much more strict than for text annotations on Google
Glass, and therefore yield different points in the wearable design
space. Such offloading techniques would be inappropriate for mo-
bile VR, causing high latencies and poor visual quality.

In the space of offloading real-time rendering for mobile de-
vices, recent work has demonstrated that it can be done with low
latency [21] or high quality [12]. Specifically, Outatime [21]
focuses on the case of synchronous client-server execution, in
which a powerful rendering server speculates on future inputs
and delivers predicted frames to the mobile client ahead of time,
masking network latency. In contrast, FLASHBACK fully decou-
ples client execution from the server — if a server is used at all
— and relies instead on the mobile device’s local storage hierar-
chy. FLASHBACK does indeed utilize a similar cube map and
graphical warp IBR approximation as Outatime, albeit adapted

for virtual reality. In the future, we are likely to merge these two
complementary techniques into a hybrid system employing both
speculation and caching to jointly improve latency and quality.

In summary, all offloading strategies, including some pre-
liminary forays into the HMD space [13], require active, sta-
ble network connectivity to servers, ignoring the plentiful high-
performance storage on the device itself.

The graphics community has examined the quality vs. per-
formance trade-off of caching objects as rendered images. One
such pioneering effort, Apple’s QuickTime VR, allowed for free-
viewpoint viewing of static virtual environments or objects from
a desktop computer [8]. Later works helped develop algorithms
to efficiently add dynamic objects into virtual environments [31,
30, 32]. However, these efforts were primarily focused on desk-
top environments and preceded mobile device architectures, such
as: multi-level storage hierarchies, flash storage, video decoders
and energy constraints. They were also less ambitious in terms of
exploring the limits of memoizing dynamic object motion paths
and animation sequences, standard elements of modern 3D scenes.
Previous work has also proposed a cube map-like frame layout
for warping pre-rendered images to the user’s head pose at run-
time [29, 28]. However, these latter solutions relied on special-
ized hardware support, termed virtual reality address recalcula-
tion pipelines, which is not present in modern GPUs. All of our
work operates on commodity low end mobile GPUs.

10. CONCLUSION
We present FLASHBACK, an unorthodox solution for bring-

ing full-quality VR experiences to weak mobile HMD devices.
FLASHBACK avoids the expensive costs of a VR application’s
heavy rendering demands by aggressively pre-generating and
caching all possible frames that a player might see. With sup-
port for caching of both static scenes and dynamic animated
objects, FLASHBACK can support most VR applications in an
application-agnostic fashion. We implement and evaluate a proto-
type of FLASHBACK to demonstrate improved energy efficiency
per frame, higher overall framerates, and lower end-to-end la-
tency compared to that of local rendering on a mobile device.
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