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Abstract

Online evaluation is one of the most common approaches to measure the
effectiveness of an information retrieval system. It involves fielding the
information retrieval system to real users, and observing these users’ in-
teractions in-situ while they engage with the system. This allows actual
users with real world information needs to play an important part in
assessing retrieval quality. As such, online evaluation complements the
common alternative offline evaluation approaches which may provide
more easily interpretable outcomes, yet are often less realistic when
measuring of quality and actual user experience.

In this survey, we provide an overview of online evaluation tech-
niques for information retrieval. We show how online evaluation is used
for controlled experiments, segmenting them into experiment designs
that allow absolute or relative quality assessments. Our presentation
of different metrics further partitions online evaluation based on dif-
ferent sized experimental units commonly of interest: documents, lists
and sessions. Additionally, we include an extensive discussion of recent
work on data re-use, and experiment estimation based on historical
data.

A substantial part of this work focuses on practical issues: How
to run evaluations in practice, how to select experimental parameters,
how to take into account ethical considerations inherent in online eval-
uations, and limitations. While most published work on online experi-
mentation today is at large scale in systems with millions of users, we
also emphasize that the same techniques can be applied at small scale.
To this end, we emphasize recent work that makes it easier to use at
smaller scales and encourage studying real-world information seeking
in a wide range of scenarios. Finally, we present a summary of the
most recent work in the area, and describe open problems, as well as
postulating future directions.

K. Hofmann, L. Li, and F. Radlinski. Online Evaluation for Information Retrieval.
Foundations and TrendsR© in Information Retrieval, vol. 10, no. 1, pp. 1–117, 2016.
DOI: 10.1561/1500000051.



1
Introduction

Information retrieval (IR) has a long and fruitful tradition of empir-
ical research. Since early experiments on indexing schemes, and the
development of the Cranfield paradigm, researchers have been striv-
ing to establish methodology for empirical research that best supports
their research goals – to understand human information seeking, and
to develop the most effective technology to support it.

In the past decade, IR systems, from large-scale commercial Web
search engines to specialized analysis software, have become ubiqui-
tous. They have transformed the way in which we access information,
and are for many an integral part of their daily lives. This shift towards
everyday, ubiquitous IR systems is posing new challenges for empiri-
cal research. While it was previously possible to substantially improve
IR systems by measuring and optimizing reasonably objective criteria,
such as topical relevance, this is no longer sufficient. IR systems are be-
coming increasingly contextual and personal. They take into account
information about their users’ current situation as well as previous in-
teractions, and aim to predict their users’ requirements and preferences
given new contexts. No longer can users or experts be asked to provide
objective assessments of retrieval quality for such complex scenarios.

2
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Online evaluation for IR addresses the challenges that require as-
sessment of systems in terms of their utility for the user. The current
state of the art provides a set of methods and tools, firmly grounded
in and informed by the tradition of controlled experimentation. Giving
an overview of these methods and their conceptual foundations, as well
as guiding the reader on how to run their own online evaluations are
the purposes of this survey.

In the next section, we define key concepts and terminology used
throughout this survey. Then, we closely examine the motivations for
online evaluation, and provide example use cases. Finally, we outline
the scope and organization of the remainder of this survey.

1.1 Terminology

For the purpose of this survey, we adopt the following definition of
online evaluation.

Definition 1.1. Online evaluation is evaluation of a fully functioning
system based on implicit measurement of real users’ experiences of the
system in a natural usage environment.

The first key to the definition is implicit measurement, which we take
to include any measurements that can be derived from observable user
activity that is part of users’ natural or normal interaction with the
system [Kelly and Teevan, 2003]. Implicit measurements can range from
low-level and potentially noisy signals, such as clicks or dwell-times, to
more robust signals, such as purchase decisions. The key distinction
we make between implicit and explicit measurements is that implicit
measurements are a by-product of users’ natural interaction, while ex-
plicit ones are specifically collected for feedback purposes. Both types
of measures can also be combined into composite metrics capturing
higher-level concepts, such as user satisfaction. These considerations
give rise to a wide range of metrics, as discussed in Chapter 3.

We specifically include methods for offline estimation, i.e., the esti-
mation of online evaluation metrics based on past observations of users’
behavior, in Chapter 4. Such estimation substantially increases the flex-



4 Introduction

ibility of online evaluation and facilitates theoretically well-founded
end-to-end evaluation of system components.

1.2 Motivation and Uses

Online evaluation is often seen as a set of methods that are particularly
applicable in industry and industrial research. In these settings, a fully
functioning IR system is typically available and in need of constant
innovation. These factors have significantly contributed to the rapid
adoption of online evaluation techniques in these settings. In indus-
try, online evaluation approaches such as AB tests (c.f., Section 2.4)
and interleaved comparisons (Section 2.6) are now the state of the art
for evaluating system effectiveness [Kohavi et al., 2009, Radlinski and
Craswell, 2010, Li et al., 2011, Bendersky et al., 2014].

However, it is important to recall that much of the initial work on
online evaluation originated in academic settings. Important motiva-
tions here were the need for reliable measurement of search quality of
specialized search services [Radlinski et al., 2008c]. This line of work
originated in the tradition of interactive IR. The fruitful exchange of
ideas between applications and research continues today. On the one
hand, practical challenges from IR applications motivate the develop-
ment of online evaluation methodology; Chapter 2 gives a few examples.
On the other hand, lessons learned in practical applications make their
way into the state-of-the-art methodological tool set of IR researchers.

In the context of both practical applications and basic research, a
key aspect of online evaluation is its reliance on controlled experiments.
This allows the researcher to answer explanatory questions, which can
explain causal relations in observed phenomena. In practical settings,
this is crucial for correctly attributing observed changes in user be-
havior to system behavior. In research, this allows the development of
theory in terms of causal concepts. More details on controlled experi-
ments for online evaluation are provided in Chapter 2.

Finally, in Chapter 5, we discuss pros and cons of online evaluation,
compared with more traditional offline evaluation methodology. This
will help guide the reader to understand when an online evaluation is
suitable, and when it is not.
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1.3 This Survey

Online evaluation comprises a specific set of tools and methods that we
see as complementary to other evaluation approaches in IR. In particu-
lar, online evaluation addresses questions about users’ experience with
an IR system that are quite distinct from those answered by offline
evaluation using a test-collection-based approach, surveyed by Sander-
son [2010]. Test-collection-based evaluation models users at varying
levels of abstractions, and uses explicit assessments and offline met-
rics to assess system performance under these abstractions. Questions
that are more appropriate for offline evaluation are those for which
reliable and unbiased judgments can be collected from assessors (be
they trained experts or crowdsourced representative users), but would
be hard to infer from user interactions; an example being the quality
of a document. Vice versa, online evaluation is more appropriate when
the opposite is the case: for example, which of two topically relevant
documents users find more interesting.

This survey does not discuss test-collection-based approaches in
any detail, but points out conceptual differences when deemed appro-
priate. Furthermore, Chapter 5 focuses on online evaluation and test-
collection-based approaches along a few dimensions.

Closely related to online evaluation is the long tradition of inter-
active IR (IIR) and the experimental framework developed for it, as
surveyed by Kelly and Gyllstrom [2011]. We see online evaluation as
a continuation of the IIR tradition, with considerable overlap. How-
ever, online evaluation extends to the specific requirements, limitations,
and opportunities afforded by the scale, natural settings, and levels of
control that are available in online settings. Generally speaking, IIR
approaches, such as lab studies, are more appropriate for answering
questions that require a high level of experimental control: for example,
which tasks or queries a study participant is asked to solve. Conversely,
online evaluation is preferred when researchers aim to study natural in-
teractions at scale. This survey necessarily overlaps with some of the
material that is relevant in the IIR setting, and we endeavor to point
out connections as much as feasible. Our main focus will be on method-
ological questions that are specific to online evaluation settings.
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Throughout this survey, we consider IR in a broad sense, including
for instance recommender systems and advertisement placement. Many
aspects of online evaluation are shared across these areas. For exam-
ple, early work on using historical information for estimating online
performance focused on ad placement [Langford et al., 2008] and news
recommendation [Li et al., 2011]. We cover work in all these areas, and
emphasize work that is specific to IR, such as search result ranking
evaluation, as appropriate.

We have also highlighted particular places in the text with tips (such
as the one below) that may be particularly useful for experimenters
performing online evaluation without having access to very large user
bases. While at first glance online evaluation may appear to be best
suited to settings such as commercial search engines, in fact it has been
widely used in academic settings as well.

Tip for small-scale experiments #1

Online evaluation can also be used with just tens of users, or hun-
dreds of queries. Particular tips for experiments with few users are
highlighted in the text with a box like this one.

1.4 Organization

We start in Chapter 2 by motivating the need for controlled experi-
ments and detailing common experiment designs used in online eval-
uation, with a focus on experimentation methodologies that are par-
ticularly useful for IR. Following this, Chapter 3 gives an extensive
overview of the variety of metrics that have been proposed for different
tasks and research questions. Considering how to re-use online mea-
surement data, Chapter 4 details offline estimation of online metrics
from historical data. Turning to more practical issues, Chapter 5 dis-
cusses advantages and limitations of online evaluation, while Chapter 6
discusses practical issues around running online experiments. Finally,
Chapter 7 concludes this survey with an outlook on emerging trends
and open challenges.
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Controlled Experiments

The building block of online evaluation is the controlled experiment,
which allows us to identify whether observed changes in user behavior
have been caused by changes to an IR system.

2.1 Online Controlled Experiments in Information Retrieval

Consider a developer at a news website who has developed a news rank-
ing algorithm that ranks news articles based on readers’ past reading
behavior. This developer may strongly believe that this new approach
will perform much better than the current ranking algorithm, causing
higher user engagement as measured by click rates. How can the devel-
oper convince their management that this is indeed the case, and that
the algorithm should be used for ranking news items in the future?

In this typical example of ranker development, the developer’s col-
leagues would likely ask for empirical evidence to validate the claims.
The most convincing empirical evidence can be obtained by conducting
a controlled experiment [Shadish et al., 2002]. A controlled experiment
is a type of scientific experiment that aims to explain cause-and-effect
relationships, for instance, that switching the current algorithm for a

7
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new one would cause users to have a better experience. In scientific dis-
covery, this type of evidence is particularly valued because the causal
relationships that can be discovered in this way are robust, for instance
to certain changes in the distribution (or statistical properties) of the
observed data. For example, a causal relationship between highlighting
search result titles and click rate would be stable under changes in the
distribution of the actual titles, while their correlation would typically
be affected by such changes. 1

The same characteristics make controlled experiments attractive
for the practical development of interactive systems. Developers of
such systems are typically interested in understanding effects of system
changes on the users who interact with these systems. For example, it is
important to understand whether an observed increase in user clicks (or
any other measure of user engagement) is caused by a given algorithm
and its parameter changes. The terminology, online controlled experi-
ment, reflects the emphasis on identifying causal effect on user metrics.
In particular, an online controlled experiment is able to distinguish the
effects of the algorithm from external causes, such as a breaking news
story that may increase engagement with all online search systems. An
excellent introduction to the topic of causality from the perspective of
interactive system development is [Bottou et al., 2013].

This survey focuses on controlled experiments as a means for identi-
fying causal relationships using explanatory studies. The goal of these
studies, as the name implies, is to explain the cause of a given phe-
nomenon. In research programs, explanatory studies typically comple-
ment other types of studies, such as exploratory studies and descrip-
tive studies. Exploratory studies are more open-ended than explana-
tory studies and are typically conducted at the beginning of a research
program, to identify salient concepts or phenomena that are then in-
vestigated using narrower and more formal experiments. Descriptive
studies describe the characteristics of the phenomena under investiga-
tion, while the explanatory studies that we focus on aim to explain

1An orthogonal issue is model completeness. Detected causal models can appear
to change if a model is incomplete, and unobserved variables change. This underlines
the need for systematic theory building, one of the foundations of modern science.
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how these phenomena come about and how they would change in re-
sponse to changes in their causes. In the context of IR, search logs are
a particularly rich data source for exploratory and descriptive studies.
Work on search log analysis and relevant methodology are reviewed by
Jansen [2006] and Silvestri [2010]. Popular research methodology in-
cludes content analysis [Krippendorff, 2012], data mining [Han et al.,
2011], and visualization [Tufte and Graves-Morris, 1983, Andrienko and
Andrienko, 2006, Unwin, 2015].

Testing the effectiveness of algorithmic changes in large-scale Web
applications is only one of the many important uses of controlled ex-
periments in IR. When information retrieval initially required an eval-
uation framework, researchers turned to manually created collections
of queries and documents. This type of controlled experiment is usu-
ally referred to as the Cranfield approach [Cleverdon, 1967]. It was first
used to address the question of which document indexing scheme per-
formed better, by creating static collections of documents and queries
that allow repeated experimentation. The Cranfield studies led to the
collection-based experimentation paradigm [Sanderson, 2010] and to
the TREC tradition [Voorhees and Harman, 2005]. Today, evaluation
campaigns are commonly modeled on this experimental paradigm.

A complementary experimental paradigm is needed to study inter-
active effects of information retrieval. This is the focus of study of inter-
active information retrieval (IIR) [Kelly, 2009]. While test-collection-
based evaluation approaches typically abstract away from users and
user-system interactions to focus on, e.g., topical relevance, IIR aims
to understand and model precisely those user and interaction charac-
teristics that can inform the development of more effective interactive
IR systems. Research in IIR heavily relies on methodologies such as
laboratory studies or longitudinal studies, as surveyed by Kelly [2009].
Controlled experiments are one of the core methodologies. For example,
an experiment that aims to compare users’ reactions to two different
search interfaces may randomly split participants into two groups, and
expose each to a single search interface. Experiment designs like this
form the basis of online evaluation. The designs that are most common
in online evaluation are discussed in the following sections.
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As IR systems become ubiquitous, scale to millions of users, and
start providing information access on more and more diverse devices
and platforms, new challenges and opportunities for controlled experi-
mentation arise. For many of these systems, users and their information
needs are too diverse and dynamic to be adequately captured in static
test collections. Further, metrics and interaction effects that are best
captured in-situ make even large-scale laboratory studies infeasible. In
response, experimentation methodology is extended to address these
new challenges. These developments also facilitate a new scale, imme-
diacy, and new natural settings for conducting controlled experiments,
that allow researchers to study phenomena that were previously diffi-
cult to capture. Towards the end of this chapter, we specifically focus on
these new challenges and opportunities for controlled experimentation
that arise from the characteristics of online experimentation.

Chapter Outline In this chapter we detail the ingredients for design-
ing online controlled experiments. We define key terminology and ideas
of controlled experiments more formally, and give an overview of how
experiments are typically designed in Section 2.2 and analyzed in Sec-
tion 2.3. Then, we turn our focus to two experiment designs that are the
most commonly used in online controlled experiments for IR: between-
subject experiments (Section 2.4) and within-subject experiments (Sec-
tion 2.6). For each type, we provide descriptions of and references to a
number of case studies that illustrate how they are applied and types of
studies they support. We also discuss recent development towards more
complex designs for online controlled experiments (for between-subject
designs in Section 2.5, for within-subject designs in Section 2.7).

2.2 Planning Controlled Experiments

Information retrieval strongly relies on controlled experimentation both
for developing theory and for validating practical applications. In both
cases, experiment planning starts from one or more hypotheses that are
to be tested in the experiments. We discuss hypotheses and how they
inform experiment design and data collection in the first part of this
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section. Next, we discuss possible choices of experiment designs, which
define how experimental treatments are applied during data collection.

2.2.1 Hypotheses and Variables

The goal of a controlled experiment is typically to test one or more
hypotheses [Shadish et al., 2002]. A hypothesis connects two or more
variables in the form of one or more testable predictions. For example,
a hypothesis in the news recommendation problem described at the
beginning of the chapter could be:

H1: Increasing the weight X given to document recency in
the ranking function will increase user click-through rate Y .

In contrast, the corresponding null hypothesis could be:

H0: Increasing the weight X given to document recency
in the ranking function will not increase user click-through
rate Y .

A controlled experiment can then be performed to test whether H1,
also known as the alternative hypothesis, can be accepted or rejected
against H0.

The example hypothesis H1 connects two variables (recency rank-
ing weight X and click-through rate Y ) and makes a testable prediction
(Y increases as X increases). The hypothesis is testable, because we
can construct an experiment to falsify it against an appropriate null
hypothesis (for example, increase X and measure Y ). Note that this
hypothesis is formulated in the form of a causal mechanism. We hy-
pothesize that X affects Y , but not vice versa (manipulating X is
expected to change Y , while manipulating Y is not expected to result
in changes in X). Thus, measuring the correlation between variables is
not sufficient, only a controlled experiment can test the hypothesis (we
come back to this example towards the end of this section to examine
possible effects of confounding variables on measured correlations).

Two common types of variables can be involved in the formulation
of hypotheses. First, independent variables are those that can be
manipulated or controlled by the experimenter (we refer to them as
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variables belonging to the set X ). In the cause-and-effect relationships
modeled in explanatory studies, these are the causes or explanations
that bring about the hypothesized effects. Depending on the commu-
nity, independent variables are also known as predictor, condition,
factor, or input. Effects are then captured by dependent variables
(belonging to set Y), called so because their values are hypothesized
to depend on the independent variables. Dependent variables are also
known as response, outcome, output, key-performance indicator (KPI),
overall evaluation criterion (OEC), performance metric or measure. In
the example above, the click-through rate Y is a dependent variable. It
cannot be set directly by the experimenter, but rather is hypothesized
to respond to changes in the independent variable X.

Also common, but less often discussed, are quasi-independent vari-
ables. These are variables over which the experimenter has only partial
control or that are difficult to select (for example, the expertise of the
experimental subject, or gender). Because these variables cannot be
(randomly) assigned by the experimenter, there typically is a risk that
quasi-independent variables can suffer from confounding. Confounding
variables, also known as confounders, refer to extraneous variables
(variables that the experimenter did not record or control for) which
may affect both dependent and independent variables. Confounders
can have strong effects on an analysis, e.g., resulting in spurious corre-
lations between independent and dependent variables (leading to the
risk that the experimenter detects a relationship that is not actually
causal), or mask actual effects (leading the experimenter to falsely miss
causal relationships between independent and dependent variables).
Randomized controlled experiments (i.e., the randomized assignment
of subjects to experiment conditions) is the safest way to avoid
confounding. However, in experiment designs with quasi-independent
variables this may not be possible, and great care must be taken to
minimize the risk of confounding [Campbell and Stanley, 1966].

Considering our running example of news recommendation, we
can now exemplify the effect that confounding variables can have on
measured correlations between variables. Assume the experimenter had
access to a previously collected data set, that contained measurements
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of the recency weight X and click-through rate Y , but importantly
the data set did not originate from a controlled experiment. If a high
correlation between X and Y is measured, it is possible that this
reflects an underlying mechanism that is consistent with hypothesis
H1. However, it is also possible that a confounding variable has affected
the observed measurements. For example, the recency weight may have
been set to a higher overall value at some point in the past, and (inde-
pendently) user behavior may have changed to a higher click-through
rate. Alternatively, different types of queries may be treated with
different recency weights and at the same time have naturally higher
click-through rates. In both cases, any level of correlation could be
measured, without any causal relation being present. Possibly worse,
a positive correlation could be measured even if the inverse causal
mechanism were present (a positive correlation can be measured even
if in fact higher recency weight caused lower click-through rates) – this
could lead to examples of the co-called Simpson’s Paradox [Simpson,
1951, Bottou et al., 2013]. Careful analysis can help identify possible
confounding variables and strengthen analysis. However, the only safe
method to establish causal relationships is controlled experimentation.

The process in which experimenters arrive at a hypothesis can be
more or less structured, depending on the type of experiment. For
example, in practical applications such as the development of ranking
algorithms for a search engine, there may be a default hypothesis that
states that a newly developed variant of the system will improve the
search engine’s target metric in comparison to the current production
system. In more theory-oriented research, hypotheses may be derived
from a broader model or a more general theory (see [Azzopardi, 2014]
for a recent example), or they may be derived from insights gained
through an earlier exploratory or descriptive study. In either case, the
same methodology for hypothesis testing can be employed.

2.2.2 Experiment Design

An experiment design specifies how data will be collected to test a
given hypothesis [Lawson, 2014]. It specifies how experiment sub-
jects are assigned to the various experiment conditions (dependent
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variables) that are defined by the hypothesis. Experiment designs
need to be carefully constructed to ensure the reliability of the
experiment to detect causal effects (e.g., to avoid confounding). In
other words, it must be such that any measured effects truly reflect
causal relationships between the variables, and that effects of potential
external factors are eliminated as much as possible.

For a concrete example, let us again consider the news ranking sce-
nario discussed above. Assume that we want to construct an experiment
where two levels of ranking weight X are tested: low and high. Naïvely,
one could construct an experiment where the system uses a low ranking
weight on day 1, and a high ranking weight on day 2. Notice that with
this design, it is unclear whether any changes in click behavior between
days can be attributed to X, or whether additional factors may play
a role. For example, there may be changes in click behavior over time,
or differences between weekends and weekdays. To avoid such spurious
correlations, we have to ensure that the assignment in the experiment
is independent of potential external influences (confounding variables).

The key insight that the assignment of subjects to experimental
conditions must be independent of potential confounding factors has
led to a series of standardized experiment designs that represent best
practices and insights gained from prior research. A commonly used
type is known as factorial designs (see [Kelly, 2009]). They allow
flexible testing of one or more independent variables (factors) at
different levels. In the news ranking example above, only one factor
with two levels was used, but we could add more factors, such as the
color of the links to news items, and whether or not related images are
shown alongside links. The type of factorial design is then specified by
the number of factors, and levels in each factor that are available. A
2 × 3 × 2 design would indicate that there are three factors, two with
two levels each and one with three levels. The design then specifies the
combinations presented to each subject. The challenge is to carefully
avoid introducing spurious correlations between factors and sequences
of factors, while minimizing the number of subjects required.

In factorial designs, different combinations of factors are presented
in a sequence in a pre-specified order so that an equal number of
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subjects observe each combination of factors. However, in online
experiments this sort of assignment by subject is typically difficult,
especially as different subjects usually interact with the system for
different lengths of time. Therefore, randomized assignment to condi-
tions is preferred. This is a major difference between the online setting
and laboratory experiments, where the main concern is typically the
need to assign test subjects in a way that allows valid results with
relatively few test subjects.

The choice of experiment design affects the sample size required
for a given experiment. When factorial designs are used, the sample
size should be a multiple of the number of possible assignments. In
randomized experiments, the required sample size can be estimated
using variance estimates for the response variables, a minimum dif-
ference between conditions that the experiment is intended to detect,
and additional details related to the planned analysis. A number of
tools for computing sample sizes are summarized in Section 6.3.5.
If variance is expected to be high and large samples are required,
variance reduction techniques may reduce required sample size, to
lower experiment impact on users and make more effective use of the
collected data (see Section 2.5).

Online evaluation in industry is often concerned with relatively
incremental changes to a production system and may require hundreds
of thousands or millions of impressions for detecting changes of the
expected magnitude at the observed levels of variance [Chapelle
et al., 2012]. In studies that aim to detect larger effects, much smaller
amounts of data may suffice, e.g., from tens of users [Matthijs and
Radlinski, 2011]. We provide further details on these practical aspects
of planning and analyzing controlled experiments in Chapter 6.

Finally, the experiment design should be planned together with
the methodology for data analysis. Data analysis will be discussed in
section Section 2.3.

2.2.3 Unit of Experimentation

One of the key attributes of a controlled experiment is the unit of
experimentation: At what granularity are experimental conditions
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tested? Kohavi et al. [2009] describes that typically the unit of
experimentation is a “user” (subject) so that a given user always has
a consistent experience throughout the duration of an experiment.
Smaller units are possible when interactions at these levels can be
neglected (for instance, different ranking functions may be used for
different queries by the same user in a search scenario, or perhaps
the user can be randomly assigned to a condition the first time they
visit a website on a given day). Using smaller experimental units can
dramatically reduce data requirements, but whenever such assump-
tions are made they should be validated in a preliminary experiment.
Larger units of experimentation may be required when users cannot
be assumed to be independent, e.g., in the presence of network effects.
Work on extensions to such settings is reviewed in Section 2.5.

For the remainder of this chapter, we assume the unit of experi-
mentation is the user unless stated otherwise.

Tip for small-scale experiments #2

Experiment designs with small units of experimentation have a high
effective sample size and therefore make very effective use of experi-
ment data. For example, analysis on the query level is typically more
sensitive than analysis on the session or user level. However, be cau-
tious about possible biases when units are not in fact independent.

2.3 Data Analysis

Data analysis is designed to answer questions about the collected
data. These could include questions related to modeling (e.g., Can the
structure of the data be summarized in a compact model?), prediction
(e.g., What response should I expect if I change some subset of the
modeled variables in a specific manner?), and hypothesis testing
(e.g., Are my observations likely due to chance, rather than a specific
mechanism I proposed as a hypothesis?). These questions are in many
ways related to each other, and can be answered using the same set
of mathematical and statistical tools. The approach for data analysis
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is tightly coupled with the experiment design and should be planned
at the same time, as the planned analysis affects decisions about data
collection, such as the required sample size (c.f., Section 2.2).

In this survey we focus on data analysis using a statistical technique
called regression analysis [Gelman and Hill, 2006]. We start with an
overview of regression analysis and illustrate it using simple and more
complex examples. Finally, we draw parallels to the complementary
analysis technique ANOVA, and briefly discuss recent work on issues
that arise in continuous testing.

2.3.1 Regression Analysis

Regression analysis is a very flexible tool for modeling, prediction, and
hypothesis testing, and is widely used in online experimentation [Bak-
shy and Frachtenberg, 2015, Bendersky et al., 2014, Deng et al., 2013,
Drutsa et al., 2015a, Gui et al., 2015, Hofmann et al., 2014]. In its
simplest form it covers simple linear models with a small number of
variables (including the arguably most common use case, the t-test)
but can be easily extended to a wide range of complex models and
hypotheses [Gelman and Hill, 2006], including hierarchical models or
models that include network effects.

Regression analysis models dependent variables Y as a function of
independent variables X and coefficients β:

Y = f(X, β) , (2.1)

where X is a matrix with rows corresponding to the experiment units’
independent variables and one column per unit of experimentation,
and Y the vector recording the corresponding units’ dependent
variables. Considering our running example of news ranking, a model
of this form formalizes the notion that click-through rate Y is some
function of recency ranking X.

The functional form of the model f has to be specified by the
experimenter. A frequent choice is a linear functional form:

Y = XTβ + ε , (2.2)

where the experimenter assumes that the dependent variables can
be modeled as a weighted linear combination of the independent
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variables, plus a noise term, ε. In our running example, choosing this
form models the assumption that the click-through rate Y changes
linearly with recency ranking X.

Given a model specification like the linear model above, and data
collected in a controlled experiment, standard tools for regression
analysis can be used to estimate the parameters (coefficients) of the
specified model, and to conduct significance tests.

One of the standard tools employed for this purpose is ordinary
least-squares (OLS). Robust estimation methods for regression analysis
for a wide range of models have been developed over the past years
and now available as part of commonly used data analysis toolboxes.
The available tools make this type of analysis possible and practical
for analyzing even large amounts of data (e.g., millions of samples).
Example packages are listed in Section 6.6.1. An excellent resource for
further study is by Lawson [2014].

There is a close connection between regression models and tests of
statistical significance. For example, it turns out that the functional
form of an independent sample t-test is equivalent to the linear model
above with a single dependent and independent variable, and two
coefficients (β0 which can be interpreted as the response level without
treatment, and β1, which corresponds to changes in the response
due to the treatment). The analysis consists in estimating the two
coefficients from experiment data, and then assessing whether β1 is
statistically significant (unlikely to have occurred due to chance).

An example study that uses regression analysis in a more complex
model is [Hofmann et al., 2014]. It uses a so-called mixed-effects gener-
alized linear model to capture effects of subject, task and experiment
condition in an eye-tracking study of query auto completion. The
following model is used for analysis:

g(yij) = β0 + β1xij + piui + tjvj + εij . (2.3)

Here, g(yij) denotes generalized response variables that can be trans-
formed using link functions g(). For example, this allows modeling
binary response variables, or the logarithm of the response. Responses
are modeled as linear combinations of the treatment condition xij , the
effects of participant ui and topic vj , and the noise component εij . The
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resulting model allows the experimenter to accurately and automati-
cally estimate the model coefficients that best account for the variance
due to the crossed effects of topic and participant, and separate them
from the treatment effects that are the main interest of the study.

Tip for small-scale experiments #3

Regression analysis is particularly well-suited for analyzing small-
scale experiments.

In cases where the analyzed data are the result of a carefully con-
structed controlled experiment, the described regression analysis can
be used to support causal claims. Note that this heavily relies on the
assumptions that underlie controlled experimentation, such as inde-
pendence between experimental assignments and observed outcomes.

2.3.2 Relation to ANOVA

In laboratory studies, a traditional tool for data analysis is Analysis
of Variance (ANOVA). Briefly, ANOVA analysis uses a model to
quantify variance contributed by the different factors to the outcome
of an experiment (e.g., the tested hypothesis), comparing this to the
overall sample variance, and assessing whether the model explains
a significant portion of the overall variance [Tabachnick and Fidell,
2013]. Traditionally, ANOVA can refer to the method of decomposing
variance for exploratory data analysis, to significance testing of
whether some of these components significantly contribute to the
observed variance (using F-tests), or to a specific procedure for arriving
at the desired decomposition and significance test. The methodology
is widely used, especially in the psychology and the social sciences.

The relationship between regression analysis and ANOVA is well
understood [Gelman et al., 2005, Gelman and Hill, 2006]. In partic-
ular, Gelman et al. [2005] argue that the type of analysis afforded by
ANOVA is more relevant than ever. At the same time, this analysis can
be conducted on top of regression models. This results in a flexible mod-
eling and hypothesis testing framework. In particular, regression anal-
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ysis makes it straightforward to deal with missing or unbalanced data,
differences in group sizes, and complex hierarchical models. Regression
models can also be used to gain additional insights, beyond attributing
variance. For example, they can be used to predict changes in response
variables as a function of unit changes in the independent variables.

2.3.3 Continuous Testing

A recent development is the introduction of tools (dashboards)
that allow experimenters to continuously monitor running experi-
ments [Johari et al., 2015]. This introduces the problem of continuous
testing. Traditional analysis and hypothesis testing assumes that the
experiment setup, including the sample size, is fixed before the start
of the experiment, and the corresponding analysis techniques are only
valid if they are applied once data collection is complete (in particular,
data collected in an experiment cannot be used to make decisions
on when to stop data collection). Decision making with continuous
observation requires an alternative analysis method that models
the probability of observing any particular outcome at any point
throughout the experiment. Otherwise, the probability of error may
be underestimated. First approaches that address this problem have
been proposed recently [Johari et al., 2015, Kharitonov et al., 2015c].

In the next sections, we examine experiment designs (and their
corresponding regression models) that are particularly common in IR
research.

2.4 Between-subject Experiments

By far the most common type of controlled experiment on the web is
AB testing [Kohavi et al., 2009]. This is a classic between-subject exper-
iment, where each subject is exposed to exactly one of two conditions
(e.g., control – the current system, or treatment – an experimental
system that is hypothesized to outperform the control). In this setup,
there is a single independent variable, namely a binary indicator that
identifies the system that a given subject is exposed to. A typical hy-
pothesis is that the system has a significant effect on some performance
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metric (the dependent variable). Crucially, the assignment of subjects
to conditions (systems) is randomized, so that a causal relationship
between condition and performance metric can be established.

On the surface, AB tests are very simple to implement, as they
constitute the most basic type of controlled experiment. However,
correctly implementing randomized assignment of experiment units,
data collection, and validation for systems that are distributed over
hundreds or thousands of servers, and serve millions of users is a major
challenge. Kohavi et al. [2009] provide a detailed account of AB testing
at scale, with a strong emphasis on practical aspects encountered in
a production environment. For example, they discuss how the choice
of performance metric can affect variance, and thereby the required
sample size for an experiment, how to compute confidence intervals
for percentage changes, and strategies for dealing with robots. Kohavi
et al. [2012] detail several case-studies that illustrate surprising results
of online experiments that can result from the choice of performance
metric, instrumentation, or from carryover effects. Kohavi et al. [2013]
give an updated overview and expands on engineering lessons of how
to implement large scale AB tests in practice.

Previous work on controlled experiments on the web has primarily
focused on practical challenges posed by the scale and complexity of
systems like commercial web search engines. Understanding of these
issues is now maturing. We discuss this topic in Section 6.3.

Case Studies AB testing has quickly developed into a gold standard
for online experimentation in industry settings. For instance, the work
of Dong et al. [2011] focuses on learning personalized news recommen-
dation. Their learning approach relies on estimating user engagement
with a news model, and models are learned from exploration data
collected in a randomization user group. An AB test (there called
bucket test) is conducted to compare two methods for interpreting
user actions (e.g., clicks) for learning personalized recommendations.
Performance is measured in terms of click-through.

Bendersky et al. [2014] also focus on recommendation, but specif-
ically addresses the problem of recommending related videos after



22 Controlled Experiments

visitors to a video viewing website have finished watching a video.
Recommendation is modeled in terms of video topics and relies on
estimates of topic transitions. The resulting algorithm and an alterna-
tive retrieval-based recommendation approach are compared to their
production system in a 3-way AB test. Performance is assessed in terms
of the metrics watch time, completion rate, and abandonment rate.

Kohavi et al. [2012] provide several examples of online controlled
experiments, related to information retrieval and other web based
systems, to illustrate potential pitfalls in online experimentation.
For example, they highlight the difficulties involved in choosing an
evaluation metric for controlled experiments on web search engines.
Metrics that focus on long-term effects, such as users/month are often
closely aligned with the high-level objectives of the search engine
operator (e.g., query share), but may be difficult to estimate. Shorter
term metrics may be easier to measure, but may not be as highly
correlated with the operator’s objectives.

2.5 Extensions to AB testing

As the use of online controlled experiments is becoming more common,
research has shifted to extending this methodology. Of particular in-
terest are methods for increasing experiment throughput (the number
of experiments that can be run on a given amount of online traffic),
on enabling more flexible experiment designs, and on automating
online controlled experimentation. We discuss each of these in turn
below. More specific extensions to the development of online metrics
(Chapter 3), and to estimating experiment outcomes using historical
data (Chapter 4) are discussed in their own chapters.

While large online systems can have millions of users a day that may
potentially participate in online controlled experiments, this has by no
means removed the need to design experiments to be as sample efficient
as possible. For offline experiments recruiting large numbers of users is
typically prohibitive and these are therefore typically limited to tens or
hundreds of users. Having access to millions of potential subjects per
day may seem ideal. However, in practice, experiments are on the one
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hand still costly (they may have adverse effects on users, which should
be minimized through economical experiment designs) and on the other
hand, the number of experiments that could be run is limited only by
system developers’ and researchers’ ingenuity, which seems boundless.

This continued need for economic experimentation has triggered
recent research that focuses on increasing the throughput of on-
line controlled experiments. Deng et al. [2013] propose the use of
pre-experiment data to improve the sensitivity of online controlled
experiments. The idea is to identify variables along which dependent
variables tend to be highly variable. Once identified, these co-variates
can be used to stratify sampling during data collection. Data analysis
can then be narrowed to comparing effects of independent variables
within each stratified sample, and aggregating over these to obtain
a combined effect estimate. They demonstrate that the technique
can result in a 50% reduction in required sample sizes in real online
experiments. An extension of this technique to an objective Bayesian
setup is proposed in Deng [2015]. In a similar vein, Drutsa et al.
[2015a] propose the use of predicted user engagement as a dimension
for stratification during experimentation and analysis.

Tip for small-scale experiments #4

The above stratification techniques can greatly improve experimen-
tal sensitivity.

A second way in which sensitivity can be improved in AB tests is by
considering how the metrics are summarized. Rather than simply com-
puting means, Drutsa et al. [2015c] and Nikolaev et al. [2015] recently
showed that considering medians, or extreme value changes, may lead
to more statistically significant results for AB tests. They also showed
that the choice of statistical significance test can affect the outcome.

A third approach to increasing the throughput of online controlled
experiments is to run many experiments in parallel on the same traffic.
Practical implementations of such systems are discussed in [Tang et al.,
2010, Kohavi et al., 2013]. The experiment design corresponds to a fully
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factorial experiment design, meaning that each user can be randomly
assigned to one of the conditions for each of tens or hundreds of exper-
iments. The key underlying assumption is that there is no interaction
between the experiments that run in parallel; such an assumption
must be verified during data analysis to avoid invalid analysis.

A very different proposal for increasing experimental agility is coun-
terfactual reasoning [Bottou et al., 2013]; see Chapter 4 for a highly re-
lated topic. The proposed method has two main components. First, the
use of causal graphs [Pearl, 2009] can capture causal (in-)dependence
relations that are known in a complex system, e.g., due to the system’s
design. Known independence can be used to draw additional conclu-
sions from a single controlled experiment. Second, the authors propose
to relax the experimental levels to sampling from a continuous variable
(e.g., some continuous system parameter). During analysis, data col-
lected in this way can be used to estimate system performance under
alternative distributions over this variable. This setup is equivalent to
running infinitely many controlled experiments simultaneously.

Tip for small-scale experiments #5

Counterfactual analysis allow the estimation of likely outcomes given
historical log data, without needing to run controlled experiments
on new users.

So far, we have assumed the individual user as the experimental
unit. In settings such as web search this assumption is typically
reasonable (although it may not always hold, and should be verified).
However, the advent of social media has introduced new challenges
for online controlled experiments. In social media, users are linked to
each other, meaning that exposing a single user to an experimental
treatment can potentially affect other users they are connected to.
For example, assume a user searches Twitter, and is assigned to a
treatment condition that tests a new result ranking algorithm. If
the user retweets one of the search results, their followers are now
affected by the experimental treatment (without the new ranking
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algorithm the user may not have found the result, may not have
retweeted it, and their followers would not have seen the results). If
the resulting network effects are strong, they need to be modeled and
can substantially complicate the design of online experiments.

A detailed survey of online experiments with network effects is
given by Walker and Muchnik [2014]. Ugander et al. [2013] propose an
approach to identifying possible units of experimentation using graph
algorithms. They propose to identify highly connected components
of a social network graph, and randomizing across these connected
components. By increasing or decreasing the threshold at which a
component is considered dense, the experimenter can balance the
trade-off between the risk of interactions between components and the
effective sample size. Gui et al. [2015] propose a method for analyzing
experiment data when network effects are present. Their approach
uses a regression model to separately estimate the effects of cluster
assignment and subject identity.

As the amount of online experimentation within a system increases,
the need to automate aspects of online experimentation arises. Taking a
step in this direction, Bakshy et al. [2014] introduce PlanOut, a system
that allows experimenters to specify experiment designs in a simple
experiment description language. Their system supports AB tests and
more complex designs, including overlapping and factored designs. A
commercial system that provides this functionality is SigOpt.2

Research in sequential design of experiments aims to remove the
need to specify each experimental comparison separately. In particular
so-called bandit approaches have been proposed to automatically select
the most promising experimental comparisons to run. Bandit ap-
proaches are particularly suitable for this purpose as they balance the
need for exploration (ensuring that new, potentially promising areas of
the experiment design space are explored) with exploitation (focusing
on areas that are known to perform well). Li et al. [2010] propose a con-
textual bandit approach for learning personalized news recommendation
through automated controlled experimentation. A recent overview of
this rapidly growing research area is provided by Burtini et al. [2015].

2See https://sigopt.com/.

https://sigopt.com/
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An emerging research area focuses on dueling bandit approaches
that provide performance guarantees even when only relative feedback
(e.g., preferences) can be observed [Yue et al., 2012, Dudík et al.,
2015]. A dueling bandit approach to large-scale ranker evaluation is
proposed in Zoghi et al. [2015].

2.6 Within-subject Experiments

A second popular experiment design uses a within-subject setup. In
contrast to between-subject experiments, within-subject designs ex-
pose study participants to both experimental conditions (two levels are
typical, although extensions to multiple conditions are possible and are
an area of active research (c.f., [Schuth et al., 2014] and the discussion
below). In laboratory studies, this could mean that study participants
are exposed to two search interfaces and are asked to specifically
compare these. A novel form of within-subjects experiments, so-called
interleaved comparison [Joachims, 2002, Radlinski et al., 2008c], has
been developed specifically for online experimentation in information
retrieval. These interleaved comparison methods are especially valuable
for online evaluation of rankings, such as search result rankings. In this
section, we focus on within-subject experimentation using interleaved
comparison, as this is particularly relevant to online evaluation in
information retrieval.

Tip for small-scale experiments #6

Within-subject experiments can dramatically reduce variance, allow-
ing much higher sensitivity that may be essential to run practical
experiments at small scales.

Between-subject and within-subject experimental designs have
complementary advantages and limitations. Between-subject designs
make less restrictive independence assumptions. They only require
that independence holds between experimental units. This makes
between-subject experiments the most generally applicable. At the
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same time, between-subject experiments tend to suffer from high vari-
ance. Because each subject is exposed to only one of the treatments,
models of subjects’ behavior within a group need to account for all
the variance that naturally occurs across users with different infor-
mation needs and preferences. In contrast, within-subject experiments
match each individual subjects’ response to both conditions. As a
result, differences between treatments can be separated from variance
between subjects. This difference in data analysis can lead to one to
two orders of magnitude increases in effective sample size for studies
of comparable dependent variables, and therefore much reduced data
requirements [Chapelle et al., 2012]. On the other hand, within-subject
designs are less flexible than between subject experiments. They
require additional independence assumptions (e.g., across queries),
and are only applicable in settings where a within-subject setup is
expected to not introduce significant bias (e.g., where it can be applied
without substantial changes to the underlying user experience).

In the remainder of this section, we first give an overview of the
general approach to interleaved comparisons. Then, we zoom in on
specific instantiations of this framework that have been proposed in
the past. Finally, we discuss extensions that go beyond individual
rankings (e.g., verticals) and towards comparing multiple rankings in
a single experiment.

Joachims [2002] first proposed the use of interleaved comparison for
IR online experimentation. The proposed algorithm is called balanced
interleaving. It is based on the axiom that the constructed interleaved
result should minimally differ from either candidate ranking. All
interleaved comparison methods consist of two components. First,
a method for constructing interleaved comparisons lists (which are
shown to search users) specifies how to select documents from the
original rankings. Second, a method for inferring comparison outcomes
takes as input the original lists, the interleaved list shown to study
participants (and possibly additional information on how this list was
constructed), and observed interactions of study participants with
the interleaved lists. This second component then specifies how to
interpret observed interactions.
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Data analysis of interleaved comparison outcomes can be formu-
lated in terms of regression analysis as follows:

T = f(XI , β), (2.4)

where T is a transformation of the paired dependent variables, such
that ti := yi1 − yi2, where yik is the observed outcome for condition k
in trial i. Following from this formulation, results are typically analyzed
using paired-sample t-tests. The use of more complex generalized linear
models is possible and follows from this formulation; however, to the
best of our knowledge, it has not been explored in the literature to date.

Now that we have outlined the general principle of within-subject
interleaved comparisons and approaches to data analysis, we briefly re-
view specific interleaved comparison approaches. A detailed discussion
of metrics for interleaved comparisons is given in Section 3.5.

Case Study Although interleaving was and is primarily developed
in academia, it is today predominantly applied in industry research
and product development. A notable recent exception is the work
of Matthijs and Radlinski [2011], who demonstrate its use in a
laboratory study of Web search personalization. The authors propose
a personalization approach that personalizes results rankings based
on user profiles extracted from users’ browsing history. The approach
is evaluated both offline (using user judgments) and in an online
interleaved comparison. The online experiment is implemented in
a browser plugin that intercepts and re-ranks search results. The
personalized results are interleaved with non-personalized rankings
using Team-Draft Interleaving. Results were obtained for 41 study
participants who used the plug-in for two months and generated just
over 6,000 query submissions. This volume of data was sufficient
to detect substantial and significant improvements of the proposed
personalization approach over the non-personalized baseline.
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Tip for small-scale experiments #7

[Matthijs and Radlinski, 2011] can be considered a tutorial on how
to run evaluations at small scale. Having recruited 41 users, who
issued 6,000 queries during normal search use over two months, the
statistically significant results allowed the evaluation of a number of
ranking systems.

2.7 Extensions to Interleaving

A number of refinements have been subsequently published.
Radlinski et al. [2008c] first showed that the original “balanced”

interleaving algorithm is in fact biased in certain rare circumstances,
proposing improved mixing and scoring policies termed Team Draft
interleaving. This policy alternates (randomly) between the two
input rankings — like teams constructed in friendly sports games —
appending selected documents to the ranking shown to users. This also
simplifies the scoring rule, as documents are always taken to indicate a
preference for the input ranking that selected the document. However,
this policy was in turn showed to be insensitive to certain ranking
changes by Hofmann et al. [2011b], who proposed a probabilistic mixing
policy that can in principle produce any ordering of documents, and
computes the preference between the ranking systems as the expec-
tation over all sequences of random choices that could have led to the
particular ranking and paves the way towards estimating interleaved
comparison outcomes from historical data (Chapter 4). Alternatively,
Radlinski and Craswell [2013] proposed how the mixing policy can be
seen as the solution to an optimization problem given a scoring policy
and constraints on what rankings may be shown to users. Schuth et al.
[2014, 2015a] showed how interleaving can be extended to apply to
sets of retrieval systems, rather than simply one pair at a time.

If instead of changing the mixing policy, we consider modifying
just the scoring rule, Yue et al. [2010a] showed how the scoring rule
can be optimized to minimize the number of required observations
of user behavior to reach a conclusion. Similarly, Yue et al. [2010b]
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and Hofmann et al. [2012a] proposed different approaches to improve
sensitivity by removing more subtle biases in user behavior beyond
position – such as bolding effects and caption length. In a contrasting
approach, Schuth et al. [2015b] recently showed how interleaving can
be re-cast as predicting the outcome of a standard A/B evaluation
with increased sensitivity, showing how the scoring rule can be learned
to maximize performance on the corresponding prediction problem.

Chuklin et al. [2013a, 2014] extended interleaving approaches to
search results with specialized verticals. Kharitonov et al. [2015b]
present a Generalized Team-Draft approach that extends beyond
ranked lists, to results arranged in grids (e.g., for image search). These
works demonstrates that interleaving can be applied to settings with
more complex user interfaces that go beyond individual ranked lists. An
open research problem is the extension of within-subject experiment
designs to more general user interfaces and interaction models.

Finally, Hofmann et al. [2012b, 2013c] presented a technique to
avoid online testing altogether, showing how the outcome of an inter-
leaving experiment can be predicted using previously collected logs of
user behavior if the user behavior is collected using a suitably random-
ized IR system. More discussions on this technique are in Chapter 4.

In addition to the extensions discussed above, which are specific to
online interleaving experiments, the general extensions to controlled
experiments that we discussed in Section 2.5 can be extended to
interleaved comparisons. Mixed between-subject / within-subject
designs are also possible, e.g., to test effects of ranking changes in
a within subject design, and interface changes in a between-subject
design simultaneously.



3
Metrics for Online Evaluation

This chapter presents an overview of the most commonly observed
indicators of online user engagement, showing how these can be inter-
preted to measure retrieval quality. Metrics based on observable user
behavior aim to capture system effectiveness in terms of the quality
of documents, which in turn drives user satisfaction. There is a large
amount of literature on such evaluation metrics, with a variety of com-
plexities in both observing the user interactions, and interpreting them.
Therefore, we group the presented metrics by the unit of observation,
and the types of evaluation questions that they allow to be answered.

In particular, from an IR perspective we consider document-level,
result-list-level and session-level metrics, as well as observations that
permit relative as well as absolute metrics to be computed.

3.1 Introduction

Historically, metrics for online evaluation in IR were inspired by the
relevance feedback literature, which considers how user feedback can
inform a retrieval system about which documents are relevant. In
particular, Kelly and Teevan [2003] provide a detailed survey of many

31
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implicit relevance feedback indicators. Here, we take a complementary
approach, providing an overview of how implicit feedback can be inter-
preted as a metric that describes the quality of an IR system. Further
details of many related metrics are also summarized by Fox et al. [2005].

It is important to note that quality can be defined in many ways.
For instance, when we measure the quality of an IR system, we may
be interested in computing an absolute real valued score that measures
the relevance of documents returned by the system. We may wish
this score to be a value that can be compared to that produced by
other systems over time, to track how this IR system performs relative
to other systems, and relative to itself at other times. On the other
hand, when we measure quality we may instead be interested in asking
a much simpler question: Given two IR systems, which is better at
retrieving relevant documents right now? This is a relative comparison,
which is easier to make but harder to generalize in the future. For
example, knowing that systems A and B are better than system C does
not imply the relative performance between A and B. To make the
problem more challenging, even transitivity may not hold in pairwise
relative comparisons [Chapelle et al., 2012, Dudík et al., 2015].

Another dimension is the granularity of the quality assessment
that we require. Often, we may be interested in the quality of the
ranking system as a whole: Given a user query, the IR system produces
a ranked list of results, and we would like to know how well this list
and presentation satisfy the user. The performance in question is at
the list level. On the other hand, we may be interested in a question
such as which of the documents returned for a given query are best.
This is a result-level question, and would be answered most efficiently
using a different experimental design.

We may even view the goals of the data collected during an online
evaluation in a number of ways: Do we wish to simply perform an
evaluation, or do we also want to use the data for future optimization?
Do we wish to focus on short-term relevance metrics, or longer-term
metrics that may better reflect long-term user engagement? Can our
online evaluation explicitly request user feedback, or do we wish to
limit the evaluation to metrics that can measure the quality of the IR
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system without requiring explicit assessments from users? In providing
an overview of the literature of online evaluation metrics, we attempt to
point out individual examples of work that focuses on these questions.

We now present the metrics by filling in the following table

Table 3.1: Approaches to Online Evaluation

Granularity Absolute evaluation questions
Document Are documents returned by this system relevant? (3.2)
Ranking How good is this system for an average query? (3.4)
Session How good is this system for an average task? (3.6)

Granularity Relative evaluation questions
Document Which documents returned by this system are best?

(3.3)
Ranking Which of these IR systems is better on average? (3.5)
Session Which of these IR systems leads to better sessions on

average? (3.7)

3.2 Absolute Document-level Metrics

Most common online metrics start with the click on a search result
as the basic unit of observation. We can then consider particular
attributes of the clicking behavior, such as dwell time on the clicked
document, to compute metrics. Recently, learned metrics have been
developed that integrate information about user behavior and other
context information with the goal of accurately estimating user sat-
isfaction with a clicked document. We discuss commonly-used metrics
and recent developments below. An overview is provided in Table 3.2.

Click-through rate is the simplest click-based metric, and is
commonly used as a baseline (such as in Chapelle et al. [2012]). For ex-
ample, it can represent the average number of clicks a given document
receives when shown on the search result page (SERP) for some query.
Click-through rate can be defined similarly at the ranking level (see Sec-
tion 3.4). As clicks are attributed to individual documents, it can also
provide a relevance metric for each document. However, per-document
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CTR has been shown to be noisy and strongly biased, particularly
due to document position [Joachims et al., 2007]. Other sources of
bias in CTR include caption and other presentation attributes [Clarke
et al., 2007, Yue et al., 2010b, Hofmann et al., 2012a]. On the other
hand, Hofmann et al. [2010] showed that CTR agrees well with
purchase-based evaluation in a commercial/professional search setting.

Dwell time is frequently used to improve over simple click metrics: A
click on a search result is most often an indication that a user expects
to find relevant information in the document, based on the caption
that they were presented with. A common refinement aimed to reflect
the quality of the document rather than the caption produced by a
search engine is to only consider satisfied clicks. Simple satisfaction
classification is typically based on dwell time cut-offs, based on results
from log analysis [Morita and Shinoda, 1994]. For example, a common
choice is to identify the click as satisfied if the user spends at least 30
seconds on the result page [Yilmaz et al., 2014].

Learned click satisfaction metrics combine several features and in-
formation sources to obtain more accurate estimates of document-level
user satisfaction. An early example is [Fox et al., 2005], which consid-
ers combinations of dwell time, scrolling behavior, and characteristics
of the result document in a Bayesian network model. Hassan and White
[2013] combine query (e.g., query length, frequency in logs), ranking
(e.g., number of ads, diversity of results), and session (e.g., number of
queries, time in session so far) features to predict user satisfaction at the
click level. They further investigate personalized models, either trained
on the level of cohorts of similar users, or on the level of the individual
user, and find that cohort models provide the most accurate prediction
of search satisfaction. Kim et al. [2014a] propose a sophisticated query-
dependent satisfaction classifier, that improves prediction of user satis-
faction by modeling dwell time in relation to query topic and document
complexity. Investigating contribution of dwell time to learned metrics
in more detail, Kim et al. [2014b] found benefits of considering dwell
time across a search trail, and measuring server-side dwell time over the
use of client-side dwell time for predicting document-level satisfaction.
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Click behavior models take this further, learning a latent relevance
score for individual documents from clicks and possibly other observa-
tions. In one of the earliest click model papers, Craswell et al. [2008]
propose the cascade model to describe the alternative actions that a
user of a search system can perform at any point in time. While the goal
of this work was to explain observed online search behavior rather than
inform evaluation, it has been followed by numerous click models that
have been used for evaluation. While there are now over a hundred pa-
pers on click modeling, we select a small set of representative examples.

One early click model for evaluation was proposed by Chapelle
and Zhang [2009], learning a dynamic Bayesian click model based on
observed actions. Alternatively, Dupret and Liao [2010] estimate the
relevance of documents from log data by training a probabilistic model
of observation and click action. Guo et al. [2009a] presented a different
click-chain model. A detailed study of click-model inspired evaluation
metrics was recently presented by Chuklin et al. [2013b, 2015], which
was later extended to take estimation uncertainty into account under
the Bayesian framework [Grotov et al., 2015].

3.3 Relative Document-level Metrics

It was observed by Joachims et al. [2007] that user interaction with
individual documents returned by a search system is dependent of the
context of other available alternatives. Hence, user actions can also be
described as relative preferences among the available choices, rather
than as absolute statements of document relevance. In their work,
Joachims et al. proposed a relative interpretation of search engine
behavior: When a user skips over a search result only to click on a
lower ranked one, they are expressing a preference for the lower ranked
document over the higher ranked document. Although this was used
for training a search system rather than for evaluation, it was followed
by a number of evaluation-focused works.

Among the first of these, Radlinski and Joachims [2006] showed
how to estimate which of any two documents is more relevant to a
search query. By randomizing the document presentation order in a
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predefined way, every adjacent pair of documents is shown to users in
both possible orders. Observing which is more often clicked when at
the lower position, they showed that search users provide a preference
as to which appears more relevant.

Tip for small-scale experiments #8

Randomization techniques may be particularly useful to obtain
document-level evaluation data from real users.

A hybrid between absolute and relative metrics was proposed by
Agrawal et al. [2009]. Here, they start with a pairwise interpretation of
clicks as above. However they ground the most preferred and least pre-
ferred documents on an absolute relevance scale. This allows them to
transform the preferences into absolute document relevance judgments.

3.4 Absolute Ranking-level Metrics

Moving beyond metrics that capture interactions with individual
documents, a variety of metrics capture retrieval quality at the
ranking level by aggregating across interactions with all documents.
A summary of the document-level and ranking-level absolute online
metrics discussed in this survey is provided in Table 3.2.

Click rank is the most basic such metric: It measures the position of
the document selected in an IR system [Boyan et al., 1996]. Clearly,
presenting clicked documents at a higher position is better, hence the
lower the mean click rank, the higher the estimated performance of the
IR system. However, we note that if one was to compare a ranking with
just one relevant document at the top position, with a ranking that
offers more relevant choices, the one with more choice would necessarily
(and initially counter-intuitively) have a lower mean click rank.

Because click rank has a value between 1 and essentially an
unbounded number, the most common variant is the inverse click
position, usually called the mean reciprocal rank.
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Tip for small-scale experiments #9

Beware unbounded metrics at small scales. They often have much
poorer statistical properties (see Section 3.4 of Kohavi et al. [2012])

A related metric is the click rate within the top k positions,
with a special case being the clickthrough rate at position 1 (that
is, the CTR on the top search result). In fact, Chapelle et al. [2012]
observed that, among a variety of absolute ranking-level metrics in a
large-scale comparison of different evaluation approaches, this metric
most reliably agreed with known experimental outcomes.

A more advanced variant of click position, pSkip, was proposed by
Wang et al. [2009]. Intuitively, this metric encodes the probability of a
user skipping over any result and clicking on one that is lower. The lower
the probability of skipping, the higher the quality of the search ranking
produced. Given the complexity of search behavior, for instance with
multi-column layouts of results, the pSkip metric was further refined
to model clicks with a partially observable model [Wang et al., 2010].

Time to click: Once we move beyond documents to entire rankings,
the overall time from the results of a search query being shown to
further user interaction with the search engine have been shown to
reflect search engine quality. As time spent is the key cost to search
system users, reducing this time is considered good (e.g., [Chapelle
et al., 2012]). Variants include time to first click and time to last click
(e.g., [Fox et al., 2005]).

Interestingly, as search systems have improved in recent years, the
user interactions on which such online metrics are based — clicking —
is increasingly often no longer required. This means that click-based
metrics have become less effective when IR systems produce search
results that are so good that the user does not need to interact further.
This has led to two key improvements.

Abandonment: First, it is recognized that lack of interaction
(usually termed abandonment) and dissatisfaction are not necessarily
equivalent. In a seminal work on this topic, Li et al. [2009] observed
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the existence of good abandonment that captures satisfaction without
users needing to interact with the search system. Hassan et al. [2011]
more recently presented a more comprehensive machine-learning
approach to better account for good abandonment, resulting from
more sophisticated search result page elements such as factoids and
entity panes. Diriye et al. [2012] presented an analysis of why users
choose to abandon in different cases.

The need to recognize when abandonment is in fact good has led
to the second improvement of considering follow-on actions beyond
the current search query. This is discussed in Section 3.6 on absolute
session-level metrics.

Learned metrics at the absolute rank level have historically been less
widely investigated than learning absolute user satisfaction at either
the click (Section 3.2) or session level (Section 3.6). An exception is
work by Hassan et al. [2013], who propose to condition ranking level
user satisfaction on what happens next. They develop a satisfaction
model that takes into account follow-on query reformulations to decide
whether the interactions with results for the previous query was
indicative of success or not.

3.5 Relative Ranking-level Metrics

While absolute ranking metrics produce a fixed numerical score for a
given information retrieval system, we must remember that this score
is computed in a particular context: At a given time, with a particular
audience, who have time-specific information needs while interacting
with the IR system through a particular technology and interface. To
control for this, systems that we wish to compare tend to be evaluated
simultaneously in an AB test.

However, in many cases the experimenter’s goal is to determine
which of two system for ranking documents in response to a user
query produces better rankings on average. A natural way to answer
this question would be to perform an absolute measurement of each
system, and compare the values obtained. Yet it can be argued that
this approach solves a more difficult problem (absolute measurement)
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to obtain a simple preference. In this section, we present an alternative
called interleaving.

To more efficiently obtain a preference between two retrieval
systems, Joachims proposed the Interleaving approach [Joachims,
2002, Chapelle et al., 2012]. The intuition behind interleaving is that
rather than showing each user the results from just one of the systems,
the results are combined in an unbiased way so that every user can
observe results produced by both systems. In this way, if one system
returns better results on average, users can select them more often.
This contrasts with absolute metrics in that users of one system have
no way of knowing what else might be returned by the other system,
and thus are likely to simply select the best alternative in both cases
leading to user behavior on the two systems being less distinguishable.

Formally, interleaving can be written as consisting of two parts: (i)
a mixing policy ψ : RA × RB → RI that takes two permutations of
documents (i.e., the output of two ranking systems) and produces a
third permutation that is shown to users (i.e., a combined ranking),
and (ii) a scoring rule ∆ : RA, RB, RI , O 7→ R that takes observations
O of user behavior and returns a real-valued score that indicates the
degree of preference for one system over the other. This scoring rule
also needs the original rankings, as well as the combined ranking, to
compute the preference.

Tip for small-scale experiments #10

If interleaving is practical in your setting, it is particularly well suited
to be run for smaller scale studies.

3.5.1 Formal Presentation

We now present the Team Draft interleaving algorithm [Radlinski
et al., 2008c] in detail, followed by a brief description of a few
alternatives. However, we refer the reader to Chapelle et al. [2012] for
a more detailed discussion of the specifics.

As stated above, interleaving algorithms consist of two parts: A
mixing policy, and a scoring rule. Team Draft interleaving uses a simple
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constructive iterative mixing algorithm, operating two documents at
a time: At each step, each input ranking (RA and RB) selects one
document to append to the combined ranking. Specifically, each ranker
selects the highest ranked document that is not yet in the combined
list. To enable scoring, Team Draft interleaving also maintains a record
of which document was added at which step, as represented by sets
TA and TB in Algorithm 1.

Algorithm 1 Team Draft Interleaving : Mixing Algorithm
1: k ← 0, RI ← ∅, TA ← ∅, TB ← ∅
2: while k < N do
3: for r ∈ permutation(A,B) do
4: d+ ← top-rankedd∈Rr

d /∈ RI
5: RI [k + 1]← d+

6: Tr ← Tr
⋃
d+

7: k ← k + 1
8: end for
9: end while

Given an interleaved ranking RI and team assignments TA and TB,
let O be the observed set of documents that the current user of the
ranked retrieval system clicks on. In the simplest form, the Team Draft
scoring rule ∆ produces a preference for RA if |TA

⋂
O| > |TB

⋂
O|, a

preference for RB if |TA
⋂
O| < |TB

⋂
O|, and a preference for neither

otherwise.
Extensions of Team Draft interleaving have been proposed, e.g.,

replacing the loop in Step 3 with a sampling algorithm [Hofmann
et al., 2011b], extending the algorithm to an arbitrary number of input
rankings [Schuth et al., 2014], and more sophisticated approaches to
both mixing and scoring as described in Section 2.7.

Of particular note, this algorithm is constructive, as it constructs
an interleaved list step by step. As such, analysis of the properties
of the mixing and scoring algorithms requires careful consideration
of all possible outcomes. As shown by Hofmann et al. [2011b], this
leads to potential pitfalls. As a result, Radlinski and Craswell [2013]
described an alternative optimized approach to evaluation algorithm



42 Metrics for Online Evaluation

design. They proposed to start with a set of formal properties of the
mixing and scoring algorithms, then solve for a distribution over mixes
{pi, ψi}i=1...k which determines the rankings users are presented with.
They suggested that these properties should be:

1. Each mixing ψi ∈ Ψ is shown with a probability pi ∈ [0, 1]
where

∑
i pi = 1.

2. The expected score from observations of a user who does not
consider document relevance (i.e., the distribution of clicks
is independent of relevance) must be zero1: Erandom user[∆] =
0.

3. If only one document d is selected by the user, the scoring
function ∆ prefers RA if only and only if RA ranks document
d higher than RB.

4. The sensitivity of the algorithm is maximized.

In their formulation, the set of allowable mixes ψ ∈ Ψ is constrained
to be such that any prefix of ψ(RA, RB) contains all documents in some
prefix of RA and all documents in some prefix of RB, a generalization
upon the rankings that may be produced by the constructive Team
Draft algorithm and most of its variants.

An extension of some of these criteria is proposed in Hofmann et al.
[2013c]. For example, they extend criterion 3 (above) to the notion
of Pareto dominance: a ranker RA is to be preferred if its ranking of
clicked documents Pareto dominates RB. Alternatively, Kharitonov
et al. [2013] propose the use of historical data to optimize sensitivity
of interleaved comparisons.

3.5.2 Validation

Interleaving has been directly compared to both AB online evaluations,
and traditional Cranfield-style judgment-based IR system evaluation.
Research has showed that interleaving most often agrees with other
online [Radlinski et al., 2008c, Chapelle et al., 2012] and offline eval-
uation metrics [Radlinski and Craswell, 2010, Chapelle et al., 2012],
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with cases of disagreement most often favoring interleaving, as seen
in a number of examples presented by Radlinski and Craswell [2010].
This body of work also showed that interleaving exhibits one to two
orders of magnitude of improved sensitivity over most absolute online
evaluation techniques [Radlinski et al., 2008c, Chapelle et al., 2012].

However, when comparing retrieval systems with similar perfor-
mance, disagreements between different metrics are common. Schuth
et al. [2015b] showed that this also applies when comparing systems
with different online evaluation techniques, such as any given absolute
metric as compared to an interleaved evaluation. While Schuth et al.
[2015b] presented one technique to optimize interleaving towards an
online absolute metric taken as a gold standard, identifying true user
satisfaction in both absolute and relative setting continues to be an
unsolved problem.

3.6 Absolute Session-level and Longer-term Metrics

It is reasonable to assume that for complex search tasks, a user’s needs
may not be satisfied by a single query. In the case of difficult informa-
tion needs, it may even be unreasonable to expect that the user’s first
query is effective. Even more, in the case of exploratory search the
user’s goal is to learn about a topic as they search. We review session
and longer-term metrics below and give an overview in Table 3.4.

Simple session-level metrics: relatively simple session-level metrics
such as the number of queries per session have been long used. For
example, Song et al. [2013b] measure session level performance using
e.g., unique queries per session and session length. Chapelle et al.
[2012] compare ranking level (interleaving) metrics to queries per
session and time to first / last click.

Work in session-level online evaluation metrics reflects the recog-
nition that a more holistic view of user satisfaction may be required.
One reason is that these metrics may behave counterintuitively. For
instance, Song et al. [2013b] recently studied the interaction between
short-term and long-term metrics if search system quality is degraded,
finding that degradation in retrieval quality may appear to increase
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user engagement in the short term (as users need to work more to find
good results), while decreasing it in the long term (as users are gener-
ally dis-satisfied and may stop using the system). Similarly, Chapelle
et al. [2012] find simple absolute session-level metrics to be unreliable.

Learned metrics combine several session-level and lower-level user
actions to obtain reliable estimates of search success. Note that session,
task, and goal level are often used as roughly synonymous, depending
on whether a study was based on logs (where extracting session is eas-
ier than identifying tasks) or in a laboratory (where study participants
complete one task or search goal at a time). An early study of implicit
satisfaction indicators is by Fox et al. [2005]. The authors consider a
combined model that includes e.g., query count, average dwell time, the
number of results visited, and the type of action used to end a session.
Ageev et al. [2011] propose both a session-level model of search success,
and a game interface for collecting training data for such a model.

Several works found that incorporating more fine-grained informa-
tion, e.g., about the user’s behavior or their context, can substantially
improve accuracy of session success prediction. For instance, Guo and
Agichtein [2012] consider models that incorporate mouse movement
(as users may, for example, hover the mouse cursor over relevant
text) and other user behavior. Chen et al. [2015] investigate effects
of heterogeneous result pages in the form of verticals, and find that
incorporating features that reflect types of verticals, along with fine-
grained eye-tracking features, improves accuracy of success prediction.
Apart from improving session-level metrics, Zhang et al. [2011] show
that session or task-level features can also help improve the accuracy
of click behavior models (cmp. click models in Section 3.2).

An interesting question concerns whether session-level satisfaction
is more than the sum of its parts, i.e., more than a simple aggre-
gate of document-level satisfaction. Hassan et al. [2010] show that
directly learning task satisfaction provided more accurate results
than aggregating document-level ratings. More recently, Wang et al.
[2014] propose a model that integrates document and session-level
satisfaction prediction, by modeling document-level satisfaction as
latent factors in a hierarchical model.
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Predicting search satisfaction has typically been formulated as a
binary classification task. However, recent work by Jiang et al. [2015c]
shows that finer-grained types of satisfaction can be learned effectively,
and gives insight into a rich structure of user interaction and search
satisfaction.

We may also consider success separately from frustration: Whether
satisfying an information need was more difficult than the user
considers it should have been, as studied by Feild et al. [2010]. More
recently, Odijk et al. [2015] propose an approach to detect whether
users are struggling in their current search. Alternatively, search
engine switching can be used to discover when users fail in their search
[Arkhipova et al., 2015b].

Loyalty metrics: A common long-term goal (especially for commer-
cial search systems) is for users to repeatedly engage with a search
system. These are typically computed at the user level. Dupret and
Lalmas [2013] proposed to measure how long it takes until a user
returns to a question answering system as a metric of overall user
satisfaction. They model this long-term engagement using statistical
tools from survival analysis. A follow-up study by Chakraborty et al.
[2014] extended this work to other types of search systems. The use
of engagement periodicity as the basis for online evaluation metrics is
explored in [Drutsa et al., 2015b].

Other user-level metrics that have been used in previous work in-
clude queries per user (presumably users who find a system effective will
engage with it more), sessions per user (or sessions per user per day; to
measure unique information needs for which users turn to the system)
[Kohavi et al., 2012], daily sessions per user, success rate per user [Song
et al., 2013b], and clicks per user [Deng et al., 2013]. For systems beyond
search (such as social networking sites), a common metric is daily active
users divided by monthly active users (commonly called DAU/MAU).

Although these loyalty metrics are important for measuring
long-term success, they usually change slowly as users establish habits,
making them difficult to apply as experimental criteria.
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3.7 Relative Session-level Metrics

To the best of our knowledge, there is no work on relative session-level
metrics. Part of the difficulty is that sessions are, by definition,
generated during interaction between the user and a search engine.
Consider, for example, an interleaving analogue for session-level com-
parisons. When we try to compare two engines in terms of session-level
metrics, it is difficult to create a session that blends the two engines
to produce a final session, as done by interleaving for list-level metrics.
It is an interesting open problem to design a reliable way to compare
session-level metrics between two search engines.

3.8 Beyond Search on the Web

One of the key recent shifts in information retrieval is that different
entry points for user search — such as mobile phones or voice-powered
personal assistants — change the inherent interactions between users
and an IR system. Song et al. [2013a] analyze characteristics of user
behavior, such as dwell time, across desktop, mobile, and tablet user.
Finding substantial differences, they argue that online metrics need to
be adapted to these contexts. Similar insights have led to work that
focuses on interactions other than clicks, such as touch-based interac-
tion with mobile devices [Guo et al., 2011, 2013a], and extensions of
the concept of abandonment to mobile devices [Williams et al., 2016].

Recently introduced personal assistants such as Siri, Cortana,
and Google Now create new challenges in online evaluation. First
approaches to evaluating these using log data are explored in [Jiang
et al., 2015a]. Kiseleva et al. [2016] find that high-accuracy prediction
of search success is possible with the introduction of new types of
features, such as acoustic and touch features.

3.9 Practical Issues

As we have seen in this chapter, a wide variety of online metrics are
available for the evaluation of IR systems. This leaves the experimenter
with the difficult task of identifying the correct metric for evaluating
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a given search system. Often, a key solution is to rely on more than
one online metric simultaneously. As each of the metrics presented
above has at least some blind spots, ensuring that a search system is
evaluated with multiple metrics makes it less likely that it is simply
exploiting a weakness of a single metric. For instance, most published
analyses of practical IR systems report a variety of online metrics.
More difficult cases involve direct disagreements. For instance, where
the amount of engagement may be anti-correlated with the time it
takes users to find relevant content. Depending on the setting, either
of these measures may be indicative of a better IR system.

This also leads to the question of how new online metrics can be de-
signed and validated. The most common approach relies on the compar-
ison of ranking systems of known relative quality online with a variety
of metrics. Such known validation can be constructed either using less
performant systems as baselines (for example older systems [Radlinski
and Craswell, 2010, Chapelle et al., 2012], or intentionally performing
per-query degradation such as randomization [Radlinski et al., 2008c]),
or systems measured with offline relevance judgments tailored specifi-
cally to the task at hand. This allows general validation of a new metric.

A framework for considering online metric validation was proposed
by Radlinski and Craswell [2010] where the goals are fidelity and
sensitivity. Hofmann et al. [2013c] rather formulated it as fidelity,
soundness and efficiency. These goals can be applied to the validation
of any online metric, guiding the process of establishing if a new metric
should be trusted.

A different practical issue is to do with user averaging. While it may
seem natural to use query-level experimental units for list-level metrics
it is worth considering the effect of heavy users: Suppose we average
performance per query, yet there is one user (or small set of users) who
is much more active. Per-query averaging would mean this single user
has more influence on future online evaluations. Particularly in cases
where there may be a small number of malicious or incorrectly identified
users (e.g., web crawlers), double-averaging is often preferred: Average
metrics over the experimental unit (queries, sessions, etc), then average
experimental units per user to give each user identical total impact.
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Tip for small-scale experiments #11

Carefully consider the averaging used in smaller scale studies, as a
handful of users may very easily dominate results.

Another issue that is not frequently discussed is how to aggregate
single metrics within an online evaluation. Metrics can be designed at
the query, session, user, or system level, and then they can again be ag-
gregated at these various levels (or an average of averages can be used).
Chapelle et al. [2012] has some discussion of this, mainly for interleav-
ing experiments, but there is no consensus in the published literature.

Finally, it is common in practice that multiple metrics are of
interest at the same time. For example, a search engine may have
to face a trade-off between relevance and revenue of results it shows
on a page. One common approach is to optimize one metric while
fixing others at a certain level [Radlinski et al., 2008a, Agarwal et al.,
2011]. Another option is to linearly combine these metrics into a single
one [Bachrach et al., 2014], although it is not always obvious how to
set the coefficients in the linear combination.



4
Estimation from Historical Data

While this article focuses on online evaluation for information retrieval,
it is natural to ask whether behavioral data collected online for an
IR system can be reused to evaluate new algorithms, in particular
to estimate the online performance they would achieve. This chapter
shows how under some conditions this can be done.

4.1 Motivation and Challenges

Until now, we have been discussing how information retrieval systems
can be compared using online metrics in controlled experiments. How-
ever, this general approach is expensive for several reasons. First, to
ensure the natural usage environment, controlled experiments are run
on real users. This means that a system that performs worse than ex-
pected would lead to a negative user experience that may, for instance,
cause users to stop using the system entirely. Second, production en-
vironments for information retrieval are typically highly complex and
optimized, meaning that substantial engineering effort is often needed
to take a technique that might improve result relevance, and make it
robust and fast enough to work reliably in a production environment
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before a controlled experiment can be considered. Discovering that a
technique is ineffective after such a large investment hurts experimen-
tal agility. Third, due to daily, weekly and even seasonal variation of
online behavior and thus online metrics, controlled experiments may
take days or even weeks to yield reliable generalizable results. This
means that even for systems with high traffic volume there is a limited
amount of experimentation that can be performed. As a consequence,
controlled experiments in IR often involve a long turnaround time,
substantial engineering resources and opportunity costs.

Such limitations do not exist with offline evaluation: instead of
running an experiment on live users, one aims to estimate the quality
of a system using historical data. If offline evaluation could be done in
a reliable way, system evaluation would only require a static dataset.
This would mean that such offline experimentation can be done much
faster, therefore improving experimentation agility and allowing one
to test potentially many more ideas for system improvement.

Using historical data to compare two systems is not a new idea.
In fact, it has been used for offline evaluation of retrieval systems for
half a century [Cleverdon, 1967]. It is also a standard approach in
areas such as supervised learning [Asuncion and Newman, 2007, Deng
et al., 2009], and in particular supervised learning to rank [Qin et al.,
2010, Chapelle and Chang, 2011], where new algorithms are typically
evaluated on benchmark datasets. Such a dataset normally consists of
feature-label pairs, where each item (in our case, query-document pair)
has its features computed ahead of time and is also labeled in terms
of correct score (in our case, relevance). Given such scores, standard
offline metrics such as the average accuracy or rank-based relevance
metrics such as NDCG [Järvelin and Kekäläinen, 2002] can be easily
computed for any given classifier, regressor, or ranking function.

We address a subtly different challenge, namely to estimate changes
in online metrics from historical data previously collected. Rather
than aiming to produce a purely offline evaluation pipeline, the goal
is to increase experimental agility and filter out the poorer candidates
before resorting to the gold standard of online evaluation. The key
difference between using labeled data for offline evaluation and using
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historical data for estimating online metrics, is the problem of partial
observability. Offline labels are typically collected for a representative
set of possible items (in supervised machine learning this is typically a
random sample of problem instances), or documents (various pooling
approaches have been investigated in the IR literature). The degree
to which such a set is representative determines the reliability of
the computed offline metric.1 In online evaluation, the experimenter
typically only observes “labels” that reflect users’ responses to the
currently deployed system. To evaluate a new variant of the system,
the experimenter needs to reason about how users would have re-
sponded if the alternative system had been used — a scenario for
which data was not actually collected. This problem is also referred to
as counterfactual reasoning. See the next section (Section 4.2) for the
formal problem definition.

To understand the challenges that need to be addressed when esti-
mating online metrics from historical data, consider the following ex-
ample. Suppose we wish to estimate CTR@1 (click-through rate of the
top-ranked items) of a new ranking algorithm for news recommendation
(as in Chapter 2). A naïve approach could estimate online performance
of the new algorithm from data logged while the old algorithm was
used for ranking. For example, it could assess the rate at which newly
top-ranked items were clicked according to the logged data. However,
the resulting estimate would likely be severely biased: If the new rank-
ing algorithm presents new items at the top position (or ones that were
shown at low ranks previously), users may never have clicked them
before simply because they did not notice these items. This would lead
the naïve approach to under-estimate online performance of the new
algorithm. While we might imagine a hand-tuned click re-weighting
approach reducing the bias of CTR@1, our goal in this chapter is to
consider general purpose approaches that are metric agnostic.

The difficulty in estimating online metrics thus comes from metrics
depending on user feedback, which in turn is affected by system

1For a more rigorous discussion of these issues, see Hastie et al. [2009] for a
supervised machine learning perspective or Voorhees [2014] for an IR perspective.
In general, the challenging of handling unrepresentative samples is related to the
covariate shift problem [Quiñonero-Candela et al., 2008].
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output. This is an example of the more general statistical problem of
estimating causal effects from historical data [Holland, 1986]. The gen-
eral formulation is that one aims to infer, from data, the average effect
on some measurement (metric) by changing the system (often known
as “intervention” in the statistics literature). Therefore, our problem
of estimating online metrics of a system is equivalent to estimating
the causal effect on the metric if we choose the intervention (running
the system online). Other related areas in machine learning include
off-policy reinforcement learning [Precup et al., 2000] and learning in
the presence of covariate shifts [Quiñonero-Candela et al., 2008].

Solving this estimation problem is hard, as shown in the example
above. In fact, in many situations it is known to be impossible [Lang-
ford et al., 2008]. For example, estimating online metrics from logged
data is trivially impossible if the actions chosen by system used for
logging have no overlap with those of the system we aim to evaluate.
This typically happens with deterministic systems, and is often hidden
in systems that take actions (deterministically) based on context
information. One therefore has to impose conditions on the data
collection process to allow the use of reasonable estimation methods.

Since the problem of estimating online metrics from historical data
is not unique to IR, this chapter also reviews work in related Web
applications like online advertising, and will also draw connections to
important results in related literature (especially statistics).

4.2 Problem Setup

As described in Chapter 3, most metrics can be expressed as the expec-
tation of a certain measurement averaged over experimentation units.
E.g., click-through rate is the click-or-not binary signal averaged over
all search pages, and time-to-first-click is the average amount of time
to observe the first click from a user on a search result page. In both
examples, an experimentation unit is a search result page, although in
general it can refer to a user, a search session, a query, or other units.

Formally, let X be the set of experimentation units, A the set
of actions that an IR system chooses from. Each action is a possible
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output of the IR system for a particular experimentation unit. A
policy is a function π that maps X to A. When action A is chosen
for experimentation unit X, a numerical reward signal Y is observed.
For example, if X ∈ X is a query, A could be the set of permutations
of documents on the first search result page given X, and π is a
ranking function that produces one such ordered list A ∈ A. Here,
we consider the general case where π a randomized function: slightly
abusing notation, we use π(·|X) to denote the conditional distribution
of actions π selects for unit X. While most production policies are
deterministic in practice, randomized ones can be useful, for example,
in probabilistic interleaving experiments.

The definition of reward depends on the quantity we are interested
in; it can be a binary signal indicating if there is a click or not, the
time to get the first click, and so forth. Clearly, Y is in general a
random variable, whose distribution depends on both X and A. The
quantity we try to estimate, the value of a given particular policy π,
v(π), is the average reward we obtain by running π:

v(π) := EX,π[Y ] , (4.1)

where the expectation is taken with respect to X and A = π(X).
Therefore, v(π) is an aggregated measure of how much reward is ob-
tained across all units. If Y is a binary click-or-not signal, v(π) is simply
the overall click-through rate. Similarly, if Y is the continuous-valued
time to first click in a search event, v(π) is the average time to first
click. Other reward definitions lead to similar interpretations of v(π).

In the formulation above, two stochastic assumptions are made:

• The units X are drawn IID from an unknown distribution µ; and

• The reward Y is drawn IID from an unknown distribution,
conditioned on X and A.

Whether these assumptions hold in reality is problem-dependent. In
many IR applications, however, the first assumption appears to hold
to some extent, with a proper choice of X . For example, users visiting
a search engine are largely independent of each other. The second
assumption may require more justifications, given common seasonal
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variations of user behavior [Kleinberg, 2004]. Fortunately, most of the
techniques below apply without change to the more general situation
where Y may be non-stationary.

The most straightforward way to estimate v(π) is to run π for
a long enough period, measure rewards while the policy is running,
and then average the rewards. The law of large numbers ensures that
the empirical average will eventually converge to v(π). In fact, this
is the idea behind online experimentation (Chapter 2). In the offline
case, where we try to estimate v(π) from historical data, the problem
becomes more challenging.

For most problems, historical data D can be written as triples of
the following form:

D = {(Xi, Ai, Yi)}i=1,2,...,m (4.2)

where Xi ∼ µ, Yi is the reward signal after taking some action Ai for
experimentation unit Xi. Such a dataset is partially labeled (or has
missing values), in the sense that it only contains reward information
for actions that were actually chosen, not other actions. Therefore, for
unit Xi, if the policy π chooses an action Anew = π(Xi) that is different
from the one in the data, Ai, then one has to infer what the reward
signal would have been if Anew were chosen for unit Xi. Answering such
what-if questions requires addressing the counterfactual nature of the
problem. This chapter surveys an array of solutions for this problem.

4.3 Direct Outcome Models

A natural way to address the counterfactual issue in estimating v(π)
is to directly estimate the reward given a context and action. If such
a reward can be accurately predicted, we can essentially fill in all the
missing rewards in the data set, which can be used to estimate v(π)
for any policy π. In the literature, such an approach is sometimes
referred to as a direct method [Dudík et al., 2011] or a model-based
method [Jiang and Li, 2016].

Specifically, from the data set D in Equation 4.2, we may construct
a supervised-learning dataset of size m,

DDOM := {(Xi, Ai) 7→ Yi}i=1,2,...,m (4.3)
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which is used to “learn” an outcome model, denoted f̂ , such that
f̂(x, a) ≈ f(x, a) := E[Y |X = x,A = a] for all x ∈ X and a ∈ A.
Then, the policy value can be estimated from DDOM by:

v̂DOM := 1
m

∑
i

f̂(Xi, π(Xi)) , (4.4)

when π is deterministic, and

v̂DOM := 1
m

∑
i

∑
a∈A

π(a|Xi)f̂(Xi, a) , (4.5)

for randomized π in general. To avoid overfitting, f̂ should be learned
on a separate data set other than DDOM.

In the context of IR, this model often has the natural interpretation
of a user model, say a click model [Chapelle and Zhang, 2009, Guo
et al., 2009a] or a browsing model [Dupret and Piwowarski, 2008].
Although most existing click models have separate parameters for
individual queries, more general regression techniques can be applied,
such as linear models, decision trees, and neural networks [Hastie
et al., 2009]. On the other hand, the outcome model may simply be
an empirical average computed from data, without having to build
more complex user models. For example, Li et al. [2015b] estimated
f̂(x, a) for query x and ranked document list a simply by averaging
observed rewards Y in the subset of data where Xi = x and Ai = a;
this approach does not generalize, so works best when |X | and |A| are
relatively smaller compared to the data size m.

As an alternative to learning a direct estimator from data, a
simulator may be constructed based, for example, on expert knowledge
of user behavior. For example, Hofmann et al. [2011a, 2013b] develop
such a simulation approach by combining manually annotated IR test
collections with insights into user behavior gleaned from click models
such as the Dependent Click Model [Guo et al., 2009b], and use it to
evaluate online learning to rank algorithms. Chuklin et al. [2014] take
a similar approach to click simulation on interleaved ranking results.
Finally, click models can be used to extract useful information which,
together with other sources of information, can be used to predict the
outcome of an online experiment [Kharitonov et al., 2015a].



58 Estimation from Historical Data

A major benefit of the direct outcome method is its flexibility. Once
a reasonably good model is built, it can be used to simulate essentially
all online experiments, including evaluating policies that depend on the
history (such as online-learning algorithms mentioned above [Hofmann
et al., 2013b]). It can also be run multiple times, making it easy to
generate confidence intervals and other statistics of interest.

On the other hand, the estimation quality of the direct outcome
method depends critically on the accuracy of the outcome model.
Furthermore, the error does not necessarily diminish to 0 even if
infinite data are available to fit the model f̂ . This happens when the
class of regressors (like generalized linear models) is not expressive
enough to fully model the true reward function, f . For example, if an
over-simplistic user model is adopted, we do not expect the model to
accurately mimic real user behavior, even if infinite data are available
to fit any unknown parameters in the model. As a consequence, the
model f̂ returned by any regression method has to trade off prediction
errors in different regions of the evaluation space X × A. Hence, if
π tends to select actions that are under-represented in DDOM, the
estimation error, |v̂DOM(π) − v(π)|, can be (arbitrarily) large, no
matter how many historical observations are available.

Despite the above limitations, the direct outcome method remains
a reasonable solution in practice, especially for comparing ranking
algorithms (e.g., Hofmann et al. [2011a, 2013b], Chuklin et al. [2014]).
It can also be combined with another approach to yield an algorithm
that is often better than both, as we discuss next.

4.4 Inverse Propensity Score Methods

An alternative to inferring user behavior based on evaluation of ex-
isting ranking techniques is to take advantage of the control available
to online systems: instead of simply running an existing search engine,
the engineers may be able to change the behavior of the search engine
so that the data it collects may be useful for future evaluations of
other rankers. Such data collection, typically called exploration data,
may intentionally introduce random modifications (“exploration”) to
the output of a system, and records the corresponding user feedback.
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The methods surveyed in this section assume access to such
a randomized data set where, given an experimentation unit X, a
random action is chosen according to a known conditional distribution,
p(·|X). This gives rise to a randomized dataset:

DR = {(Xi, Ai, Yi, Pi)}i=1,2,...,m ,

which is the same as D with the only addition of propensity scores:

Pi = p(Ai|Xi) .

Note that p is selected by the experimenter, and is thus known.

4.4.1 IPS Estimators

In this section, we will assume that p(·|x) assigns non-zero probabil-
ities to all actions in every context x. The Inverse Propensity Scoring
(IPS) approach is based on the following key observation: for any
i ∈ {1, 2, . . . ,m} and any a ∈ A,

EAi∼p

[I {a = Ai}
Pi

Yi

]
= f(Xi, a) ,

where I {C} is the indicator function that evaluates to 1 if C is true
and 0 otherwise. In other words, the newly defined random variable,

Ŷi(a) := I {a = Ai}
Pi

Yi ,

is an unbiased estimate of the unknown quantity f(xi, a), even if a is
counterfactual (that is, if a 6= Ai). This technique, also known as impor-
tance sampling, has been used in other statistical and machine-learning
algorithms (e.g., Auer et al. [2002]); see Liu [2001] for a survey.

The observation above immediately implies unbiasedness of the
following IPS estimator with a possibly randomized policy π:

v̂IPS(π) := 1
m

∑
i

π(Ai|Xi)
Pi

Yi . (4.6)

If π is deterministic, the above can be slightly simplified as:

v̂IPS(π) := 1
m

∑
i

I {π(Xi) = Ai}
Pi

Yi . (4.7)
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One problem with the above estimator is that its variance is
unbounded if the ratio π(Ai|Xi)/Pi increases to infinity. An easy fix to
this problem is to provide a threshold, Wmax > 1, to control variance,
at the cost of introducing a small amount of bias. This technique,
known as truncated importance sampling [Ionides, 2008], often leads
to a lower mean squared estimation error:

v̂tIPS(π) := 1
m

∑
i

min
{
Wmax,

π(Ai|Xi)
Pi

}
Yi . (4.8)

An alternative solution is to make sure Pi is always sufficiently large
when designing the data-collection policy.

Another variant of IPS, sometimes called weighted importance
sampling, is also popular in practice:

v̂wIPS(π) :=
(∑

i

π(Ai|Xi)
Pi

)−1∑
i

π(Ai|Xi)
Pi

Yi . (4.9)

Similar to v̂tIPS, v̂wIPS is biased. However, since large weights (cor-
responding to large π(Ai|Xi) and small Pi values) in the numerator
also appear in the denominator, the variance is often greatly reduced,
compared to the basic importance-sampling estimator, v̂IPS [Liu, 2001];
such a phenomenon is sometimes referred to as self-normalization.
Empirically, the reduced variance of v̂wIPS often outweighs the in-
troduced bias, thus leads to a lower mean squared error than v̂IPS.
Finally, it should be noted that, under rather weak assumptions, v̂wIPS
is asymptotically unbiased, in the sense that it eventually converges
to the true policy value with infinite data [Liu, 2001].

The IPS estimator and variants provide the basis for much recent
work on offline estimation of online metrics in Internet applications.
Bottou et al. [2013] use a variant of Equation 4.6 to predict the
consequences of changes to online metrics of a complex ad system
modeled as a causal graph [Pearl, 2009], such as an ad engine. Li et al.
[2015a] use the IPS estimator in a query reformulation task within
a search engine to evaluate online performance of new reformulation
selection models. The unbiased IPS estimation technique may also
be used in other situations where the action set A is structured. For
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example, in order to predict the outcome of an interleaving experiment,
one can first collect randomized interleaving data, using probabilistic
interleaving [Hofmann et al., 2011b] (c.f., Section 2.7), and then
apply IPS to do offline estimation [Hofmann et al., 2012b, 2013c].2
Randomization schemes other than probabilistic interleaving can be
used (for instance, exploration scavenging [Langford et al., 2008]).
However, care must be taken to ensure that the distribution used for
data collection has covered the action space of the target distribution
sufficiently well to avoid introducing bias in the final estimate.

The IPS approach is related to the exploration scavenging tech-
nique which also produces unbiased estimates of policy values under a
more specialized assumption about the data. Another special case of
IPS occurs when one uses uniformly random exploration, that is, when
Pi ≡ 1/|A|. This approach has been applied to estimating click-through
rates in personalized news recommendation [Li et al., 2011] and user
engagement metrics in federated search [Ponnuswami et al., 2011].

Although we have presented IPS for the fixed-policy case, this
idea can be extended to estimate online metrics of an online-learning
algorithm (a history-dependent policy). This approach [Li et al.,
2011], sometimes referred to as Replay, requires that actions in DR are
chosen uniformly at random (that is, Pi ≡ 1/|A|). If p is not uniform,
rejection sampling can be used as a preprocessing step to yield a
subset of data where actions are uniformly randomly selected [Dudík
et al., 2012]. The Replay method has been found useful in a number
of scenarios, such as online learning-to-rank [Moon et al., 2012, Zoghi
et al., 2016], click shaping in news recommendation [Agarwal et al.,
2012], and advertising [Tang et al., 2013].

Finally, IPS-based estimation can also be used as a subroutine
for the more challenging offline optimization problem, in which one
aims to find a policy π∗ from a given policy class Π with maximum
value v(π∗). Conceptually, offline policy optimization may be reduced
to offline value estimation: if we can estimate the value v(π) for

2While interleaving algorithms like TeamDraft (Section 3.5) is also randomized
when selecting which list is used to contribute the next document, they normally do
not randomly select which document in the list is chosen. This type of randomization
is therefore of limited use when estimating other interleaving results offline.
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every π ∈ Π, the policy with highest estimated value would be a
reasonable approximation to π∗. Such an approach, as taken by
some previous work [Beygelzimer and Langford, 2009, Strehl et al.,
2011], ignores estimation variance, and therefore does not always
produce near-optimal policies reliably. Recently, Swaminathan and
Joachims [2015a] propose to use estimation variance as a regularization
term to stabilize offline policy optimization. The authors coined the
term counterfactual risk minimization, which resulted in the POEM
(Optimizer for Exponential Models) algorithm for a class of structure
learning problems. The authors later propose an improved approach
based on weighted importance sampling [Swaminathan and Joachims,
2015b]. IPS-based estimation of interleaved comparison outcomes
was used to show that reuse of historical data can accelerate online
learning using interleaving signals [Hofmann et al., 2013a].

4.4.2 Variance Reduction Techniques

Despite the unbiasedness guarantee, the main drawback of the basic
IPS estimator in Equation 4.6 is that its variance is high and can be
potentially unbounded. Since mean squared error is the sum of squared
bias and variance (for example, see [Hastie et al., 2009, Section 7.3]),
a large variance directly translates into a large mean squared error.

Given a policy π to be evaluated, recall that IPS computes the
average of a newly defined random variable, Ŷi := π(Ai|Xi)

Pi
Yi, for the

ith example in the dataset DR. If the data collection distribution, p,
and target policy, π, are not very different, meaning that the ratio
π(Ai|Xi)/Pi is often small, the variance of Ŷi is small. Otherwise,
a small variance in the reward signal Yi can be greatly magnified,
introducing a large variance to Ŷi. So far, we have seen two variants
of IPS in Section 4.4.1 that try to control the variance for smaller Pi
values: one applies a threshold if Pi gets too small (Equation 4.8), the
other uses self-normalization (Equation 4.9).

Below, we survey other ways to reduce variance; in addition to
these methods that are specific to offline evaluation, general variance
reduction techniques exist and some have been successfully applied to
online metric evaluation in information retrieval systems [Deng et al.,



4.4. Inverse Propensity Score Methods 63

2013]. It should be noted that multiple variance reduction techniques
can be combined to yield better results than any single one.

Tip for small-scale experiments #12

At smaller scales, variance reduction techniques become essential.

IPS with Estimated Propensity Scores

So far, we have assumed Pi in DR are known, as often one has full
control of the IR system to decide what action distribution to use to
collect data. Although it may sound surprising, it is possible to obtain
a more accurate estimator by replacing Pi by its estimates from data,
even if the true value is known [Hirano et al., 2003]. One intuition is
that randomness in sampling Ai contributes to the variance of IPS
estimators like Equation 4.6. By using the empirical frequencies of sam-
pled actions in the actual data, it is possible to remove such variance,
as can be seen more clearly in the single-unit case [Li et al., 2015c].

More precisely, from DR we construct the following data set

DP := {(Xi, Ai)}i=1,2,...,m , (4.10)

which is used to estimate the conditional probability, p(·|X = x).
The estimate, denoted p̂, is then used in IPS-based estimators. For
example, v̂IPS becomes

v̂p̂IPS = 1
m

m∑
i=1

π(Ai|Xi)
p̂(Ai|Xi)

Yi . (4.11)

Estimating p from data DP is a typical conditional probability
estimation problem, which can be solved by well-established statistical
techniques such as multi-class logistic regression. This variant of IPS
based on estimated propensity scores has been shown to work well in
recommendation and advertising problems [Strehl et al., 2011].

In practice, there is yet another important advantage of using esti-
mated propensity score. For many complex systems as in information
retrieval, sometimes it is hard to make sure actions are indeed sampled
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from the intended distribution, p, which would invalidate the use of
estimators like Equation 4.6. Fortunately, one can still estimate the
propensity scores, sometimes with even more accurate estimates.

Doubly Robust Estimation

The doubly robust (DR) technique is another improvement to basic
IPS estimators. The idea is to incorporate a direct outcome model
(Section 4.3) in IPS estimators, so that if the model is accurate, the
DR estimator can produce much better estimates than the original
IPS estimator. On the other hand, if the model is inaccurate, a DR
estimate still maintains the properties of IPS.

Suppose we are given a direct outcome model, f̂ , which ap-
proximates the unknown outcome function, f . Such a model f̂ may
be obtained using any method mentioned in Section 4.3. The DR
estimator is given by

v̂DR := 1
m

m∑
i=1

(∑
a

π(a|Xi)f̂(Xi, a) + π(Ai|Xi)
p̂(Ai|Xi)

(Yi − f̂(Xi, Ai))
)
.

(4.12)
Intuitively, v̂DR uses f̂ to estimate the outcome (as in DOM), and then
uses IPS to correct discrepancies between these outcome predictions
and actual outcomes Yi.

In Equation 4.12, there are two estimates, one for the outcome
model and one for the propensity scores. A particularly useful property
of DR estimators is that, as long as one of them is correct (f̂ = f or
p̂ = p), the DR estimator remains unbiased (see, e.g., Rotnitzky and
Robins [1995]), which justifies the name of this estimator. In practice,
one cannot expect either estimate to be accurate. However, it has been
shown that DR still tends to reduce bias compared to DOM, and to
reduce variance compared to IPS [Dudík et al., 2011]. Furthermore,
DR can also be combined with the replay approach (c.f., Section 4.4.1)
to evaluate nonstationary systems [Dudík et al., 2012].

A summary of all estimators discussed in this chapter is provided
in Table 4.1.
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4.4.3 Estimating Confidence Intervals

So far, we have surveyed a few point estimators to estimate v(π), in the
sense that they return a real-valued estimate but do not quantify the
amount of uncertainty in the estimate. Arguably, a point estimate is of
limited use unless a certain level of certainty is also available, commonly
reported in the form of confidence intervals [Casella and Berger, 2001].
This subsection describes several ways to compute such confidence
intervals that have been applied to offline estimation of policies.

One standard way to assess confidence is through normal approx-
imation, based on the central limit theorem. Consider the example of
IPS. The point estimate computed in Equation 4.6, v̂IPS, is an average
of the random variable Ŷi, defined by

Ŷi := π(Ai|Xi)
Pi

Yi . (4.13)

One can compute its sample variance by

σ̂2 := 1
m− 1

m∑
i=1

(
Ŷi − v̂IPS

)2
. (4.14)

Then, a (1− α)-confidence interval can be constructed:(
v̂IPS − tα/2σ̂, v̂IPS + tα/2σ̂

)
. (4.15)

Often, α takes a value of 0.1 and 0.05 (corresponding to 90% and 95%
confidence levels), and the tα/2 values are 1.645 and 1.96, respectively.
The calculations for other IPS variants are similar.

If the sample size m is large and if the Pi’s are not too close to 0,
the normal approximation above is reasonably accurate. For example,
it has been used to produce useful intervals in advertising [Bottou
et al., 2013] and in a Web search problem [Li et al., 2015a].

Another common approach is based on the bootstrap [Efron and
Tibshirani, 1993], a general statistical technique to approximate an
unknown distribution by resampling. Given a dataset DR of size m,
one can get a bootstrap sample, D̃R, of the same size by sampling with
replacements. Estimators like IPS (or even a direct outcome method)
are applied on D̃R to yield a policy-value estimate, ṽ. The above
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process (of resampling followed by estimation) is repeated B times,
and the α

2 - and (1 − α
2 )-quantiles of the bootstrapped estimates, {ṽ},

constitute the lower and upper bounds of a (1−α)-confidence interval.
The above approach, known as the percentile interval, can be

improved in various ways, resulting in better bootstrap-based confi-
dence intervals [Efron and Tibshirani, 1993, Chapter 14]. One of them,
BCa, has been successfully applied in an advertising problem [Thomas
et al., 2015], demonstrating more accurate interval estimates than
other approaches, such as normal approximation. Furthermore, the
bootstrap method can be combined with the Replay method to obtain
tight confidence intervals for nonstationary policies [Nicol et al., 2014].

Finally, it is worth noting that in many situations, it suffices to
obtain a one-sided confidence interval with the lower confidence bound
(LCB) only [Thomas et al., 2015]. A common use case is to compare
the LCB of a new system to a baseline system (such as the production
system), to see whether the new system is likely better than the
baseline. Therefore, such one-sided confidence intervals can naturally
be used in a robustness test to decide whether a new system should
be tested in a controlled experiment.

4.5 Practical Issues

The accuracy of offline estimates of policy values depends critically
on the quality of the data available to the estimators. A general
requirement is that the data needs to be exploratory enough, so that it
covers the whole X ×A space reasonably well. Otherwise, there would
be little or no information to estimate v(π) for actions chosen by π

that are not sufficiently represented in data. The need for exploration
data is even greater for IPS-based approaches, as they rely directly on
the (estimated) propensity scores.

Designing exploration distributions for data collection is not a
trivial task, and has to balance two conflicting objectives. On the
one hand, we would like to explore more aggressively in order to
collect more exploratory data that are better for offline estimation.
On the other hand, having too much exploration may potentially hurt
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the current user experience, as the system behaves more randomly.
Finding the right balance is almost always problem-dependent.

In some cases, exploration is not very expensive, for example when
few actions have a strong negative impact on the user experience. Then,
one can employ more aggressive exploration strategies, even the most
extreme one of uniform random exploration (that is, p(a|x) ≡ 1/|A|).
Such data has maximum exploration and has been proved useful in
personalized news recommendation [Li et al., 2010, 2011, Agarwal
et al., 2012] as well as a recency search problem [Moon et al., 2012].

A more common scenario is that exploration is expensive, so that
it makes sense to use a more conservative distribution to collect data.
An effective way is to add a certain amount of randomization to a
baseline (say, production) system which is known to work well. Then,
by controlling the degree of randomization, one can easily control the
risk and cost of exploration. Such an approach has worked well in
advertising [Bottou et al., 2013] as well as Web search [Li et al., 2015a].

After exploration data is collected, it is often worth verifying that
the data collection works as intended before using it. Li et al. [2015a]
propose a few simple-to-use tests to identify potential data quality
issues, which seem to be very useful in practice.

4.6 Concluding Remarks

As demonstrated by the cited works throughout this chapter, the
methods surveyed here work well in a variety of important appli-
cations. These successes motivate creation of systems that facilitate
deployment of such techniques [Agarwal et al., 2016]. Despite these
advances, however, several challenges remain.

The first arises when the set of actions is large. Examples of large ac-
tion spaces are the exponentially large set of ranked lists of documents
on a page, or simply a set of many potentially relevant documents for a
query. For direct outcome models, more actions imply that the outcome
function f(x, ·) requires more data to learn in general. For IPS-based
approaches, more actions usually require more aggressive exploration
during data collection, and result in higher variance in offline estimates.
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Dealing with large action spaces is inherently a difficult problem.
Existing solutions are all problem specific. One common approach is
to reduce the space of exploration, by taking advantage of structural
assumptions, such as various models for position biases in Web
search [Craswell et al., 2008, Swaminathan et al., 2016], knowledge of
the structure of ranked lists in Hofmann et al. [2013c], and by approx-
imating the original problem with a “scaled-down” version [Yankov
et al., 2015].

The second challenge is to estimate long-term effects of a new
system. In this chapter, we have focused on the situation when user
feedback, f(x, a), does not depend on history. However, when an
IR system changes, user behavior also evolves over time (e.g., the
“carryover effect” [Kohavi et al., 2012]).

There has not been much work on this problem in the literature.
Bottou et al. [2013] use equilibrium analysis in online advertising to
infer behavior of a new system that slightly deviates from an existing
system. More recently, Jiang and Li [2016] and Thomas and Brunskill
[2016] extend the doubly robust technique in Section 4.4.2 to a very
related multi-step decision making problem, which can be useful for
estimating session-level or long-term effects in IR systems. A similar,
doubly-robust method was proposed by Murphy et al. [2001] for
estimating treatment effects.



5
The Pros and Cons of Online Evaluation

This chapter discusses general pros and cons of online evaluation.
In contrast to the Cranfield approach [Cleverdon, 1967], the offline,
traditional and most popular way to evaluate and compare operational
effectiveness of information-retrieval systems, online evaluation has
unique benefits and challenges, which is the focus of this chapter.

As is made explicit in Definition 1.1, online evaluation is based
on implicit measurement of real users’ experiences in a natural usage
environment. In modern Web search engines, interaction between
users and the search engine is dominantly stored in the search log,
which usually consists of queries, returned search result pages, click
information on those pages, and landing-page information, among
others, in a search session of individual users. It is often much cheaper
and faster to collect such data in modern search engines, making it
particularly easy to scale up online evaluation. Furthermore, one may
argue that satisfaction in a natural usage environment is a more direct
and truthful indication of operational effectiveness of an IR system.
These reasons make online evaluation particularly attractive.

On the other hand, information in click logs, like clicks and dwell
time on the landing page, is implicit in the sense that a user is

70
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not asked explicitly whether a search session is successful or not, or
whether any document on the search result page is relevant to their
information need. Therefore, non-trivial effort is required to infer the
hidden signal of whether documents satisfying the user’s information
need were retrieved. Furthermore, in a natural usage environment, user
behavior is affected by how documents are presented on the search
result page, with position bias being the most widely recognized effect.
Such effects lead to the challenge of de-biasing user behavior collected
in search logs when inferring session success and document relevance.

The rest of the chapter is organized into several sections that cover
these issues. For a related discussion, see Chapelle et al. [2012].

5.1 Relevance

We first turn our focus to the issue of fidelity of implicit feedback from
users: What is the gold standard of online evaluation? How do things
like relevance and user satisfaction relate to online metrics? To what
degree do we think user satisfaction can be estimated from observed
user behavior? These questions are nontrivial to answer because of the
implicit nature of signals in online evaluation.

A few studies have shown that there is not necessarily a strong
correlation between offline evaluation metrics, such as mean average
precision and precision at k, and online benefits for users [Hersh
et al., 2000, Turpin and Hersh, 2001, Turpin and Scholer, 2006]. In
particular, it is also demonstrated that there is a wide range of offline
metric values which translate into an essentially flat region of online
user benefits. It is therefore tempting to look for online metrics that
are more aligned with user satisfaction and search success.

While it seems natural to consider a click on a document as a
relevance label, such a naive approach can be problematic, as argued
by, for example, Scholer et al. [2008]. One source of difficulty is the
various biases present in click log, discussed in Section 5.2. To address
this problem, Joachims et al. [2007] propose to use relative feedback
derived from clicks, which is less prone to biases and results in a much
higher agreement than absolute feedback.
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Another limitation with click-through data is that they measure a
user’s anticipated relevance of the document based on snippet shown
on the page. Fox et al. [2005] show that a combination with other
implicit information like dwell time on landing pages gives reasonable
correlation with judgments. Related recent work by Guo and Agichtein
[2012] proposes to use post-click behavior to incorporate other informa-
tion on the landing page, such as cursor movement and page scrolling.
When session information is available, queries issued later can be a
useful indicator of user satisfaction of previous queries in the session,
as shown for the case of query reformulation [Hassan et al., 2013].

5.2 Biases

One of the main challenges in online evaluation comes from various
biases present in typical search logs. Online behavior of users can be
affected by a range of factors that are unrelated to the relevance of
documents on the result page. These factors introduce bias in the user
feedback recorded by a search engine.

The best-known effect is probably position bias: documents in more
prominent areas of a page get more attention of a user on average,
and therefore have a higher chances of being clicked on. Examples of
these areas are top/left regions, as evidenced by multiple eye-tracking
studies, where user attention heat maps form an F-shaped pattern or
a golden triangle, among others; see Granka et al. [2004], Guan and
Cutrell [2007a,b] and the references therein. Position bias has also been
directly demonstrated in controlled experiments where a substantial
difference in click-through rate is observed even when documents on
the result pages are randomly shuffled [Moon et al., 2012]. Removing
position bias, with the FairPairs algorithm [Radlinski and Joachims,
2006] for example, leads to more reliable signals of relevance.

Another factor is presentation bias. Clarke et al. [2007] investigate
how click-through patterns are affected by caption features, such as the
length of a snippet and whether there is a string match between query
and document title. A further analysis is given by Yue et al. [2010b],
who quantify the effect of bolded-keyword matching in captions
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by controlling for position bias and document relevance. Therefore,
one has to remove such systematic biases when using click data to
infer ranker quality. For example, Hofmann et al. [2012a] propose
an approach that works well in interleaving experiments, resulting in
more reliable online evaluation results.

Finally, a few other sources of biases have also received attention
in the literature. Joachims et al. [2007] study two types of biases: trust
bias and quality-of-context bias. Trust bias exists because users believe
a strong search engine tends to rank more relevant documents before
less relevant ones, and therefore view/click top documents more often.
The quality-of-context bias reflects that clicks on a document depend
on the overall relevance quality of other documents on the result page.
Buscher et al. [2010] show a similar affect of ad quality on clicks of
relevant documents.

Studies of bias in click log, as well as approaches to remove these
biases, remain an important research problem.

5.3 Experiment Effects

In contrast to offline evaluation, online evaluation collects data directly
from users who actually use the search engine for their information
needs during evaluation time. As such, with proper sampling, the
distribution of users upon whom evaluation is based is representative
of the actual user experience should the changes be deployed. However,
an obvious practical concern is risks, namely negative impact on user
experience when users are included in an online experiment. Minimally
invasive approaches such as FairPairs [Radlinski and Joachims, 2006]
and the related Click-based Lambdas approach [Zoghi et al., 2016], as
well as interleaving (Section 3.5), are therefore particularly useful to
avoid catastrophically adverse effects on user experience.

This problem is also related to the exploration/exploitation trade-
off in a class of machine-learning problems known as multi-armed
bandits; see Bubeck and Cesa-Bianchi [2012] for a recent survey. In
the context of IR, this trade-off implies the need to intentionally vary
an existing ranker to collect user click data, in the hope of discovering
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signals that can be used to improve the ranker but are otherwise not
available without exploration. Effectiveness of these online-learning
algorithms is roughly measured by the cost of exploration needed to
find optimal rankings; for example, Radlinski et al. [2008b], Moon
et al. [2012], Hofmann et al. [2013b], Slivkins et al. [2013]. Motivated
by interleaving experiments, Yue and Joachims [2009] propose dueling
bandits where an algorithm can only learn from noisy, relative signals
between two candidate rankers.

Online evaluation is also complicated by social and/or temporal
changes of user behavior. For example, when a new feature is intro-
duced or when a new ranker is deployed, it often takes some time
for user click patterns to converge to equilibrium when users try to
adapt to the new feature/ranker. This is sometimes called a carryover
effect [Kohavi et al., 2012], implying that data collected right after
the new feature/ranker is introduced is less reliable. Another example
is the network effect [Ugander et al., 2013, Gui et al., 2015]. Socially
connected users affect each other so that their click patterns are in
general not independent. If one runs an online experiment to compare
two rankers, extra care is needed to remove such inter-user dependency
to reach statistically valid conclusions from data.

Tip for small-scale experiments #13

Beware of carryover effects in particular, they can reduce experimen-
tal sensitivity dramatically. Pre-experiment A/A tests can be used
to verify their absence.

5.4 Reusability

A huge benefit of offline evaluation, such as the Cranfield approach,
is reusability of data: once manually labeled data are collected, one
can readily compare ranking systems on metrics like average precision
and NDCG that are easily computed from the labeled data [Voorhees
and Harman, 2005] (although bias may arise due to missing relevance
judgments, c.f., [Zobel, 1998, Carterette et al., 2010]).
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In online evaluation, however, one usually is concerned with
click-based metrics, such as those reviewed in Section 3.2. These
metrics, unfortunately, typically depend on how documents are ranked
on the result page, thanks to various biases (Section 5.2). Therefore, in
general, click logs collected by running one ranker cannot be reliably
used to evaluate a different ranker. Under certain assumptions,
however, it is possible to reuse data to estimate online evaluation
results of a new ranker, as shown in Chapter 4.



6
Online Evaluation in Practice

Although online evaluation is conceptually straightforward, many
elements need to be correctly brought together to obtain reliable
evaluations. This chapter focuses on such practical issues, aiming to
guide the reader from theory to practical results on an actual IR
system. It is intended for readers who wish to implement or validate
online evaluations in practice.

This chapter will also present something of a generic recipe for
online evaluation, briefly describing alternative ways to implement an
experiment given a retrieval system, recruit & retain users, log results
then analyze these. However, as there is limited literature directly
considering the practice of online evaluation, our focus in prior work
in this chapter is a discussion of examples.

6.1 Case Studies Approach

Online evaluation is easily interpreted as an evaluation where we
observe how users are behaving when they interact with an IR system.
However, such a view is misleading: The user is only observed through
the limited instrumentation present in a website, and may be perform-
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ing any number of different tasks while interacting with the system we
are attempting to evaluate. Therefore, the evaluation must be carefully
validated and assumptions made must be explicitly considered. It is
most useful to do this through a series of case studies that highlight
key issues that need to be considered in online experimentation. As the
largest challenges come up at larger scales, such studies are the focus
of this chapter. However, the same themes also apply to smaller-scale
online evaluations.

While a variety of such case studies will be described, four are of
particular note. Kohavi et al. [2012, 2014] present several case studies,
and rules of thumb for AB testing. Bakshy and Frachtenberg [2015]
discuss design and analysis from a performance point of view (see
also Section 2.5). Finally, Li et al. [2015a] discuss how to design an
exploration scheme, with many practical tips on analysis.

6.2 Ethical Considerations

Ethical considerations must be considered prior to any online eval-
uation. It is essential to realize the extent to which observational
data of a person with a retrieval system is often personal data that
the user does not necessarily, a priori, recognize as something that is
recorded and possibly analyzed. Depending on the scenario, IR system
users may not realize that their queries (even anonymously) can leak
substantial personal or professional information.

An excellent illustration of this was the release of a sample of
anonymized search engine logs by AOL in 2006. These contained anony-
mous user numbers and associated user search queries with limited
metadata. However, the text of the queries themselves was sufficient for
a number of the search engine users to be personally identified by jour-
nalists 1. While approaches for anonymized logging [Feild et al., 2011]
and anonymization of logs [Navarro-Arribas et al., 2012] are an area of
ongoing research, in this chapter we do not discuss log distribution.

Even when logs are restricted to limited internal access, the private
nature of collected data creates a natural tension. For analysis purposes

1http://www.nytimes.com/2006/08/09/technology/09aol.html?_r=0

http://www.nytimes.com/2006/08/09/technology/09aol.html?_r=0
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to maximize the utility of an online evaluation, a general rule of thumb
is to log as much of the interaction as possible. On the other hand, this
increases the risk to user privacy. Achieving a good balance between
powerful search evaluation and enforcing respect for user privacy must
be a criterion when developing an online evaluation strategy.

A key consideration is consent, where it is clear to users what is
being recorded, how the user can control that data (for example, delete
it), and what potential evaluations are being performed. For instance,
consider a recent AB test at Facebook that involved controlled
experiments that modify the ranking of notifications listed on a social
network feed [Kramer et al., 2014]. Given the known impact of social
feeds on user well-being, this work prompted an extensive discussion
of ethical considerations, for instance in the popular press.2 and in
blogs of privacy researchers3

Ethical and privacy concerns become even stronger when per-
sonalized systems are evaluated, where the evaluation is not of a
straightforward server-side ranking algorithm but rather depends on
personalization of search results based on sensitive user data. For in-
stance, research on personalizing search results based on private history
has sometimes been conducted with recruited users agreeing to partic-
ipate but with all personal data deleted as soon as practical [Matthijs
and Radlinski, 2011], while the traditional (offline) approach would
be to log data client side and never require user interaction logs to be
seen by the experimenter while still allowing reliable evaluation.

Depending on the situation, researchers should be aware of rel-
evant organizational, institutional and professional requirements, for
instance to do with working with human subjects.

6.3 Implementing Online Evaluations

Suppose that we have two retrieval systems that we wish to evaluate.
In this section, we briefly describe the steps that need to be followed

2http://www.theatlantic.com/technology/archive/2014/06/everything-
we-know-about-facebooks-secret-mood-manipulation-experiment/373648/

3https://medium.com/message/what-does-the-facebook-experiment-
teach-us-c858c08e287f

http://www.theatlantic.com/technology/archive/2014/06/everything-we-know-about-facebooks-secret-mood-manipulation-experiment/373648/
http://www.theatlantic.com/technology/archive/2014/06/everything-we-know-about-facebooks-secret-mood-manipulation-experiment/373648/
https://medium.com/message/what-does-the-facebook-experiment-teach-us-c858c08e287f
https://medium.com/message/what-does-the-facebook-experiment-teach-us-c858c08e287f
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to perform an evaluation. A more in-depth analysis of many of the
steps that follow was also presented by Kohavi et al. [2009].

6.3.1 Metric Choice

First, we must decide on the metric or metrics that indicate experimen-
tal success – commonly called Key Performance Indicators (or KPIs).
It is critical that this choice is made before the experiment is run, as
often changes in a search system can improve some behavioral metrics
but degrade others. Without this choice having been made prior to the
experiment, it is impossible to objectively define success of an online
evaluation or even reliably select the evaluation sample size required.

As an example of the importance of this step, Kohavi et al. [2012]
describe an online evaluation where the number of queries per user for
a search engine increased by 10%, and the revenue per user increased
by 30%. However, this was the result of a bug whereby search result
quality dropped dramatically leading to users needing to issue more
queries, and sponsored advertisements becoming more relevant relative
to the web results being shown to users. Clearly, when evaluating an
search system, the success criterion should not be as simple as the
short-term number of queries per user or revenue per user.

Another choice that should be made at this point is the experi-
mental unit, as described by Kohavi et al. [2009]. Recall that common
choices are per-user, per-query, or per-session. This choice determines
how the metric of interest is computed. Readers are referred to
Chapter 3 for a detailed discussion.

6.3.2 Choice of Implementation

The engineering effort required to perform an online evaluation can
be substantial, and the choice of approach needs to trade off the
experimenter’s resources against the flexibility provided. In particular,
the experimenter needs to consider whether there is a need to build
a framework for future evaluations, or whether the evaluation is
essentially one-off.

Supposing that we have an initial ranking system, and we have
developed an improvement to it, how do we perform an evaluation?
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Table 6.1: Some Online Evaluation Implementations

Method Proxy Add-On Search/Server

Possible Scale Small-Medium Medium Large
Habit Support Yes Yes No
Observations Web Traffic Everything Own Site
Robustness Poor Medium High
Maintenance Medium Expensive Easy
Effort Required Small Medium High

We briefly list a number of considerations that lead to different
evaluation approaches in Table 6.1. More details of these alternatives
were discussed by Kelly et al. [2014].

The standard approach to online evaluation is server-side logging,
implementing a full search system: When a user arrives at the search
system, they are assigned to an experimental condition. Results are
presented according to an AB or paired evaluation strategy and
observations are collected. Many researchers have taken this approach,
from small scale (e.g., [Radlinski et al., 2008c]) to commercial web
search scale (e.g., [Arkhipova et al., 2015a]). This approach can run
at any scale, and allows observation of all user interactions with the
specific site, such as queries, clicking, mousing, and other related
behavior. The biggest limitation of a server-side approach is that the
system requires users engage with the system being evaluated. While
not a concern for large web services, online evaluation of this sort may
be harder for new systems: Users who do not have the habit of visiting
the site being evaluated may drift away after only a few interactions
and revert to their previously habitual online services.

One way to avoid this challenge is to build systems that essentially
intercept habitual user interactions, and modify what is shown to the
user. We now briefly describe two ways this can be achieved.

The first approach is to evaluate directly on the client using an
add-on specifically developed for user’s web browsers. To do this, an
additional piece of software is installed on participant’s web browser
that can intercept and modify web pages before they are displayed to
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users. As the evaluation involves running client-side software, there
is more control, potential availability of richer input features, and the
ability to measure a wider variety of user interaction metrics. On the
other hand, this add-on must be actively installed by users to be part
of the evaluation. Such an add-on essentially provides a transparent
post-processing stage as the user browses, thus exploiting habitual ac-
cess of existing services, while allowing everything to be observed with
regards to the user’s interaction with their web browser. This approach
requires more maintenance than a server-side approach, as the add-on
is necessarily browser dependent, and must correctly post-process the
target web pages. However, the effort required to develop a simple
add-on is typically smaller than the effort needed to develop a server-
side system. We note that while the add-on approach most suitable
for academic scale online evaluation (e.g., [Matthijs and Radlinski,
2011]), some products inherently use client-side reprocessing hence are
naturally suited to such an evaluation (e.g., [Hardtke et al., 2009]).

Tip for small-scale experiments #14

Client-side approaches are particularly useful at small scales, and
allow building a detailed understanding of user experiences, and de-
velopment of custom metrics suited for highly specialized retrieval
settings.

At smallest scales and with least implementation effort required, on-
line evaluation can also be performed by modifying the configuration of
a select group of users to intercept requests to any existing system by a
third-party server4, replacing the content served to users with new con-
tent that allows evaluation. This is done using a web proxy. It is only ap-
plicable when participants are recruited, and their web browser is recon-
figured to route all the web traffic via this proxy. This method also ex-
ploits habitual access of existing services, in that the participant contin-

4 Assuming the connection is not encrypted. An increasing number of search
systems today encrypt the data connection by default, making this method less
generally applicable.
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ues to interact with their browser as always, and visit the same websites
as habits dictate. It also allows the logging of all web traffic4, specifically
all requests to load any URL from the user’s browser are routed through
the proxy. However, such implementations are generally not robust: The
proxy is separate from the search system, and if anything changes in
the search system (such as the HTML formatting of results), the proxy
must also be adapted. This makes ongoing maintenance of the sys-
tem relatively complex. Furthermore, once the evaluation is completed,
participants must have their systems reconfigured to no longer depend
on the proxy. Finally, the most appealing aspect of such an evaluation
approach is that implementation of a proxy is straightforward. This ap-
proach was used in research work, for example by Fujimoto et al. [2011].

6.3.3 Other Evaluation Strategies

Beyond these three general approaches, specific information retrieval
tasks can be suited to more specific evaluation strategies. For instance,
Living Labs for IR Evaluation5 designed an online evaluation setup
for testing web ranking approaches [Balog et al., 2014]. In addition
to providing a way to obtain users, the framework also amortizes the
cost of developing the experimentation infrastructure across many
experimenters. Some commercial services today have similar aims.6
As another example, Boll et al. [2011] designed smartphone apps
with evaluation hidden in app tutorials, as games, and as general AB
tests hidden in natural interactions. While their focus was not on
information retrieval, the general strategy could be applied to selected
information retrieval tasks.

Tip for small-scale experiments #15

These approaches may be particularly worth investigating if the small
scale of a system makes other approaches difficult to use.

5http://living-labs.net/
6For instance, Optimizely or Visual Website Optimizer

http://living-labs.net/
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6.3.4 What Should Be Logged?

We briefly return to the question of recording user interactions with an
information retrieval system. Notwithstanding the earlier discussion
of ethical considerations presented, we summarize information that is
commonly useful for measuring common information retrieval quality
metrics and for analyzing the outcomes of individual evaluations.

For this discussion we assume that the retrieval system is a search
or recommendation engine. Typically logs record:

• The search/recommendation query (be it a text query, source
item, or just user identifier).

• As detailed a view of what was shown to the user as practical
(i.e., rankings, snippets, any surrounding contextual content).

• As detailed a view of how the user responded to what was shown
as practical (e.g., clicks, mousing information).

• Available user identifiers, depending on the application, to
permit session level and longer analysis as well as bot detection,
aggregate statistics, etc.

• Interface metadata (such as the browser used).

• If a randomized evaluation like interleaving is being performed,
the input ranking(s) provided to the randomization algorithm.

6.3.5 Establishing Evaluation Parameters

Once an evaluation metric and strategy has been selected, the next
key consideration is how large and how long the online evaluation must
be. Naïvely, one might assume that we should simply show the online
experiment to users while periodically observing the outcome and
concluding the experiment when there is a clear outcome using a simple
statistical significance test. However, such an approach is invalid, as
multiple-testing effects mean that we would instead over-interpret
random fluctuations in metric values, and claim statistical significance
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when there is none [Johari et al., 2015] (statistical methods for
continuous testing are an area of ongoing research, c.f., Section 2.3.3).

Rather, the experimenter needs to start by selecting: (1) The
sensitivity, i.e. the smallest magnitude of difference in evaluation
metric, that can be detected7; (2) The power of the test, which is the
probability that a difference between the systems is detected when
one actually exists; and (3) The confidence of the test, which is the
probability that a detected difference between the systems is real,
rather than the result of chance. There is a detailed discussion of this
tradeoff in Kohavi et al. [2009], and the authors provide a rule of
thumb for estimating sample sizes. Here, we illustrate with an example.
Typically, online evaluations aim for a 95% confidence (in other words,
if the experimenter runs 20 online experiments, 1 out of these is
expected to detect a statistically significant difference purely due to
chance), and a power of 80% or more (if there is a true difference of
at least the target sensitivity, then there is an 80% chance of actually
detecting it). In such a case, one can roughly estimate the sample size
needed for the evaluation, following [van Belle, 2008, page 29]:

n = 16σ2/∆2, (6.1)

where σ is the variance of the metric and ∆ is a normalized required
sensitivity.

Several statistical software packages support computing either
sample size, sensitivity, power, and confidence when three of these
are provided. For example, in R this functionality is provided in the
package pwr,8 and in python in the package statsmodels.9 For further
details on designing and planning experiments see Section 2.2.2.

The units of n are the experimental unit, such as queries, sessions,
or users (c.f., Section 2.2.3). To obtain this many samples, an exper-
iment can be run on more users for less time, or fewer users for more

7It is often noted that just because an improvement is statistically significant
does not mean that it is substantial enough to be noticed by individual users. Hence
depending on the application, it may be useful to consider what differences are also
substantial enough to warrant considering successful. Also, the tested hypotheses
should be meaningful, e.g., from a theory building perspective.

8See https://cran.r-project.org/web/packages/pwr/pwr.pdf.
9See http://statsmodels.sourceforge.net/stable/stats.html.

https://cran.r-project.org/web/packages/pwr/pwr.pdf
http://statsmodels.sourceforge.net/stable/stats.html
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time (assuming the unit of experimentation is at the query or session
level). While Kohavi et al. [2012] provide a detailed treatment of some
necessary considerations we provide two key observations:

First, while shorter online evaluations may be desirable from the
standpoint of experimental agility, natural fluctuations in user needs
argue for longer evaluations [Kohavi et al., 2009]. For instance, many
information retrieval systems naturally have different distributions of
query loads on different days of the week, and at different times of day.

Second, the sample size needed depends on the variance of the
metric. Some metrics are unbounded – such as the number of queries
per user of an information retrieval system. As an evaluation is run for
longer, the variance of this metric may increase, meaning that longer
experiments may not have higher statistical significance.

6.4 Recruiting Users for Reliable Evaluation

Now that we have a functioning retrieval system and evaluation strat-
egy, we turn to the next step: Finding users to evaluate the system. This
is typically not a challenge for large scale systems with an established
user base, hence this subsection focuses on smaller (for instance aca-
demic) evaluation settings. The goal is to measure performance on users
who genuinely use the experimental system in a way that is consistent
with how such a system would be used when ultimately deployed.

There are three basic levels for which users can be recruited.
The most reliable is natural in-situ evaluation where the a system
evaluation is based on real users performing natural tasks day-to-day.
This is possible when the IR system provides clear utility to a sufficient
number of people, and recruitment is akin to making people aware
of the service, which by its very existence provides value. Provided
the system is reliable and natural enough to use (for example, fast
enough), recruitment is simply a matter of building sufficient aware-
ness. For example, such an evaluation of an IR system was performed
by Matthijs and Radlinski [2011]. It is important to note, however,
that for evaluations where multiple approaches are evaluated on the
same population of users in sequence, there may be inter-experiment
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interactions (see Section 3.5 in Kohavi et al. [2012] for a detailed
example). It is worth also noting that the evaluation environment need
not match final system usage. For example, evaluation tasks for user
interface design may be hidden say within a game to obtain larger
user populations more easily [Boll et al., 2011].

Tip for small-scale experiments #16

Gamification, or embedding an evaluation in a different application,
is an interesting way to more easily recruit users.

A less generalizable approach is evaluation using recruited users
who nonetheless are asked to perform specified tasks in a naturalistic
environment. For instance, this is the approach used by common
crowd sourcing platforms such as Amazon Mechanical Turk 10. In an
IR setting, this may involve preparing a set of required tasks. It is
most effective when the users performing the evaluation have a natural
interest and expertise in the tasks being performed that would match
that of the users of the final system. An overview of designing such
evaluation approaches was recently published by Alonso [2013].

The final approach for evaluation of an IR system is a lab study,
where users are recruited to perform pre-specified tasks in a controlled
environment. On the one hand, this allows the most control in the
evaluation, and the experimenter can see if users behave in unexpected
ways. This provides valuable early-stage feedback on IR system design
and performance. Additionally, a lab study allows very specific exper-
iments to be designed to address particular questions in the design or
implementation of an IR system. On the other hand, the simple act of
observing such users affects how they interact with the system being
evaluated, for instance perhaps causing them to pay more attention
to results being presented than actual users would. This leads to such
studies having a higher risk of providing results that are not represen-
tative of real-world usage of IR systems in a public setting. Therefore,
validating that lab study users behave in ways consistent with natural

10http://mturk.com/

http://mturk.com/
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users is an important part of any such evaluation. For instance, in
a web search setting, it has been observed that even imperceptible
changes in the time it takes for an IR system to return results can have
large impact on user behavior [Kohavi et al., 2013]. As an example of
research taking the lab study approach, see Kelly and Azzopardi [2015].

Tip for small-scale experiments #17

Lab studies are usually run at smaller scales by necessity. There is
extensive literature on how to run these to obtain the maximum
information. [Kelly and Azzopardi, 2015] is a great starting point.

6.5 Validation, Log Analysis and Filtering

An important aspect of online evaluation with unobserved users is
data validation. This often takes a number of forms. The most obvious
is that, as part of the development process, known actions by the
experimenter should be confirmed to be logged correctly and have the
correct impact on online metric computation.

During and after the actual evaluation with users, it is important
to validate that the results generally make sense,11 and search for rea-
sons when the outcome may be unexpected. For instance, Kohavi et al.
[2014] present seven rules that capture many common experimental ob-
servations. The first rule notes that seemingly small changes can have a
big impact on key metrics, illustrating this with experiments from small
errors causing failures to changing how a website responds to user clicks.
However, a second rule points out that changes rarely have a big positive
impact on key metrics, hence such outcomes should be treated carefully.
Such changes in metrics need to be drilled into during validation.

Validation is also important whenever randomization occurs. For
instance, if the results presented to search engine users depend on
a random number generator (such as when assigning users to the
experimental condition, or within an experimental condition with
interleaved evaluation), it is important to validate that the random

11But be aware of confirmation bias [Nickerson, 1998].
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numbers generated do not exhibit unexpected properties. For instance,
if multiple servers present search results and these periodically reset,
do they always initialize to the same random seed, causing the
samples observed to not respect the intended statistical properties?
As another example, if performing an experiment where the unit
of experimentation is a user, and users are initially divided into
experimental conditions at known rate using browser cookies (say,
50% control and 50% treatment), the balance of users at the end of
the experiment should be validated. If it changes, it may be that users
in one condition are more likely to abandon the IR system (a valid
outcome), but might also mean that one of the conditions simply
corrupts the cookies used to assign users to experimental conditions.

Another common concern with online IR evaluation is the effect
of automated crawlers (also known as bots). In particular, when com-
puting metrics where a mean metric is computed, even one automated
crawler that is not eliminated may skew the mean meaningfully.
Kohavi et al. [2009] note that using javascript logging is less prone
to robots being logged, although in some cases automated crawlers
may be malicious. In some situations it may be beneficial to compute
medians rather than means to make the metric more robust to outliers.

6.6 Considerations and Tools for Data Analysis

Once an experiment has been completed, and data has been carefully
validated, the final step is analyze the data, and to compute statistical
significance of any outcomes found. An overview of data analysis using
regression analysis was given in Section 2.3. In addition, there has been
substantial work published on statistical significance testing for infor-
mation retrieval (for instance, see Carterette [2013] for an overview).
Here, we summarize a few statistical tools that can particularly useful
when performing online evaluation of information retrieval systems.

6.6.1 Modeling and Analysis Tools

Many tools and toolboxes exist for analyzing experiment data. Here,
we focus specifically on tools that facilitate modeling and analysis
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using regression analysis. Standard hypothesis testing (e.g., t-test) is
widely supported by statistical software packages. Common choices
that are available under open source licenses include R, and the python
package scipy.

Approaches for estimating model parameters in more complex
models have been developed over the past years. These either approach
the task from a frequentist perspective (and fit models using OLS), or
from a Bayesian perspective (and estimate model parameters using,
e.g., sampling techniques). State of the art implementations for the
statistics software R can be found in the packages lme412 [Baayen
et al., 2008, Bates et al., 2014] (model coefficients are estimated using
OLS) and MCMCglmm13 (estimation using Markov-Chain Monte Carlo
methods) [Hadfield et al., 2010]. A subset of this functionality is
provided in the python packages scikit-learn14 and statsmodels15.

Stand-alone tools for statistical modeling from a Bayesian
perspective are BUGS16 and infer.net17 [Minka et al., 2014].

6.6.2 Assessing Statistical Power

When a sequence of online evaluations is to be performed, understand-
ing the statistical properties of metrics of interest is often useful. In
general, given non-uniformity in how users arrive and generate infor-
mation needs, measuring how sensitive the outcome is to experiment
length and sample sizes can be non-trivial. One approach to assess
the sensitivity of online evaluation is to use bootstrap sampling to
resample logs, subsampling experimental units with replacement. For
instance, Chapelle et al. [2012] used this approach to measure the
relative sensitivity of different metrics.

12See https://cloud.r-project.org/web/packages/lme4/index.html.
13See https://cloud.r-project.org/web/packages/MCMCglmm/index.html.
14See http://scikit-learn.org/stable/modules/linear_model.html.
15See http://statsmodels.sourceforge.net/devel/mixed_linear.html.
16See http://www.openbugs.net.
17See http://research.microsoft.com/infernet.

https://cloud.r-project.org/web/packages/lme4/index.html
https://cloud.r-project.org/web/packages/MCMCglmm/index.html
http://scikit-learn.org/stable/modules/linear_model.html
http://statsmodels.sourceforge.net/devel/mixed_linear.html
http://www.openbugs.net
http://research.microsoft.com/infernet
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6.6.3 Maximizing Sensitivity

Finally, a common concern in online evaluation is maximizing the sen-
sitivity of any online evaluation. Depending on the evaluation metric,
different approaches may be relevant. With AB evaluations, it is often
the case that different user queries are known ahead of time to have
different metric values. For instance, we may be known that one word
queries are much higher CTR than five word queries. When measuring
significance of a metric such as CTR, such a wide range of values for
different query classes increases the variance of the metric, requiring
larger sample sizes to achieve statistical significance. However, if differ-
ent queries are separately analyzed, the statistical power of the same
size sample can be greatly increased [Deng et al., 2013, Deng, 2015].

In the case of interleaving evaluations, we start with much higher
sensitivity. However, as we saw in Section 2.7 that the interleaving
metric can also be tuned to directly optimize it for the statistical
power of an evaluation. If performing an evaluation where sensitivity
is more important than metric interpretability, and if a number of
similar experimental evaluations is available to tune the parameters
to achieve this, such an approach may be warranted (for instance,
Hofmann et al. [2012a], Yue et al. [2010a]).



7
Concluding Remarks

Evaluation of information retrieval systems is among the core problems
in IR research and practice. The key challenge is to design reliable
methodology to measure an IR system’s effectiveness of satisfying
users’ information need. There are roughly two types of approaches.
Offline approaches such as the Cranfield paradigm, while effective
for measuring topical relevance, have difficulty taking into account
contextual information including the user’s current situation, fast
changing information needs, and past interaction history with the
system. The online approach, on the other hand, aims to measure
the actual utility of a fully functioning IR system in a natural usage
environment. In contrast to offline approaches, user feedback in online
evaluation is usually implicit, in the forms of clicks, dwell time, etc.
Consequently, online evaluation requires a rather different set of
methods and tools than those used in offline evaluation.

In this survey, we provide an extensive survey of existing online
evaluation techniques for information retrieval. In particular, we
start with a general overview of controlled experiments, the scientific
foundation of most online evaluation methods, in the context of
information retrieval. Then, we review the large collection of metrics
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that have been proposed in the IR literature for different tasks and
research questions. These metrics turn low-level, implicit user feedback
into aggregated quantities that characterize different aspects of an
IR system. We also cover the important topic of offline estimation of
online evaluation results using historical data. These techniques are
particularly useful when running online experiments are expensive and
time-consuming. On the more practical side, we also discuss pros and
cons of online evaluation, as well as often encountered practical issues.

Online evaluation for information retrieval is an active area of
current research. Much of the recent research has been driven by
requirements of industry applications. Now, online evaluation plat-
forms are developed for academic purposes and fruitful collaborations
between industry and academia are emerging. As these expand,
we expect new insights and new applications that will drive the
development of new methods and tools. Some of the most prominent
research directions are discussed in this chapter.

The trend towards increased research in, and use of, online
evaluation is well illustrated by the introduction of online evaluation
in academic evaluation campaigns. The living labs challenge first
introduced online evaluation to CLEF [Balog et al., 2014]. Following
this setup, industry partners provide access to (anonymized) queries
to subscribing teams through an API, and provide the opportunity for
teams to generate some of the rankings used. Observed clicks and other
meta data are then fed back to the subscribing teams, allowing them
to evaluate and tune their ranking approaches using real usage data.
The success of this model is demonstrated by the recent extension to
the TREC OpenSearch track,1 which focuses on academic literature
search. This trend provides an exciting opportunity for information
retrieval research to extend beyond static collection and laboratory
settings, and investigate retrieval under real usage data.

The living labs setup is one answer to the problem of sharing
access to usage data, and setting up repeatable experiments. Problems
related to privacy have severely limited access to usage data in the
past. The anonymized access to a limited set of queries provided

1See http://trec-open-search.org for details.

http://trec-open-search.org
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through living labs addresses both privacy issues and the need for
access to usage data. Another line of important work studies how log
data can be anonymized while preserving information that is crucial
for research [Feild et al., 2011, Navarro-Arribas et al., 2012, Hong
et al., 2015]. New insights in this area can lead to sharing more infor-
mation to benefit research while at the same time better preserving
users’ privacy. An open question is whether part of the setup could
be replaced by a simulator. For example, can observed usage data
inform a sophisticated simulator that captures the key aspects of user
behavior required for valid IR experimentation? Approaches have
been proposed in the context of known item search [Chowdhury and
Soboroff, 2002, Azzopardi et al., 2007] and to assess properties of online
learning approaches under varying user models [Hofmann et al., 2011a,
Chuklin et al., 2014]. Developing high-quality simulators for broader
classes of user behavior remains an open problem, which may benefit
from eye-tracking [Guan and Cutrell, 2007a, Buscher et al., 2010,
Hofmann et al., 2014] and mouse movement studies [Diaz et al., 2013].

Many challenges remain to be addressed. First, despite the po-
tential for online experimentation using “big data” — the available
amount of data is typically orders of magnitude greater than in
laboratory studies or offline evaluation — issues of scale remain an
enormous challenge. The increased realism of online data also means
increased variance and reduced experimental control. Thus, methods
for effectively reducing variance will remain an important area of
research. In the extreme, an ideal information retrieval system would
provide the most relevant information for each individual user at
each point in time with the smallest possible amount of training data
or exploration. Moving towards this ambitious goal will require a
concerted effort in statistical techniques, user modeling, and machine
learning techniques such as one shot learning.

Moving towards online evaluation does not mean that insights
gained in offline evaluation should be ignored. The wealth of insights
in models and metrics, designed to effectively capture user needs and
expectations, can inspire and inform work in online evaluation. A
central open question is how to align offline and online metrics. A
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reliable alignment would allow practitioners and researchers to benefit
from the best of both worlds, e.g., using existing offline data for initial
testing before moving to online evaluation. First insights in how to
relate online and offline metrics, and how to tune them to achieve
better alignment are provided in Carterette and Jones [2007], Ozertem
et al. [2011] and Schuth et al. [2015b].

As online experimentation and evaluation mature, automation is
becoming an important topic. Instead of setting up each experiment
individually, such as a series of AB tests, online learning approaches,
bandit algorithm and sequential design of experiments provide routes
towards automatically constructing and selecting the most informative
experiment given previous observations. Tools like the Metric Opti-
mization Engine2 apply Bayesian optimization methods to construct
informative experiments. Bakshy et al. [2014] present a tool for
deploying online experiments that covers a wide range of experiment
designs, including factorial designs.

A range of metrics have been proposed for online evaluation,
ranging from simple click-based metrics to composite metrics of
engagement and user satisfaction (discussed in Chapter 3). So far,
no single universal metric has been identified. Most likely, different
metrics will be required for different IR applications and needs of the
experimenter. New metrics are currently explored for applications that
go beyond scenarios like Web search, e.g., for mobile search [Guo et al.,
2013b, Lagun et al., 2014] and interaction with conversational (search)
agents [Jiang et al., 2015b]. As information retrieval systems move to-
wards more conversational settings, we will need a better understanding
of long-term metrics. Compared to the currently dominant query-based
and session-based metrics, longer term metrics could assess effects of
learning and gaining and remembering information throughout search
tasks and interests that last weeks or months. Hohnhold et al. [2015]
demonstrate the value of optimizing for long-term metrics in online
advertising. Typical problems of measuring long-term effects are illus-
trated in Kohavi et al. [2012]. User engagement metrics are designed to
capture engagement over multiple weeks [Dupret and Lalmas, 2013].

2https://github.com/yelp/MOE

https://github.com/yelp/MOE
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Finally, online evaluation can benefit from cross-fertilization with
other trends in IR evaluation, in particular crowdsourcing and gami-
fication. Crowdsourcing [Alonso and Mizzaro, 2009, Kazai et al., 2011,
Zhou et al., 2014] has become a popular source of relatively cheap
labeled data for constructing test collections for offline evaluation.
Crowdsourcing workers on platforms such as Amazon Mechanical Turk3
and a number of similar platforms are paid small amounts of money for
completing small HITs – human intelligence tasks. Ease of access and
low prices make these platforms a popular alternative to much more
expensive expert relevance judgments [Mason and Suri, 2012]. Combin-
ing crowdsourcing with online evaluation can lead to novel experiment
setups where crowd workers complete simulated or actual search tasks
using fully functional search interfaces. Driven by the move towards
crowdsourcing instead of expert judgments, gamification has become a
popular method for increasing engagement and label quality [Eickhoff
et al., 2012]. The boundaries between online evaluation and gamified
assessments via crowdsourcing are expected to become blurred. Many
of the developed techniques apply to both, and combinations can lead
to innovative experiment designs that generate detailed insights into
the motivations and behaviors of information seekers.

3https://www.mturk.com/mturk/welcome

https://www.mturk.com/mturk/welcome
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