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Abstract

Guaranteeing safety is a key problem that needs to
be addressed in order to enable the real-world de-
ployment of robots and autonomous cyber-physical
systems (CPS). While there is a lot of interest in
deploying sensors and predictors that would iden-
tify obstacles and unsafe situations, there is little
research on how to use such learned systems to plan
and execute missions safely and efficiently. Re-
cent research on safe planning and control not only
admits to simplistic constraints, most of them as-
sumed to be known a priori, but attempting such
synthesis often results in large optimization prob-
lems which are often impractical to solve given
real time constraints of such systems. In this work
we propose a novel combination of sampling-based
motion planning with safe control synthesis meth-
ods for generating safe high-level plans in real-
time. The distinguishing aspect of our work is
that it provides a natural framework of incorporat-
ing sensor data and the associated prediction about
the obstacles to quickly determine the safe mission
plan. We showcase this approach with autonomous
car scenarios.

1 Introduction
Robotic and cyber-physical systems are proliferating at a
breakneck pace. Semi-autonomous and fully autonomous
cars and unmanned aerial vehicles (UAVs) are already real-
ity and are expected to integrate more closely with humans
in the near future [Urmson et al., 2008]. A key technologi-
cal hurdle in this process is to ensure the safety of such sys-
tems at all times especially within the proximity of humans
and while carrying out mission-critical tasks. While there
has been a push in identifying obstacles and unsafe situations
via sensors and machine learned predictors [Dey et al., 2015;
Aoude et al., 2013], the task of embedding such information
to determine safe course while obeying rules-of-the-road is
non-trivial [Plaku and Karaman, 2015]. Further, the uncer-
tainty and noise in prediction together with near real-time re-
quirements under bounded computation resources makes this
problem very challenging [Horvitz, 2001].

This work proposes an architecture for fast and safe plan-
ning of autonomous missions. The key idea behind this work
is to consider recent research on optimization based safe con-
trollers and then incorporate fast sampling based procedures
to generate in real-time the mission plans for complex sce-
narios. Specifically, we build upon the recent work in Proba-
bilistic Signal Temporal Logic (PrSTL) [Sadigh and Kapoor,
2015] that synthesizes provably safe controllers that take into
account the noisy sensor readings and the associated uncer-
tainty in learned classifier or regressor predictions. Currently,
the state-of-the-art solution for PrSTL requires solving Mixed
Integer Semi-Definite Programs (MISDPs), which quickly
become infeasible to solve in reasonable time as the number
of constraints grow. Further, PrSTL needs the description of
the mission goal and the required safety invariants as logical
formulations and often expressing such objectives and con-
straints for long horizons and complicated rules-of-the-road
remain non-trivial at best. Finally, the near real-time plan-
ning requirements under constrained computational resources
makes such approaches impractical.

We alleviate these problems by combining PrSTL with ran-
dom sampling based planners. We propose using Rapidly-
exploring Random Trees (RRT) [Lavalle and Kuffner Jr,
2000] and associated variants like RRT* [Karaman et al.,
2011] to simplify computation by first efficiently sampling
feasible points in the robot’s configuration space and then
generating trajectories by connecting them via safe control.
Such fast sampling of the feasible trajectories effectively
reduces the optimization from a MISDP to a sequence of
Second Order Cone Programs (SOCP), which being con-
vex, can be solved much more efficiently. Furthermore, the
RRT/RRT* framework only needs a procedure/function to
check the violation of safety constraints. Consequently there
is no requirement enforcing that all the invariants must be
written as logical programs. Instead we can use only the con-
vex subset of invariants in PrSTL to encode safety constraints.
Specifically, our contributions in this paper are:

• A framework for fast and safe mission planning under
uncertainty.

• Combining RRT* with control for PrSTL to generate
adaptive plans such that the resulting trajectories sat-
isfy both the safety and the PrSTL specifications using
SOCP.



• A toolbox implementing the framework and experiments
in autonomous driving and control of quadrotors.

In the rest of this paper, we first discuss some of the re-
lated work and preliminaries, we then describe our frame-
work and show our solution along with some experimental
results which shows the large speedup obtained in long range
planning without sacrificing safety.

2 Background
2.1 Planning and Control
Most autonomous systems today are implemented as hybrid
hierarchical systems with a mission planner at the top level
that gives low level controllers smaller primitives (e.g. trajec-
tories) to execute [Urmson et al., 2008; Cowlagi, 2011]. The
objective of the mission planner is to satisfy the mission-level
objectives while observing the rules-of-the-road and avoiding
obstacles. In contrast controllers at lower levels of the hier-
archy (e.g. PID [Ziegler and Nichols, 1942], LQR [Li and
Todorov, 2004], H-infinity [Zames, 1981]) are responsible for
executing trajectories handed to them and actually making the
system reach the goal state [Zames, 1981].

Examples of high level mission planners include state-
lattice motion primitives [Pivtoraiko and Kelly , 2005], in-
complete planners like CHOMP [Ratliff et al., 2009] and
complete sampling-based motion planning like Probabilistic
Road Maps (PRM) [Kavraki et al., 1996], Rapidly-Exploring
Random Tree (RRT) [Lavalle and Kuffner Jr, 2000] and vari-
ants like RRT* [Karaman et al., 2011]. In the past few
years sampling-based motion planners have shown great im-
provements in solving high dimensional kinodynamic mo-
tion planning problems for a wide variety of robotic systems
from high-degrees-of-freedom manipulators [Berenson et al.,
2009] to mobile robot navigation [Kuwata et al., 2008]. They
are relatively simple to implement and overcome the curse
of dimensionality problem by cleverly leveraging the lower
dimensionality of the task space as compared to the configu-
ration (joint) space of robots. RRT [Lavalle and Kuffner Jr,
2000] is probabilistically complete in the sense that if there
exists a feasible path, RRT is guaranteed to find that path
given enough time. Nonetheless, RRT was proven to con-
verge to sub-optimal solutions and the proposed alternative
RRT* [Karaman and Frazzoli, 2011] is provably asymptot-
ically optimal albeit at the cost of increased computational
complexity.

A major limitation of such planners is that they assume
that the environment is perfectly known beforehand. In prac-
tice this is rarely the case and most autonomous robots have
onboard sensors (e.g cameras, radars, lidars) which perceive
the environment in the immediate vicinity with some un-
certainty. Additionally there may be uncertainty in dynam-
ics as well. Along with the growing proximity to humans
of such systems such as autonomous cars and drones, con-
structing plans in real-time which are provably safe is be-
coming a challenge of growing importance. While there have
been previous efforts to incorporate such uncertainty into
planning [Melchior and Simmons, 2007; Dey et al., 2015;
Van Den Berg et al., 2011], safety guarantees have been dif-
ficult to provide in such settings especially under constrained

computational budget. One of the closest approaches to our
work is that of [Luders et al., 2010] who propose a chance-
constrained RRT (CC-RRT) where uncertainty in dynamic
obstacles and sensing is propagated down the tree and only
those paths in the tree are kept such that they satisfy a real-
time constraint. In contrast to CC-RRT, our approach uses
PrSTL in the steering function, and allows a much richer
class of Boolean and temporal constraints to be specified in
addition to probabilistic constraints. Furthermore, using our
approach with PrSTL constraints instead of CC-RRT pro-
vides a natural way of expressing uncertainties present from
Bayesian classifiers that update their beliefs by inference.

There has been recent developments in synthesizing con-
trollers, inspired from tools and techniques in program veri-
fication and artificial intelligence where the goal is to synthe-
size control policies that satisfy temporal properties, disjunc-
tions, conjunctions or negations of user-specified predicates.
Examples of such constraints include “The robot must always
stay 2 meters away from all obstacles” or “First go to X and
then do Y”. Several temporal logic specification languages
have been developed and adapted for synthesizing controllers
such as Linear Temporal Logic (LTL) [Kress-Gazit et al.,
2009; Tabuada and Pappas, 2004], Metric Temporal Logic
(MTL) [Karaman and Frazzoli, 2008], Probabilistic Tempo-
ral Logic (PTL) [Yoo et al., 2012] and Signal Temporal Logic
(STL) [Raman et al., 2015; Raman et al., 2014; Maler and
Nickovic, 2004]. These approaches can be used for task plan-
ning [Plaku and Karaman, 2015], where a system designer
a priori specifies logical specifications composed of disjunc-
tions, conjunctions, negations as well as temporal permuta-
tions of those combinations. Previous work has also proposed
methods for combining sampling-based motion planners with
such specification languages to do joint task and motion plan-
ning for autonomous robots [Karaman and Frazzoli, 2009;
Karaman and Frazzoli, 2008]. However, these approaches
are limited in their capacity to both express the constraints
as well as the capability to account for uncertainty in sensors
and dynamics.

Temporal logics like STL are amenable to specification
of stochastic properties of continuous signals. These signals
could be functions of the robot state, environment and other
safety parameters. Recent work has proposed probabilistic
logical specification (PrSTL) [Sadigh and Kapoor, 2015] that
introduces random variables in logical formulae to express
uncertainty in the robot state, environment and other exoge-
nous variables. Such probabilistic formulation enables em-
bedding of Bayesian classifiers and predictors in the specifi-
cation language, thereby allowing the systems to operate in
environments that are only partially observed. In our frame-
work we propose a new method that builds upon RRT* and
uses PrSTL as a steering function. This method combines the
positive aspects of both the techniques: (1) PrSTL enables us
to specify safety invariants and allows embedding of machine
learning predictors operating on real-time signals. (2) The
RRT* framework allows fast computation of strategies cir-
cumventing the need to solve computationally difficult prob-
lems that usually arise in logical specification based control
synthesis methods. We next provide more details on PrSTL.



2.2 Probabilistic Signal Temporal Logic
Probabilistic Signal Temporal Logic (PrSTL) allows express-
ing stochastic properties over real-valued, dense-time signals.
Given the capabilities that PrSTL provides, we can formally
define temporal properties over uncertainties that are present
in sensors and classifiers of the system. For example, we can
express PrSTL formulas that represent probability that the
output of a Bayesian predictor would lie in a desired range
for time steps in the future.

Let x(t) denote a real-valued signal at time t, then (x, t) |=
ϕ specifies that the signal x satisfies the PrSTL formula ϕ at
time t. A PrSTL formula ϕ consists of temporal and Boolean
properties over atomic predicates represented as λεtαt

. Such
predicates are defined over time-varying random variables αt
drawn from a distribution at every time step. Furthermore,
εt ∈ [0, 0.5] represents a tolerance level for satisfaction of
the predicate. Therefore, satisfaction of this atomic predicate
translates to:

(x, t) |= λεtαt
⇐⇒ P

(
λαt

(x(t)) < 0
)
> 1− εt, (1)

where λαt
(x(t)) is a stochastic function of the signal, which

can express uncertainties regarding sensors, classifiers, etc.
For example, if αt represent parameters of a classifier then
computing the stochastic function simply corresponds to ap-
plication of the classifier to x(t). Consequently, the atomic
predicate described above signifies that only those trajecto-
ries for which the condition λαt(x(t)) < 0 holds with a high
probability should be considered valid. PrSTL allows nest-
ing of temporal and Boolean properties over the probabilistic
predicates. Similar to other temporal logics, PrSTL provides
the capability of expressing rich properties such as safety, re-
sponse, surveillance, etc. in addition to preserving the uncer-
tainties inherent in sensors as part of the formula. The syntax
of PrSTL is defined as follows:

ϕ ::= λεtαt
| ¬̃λεtαt

|ϕ∧ψ |ϕ∨ψ |G[a,b]ψ |ϕU[a,b]ψ |F[a,b]ψ.

Here, ϕ is constructed as a probabilistic predicate λεtαt
,

its negation ¬̃λεtαt
, the Boolean conjunction or disjunction

of two PrSTL formulae, or temporal operators applied over
PrSTL formulae. The temporal operators consist of G
(globally), F (eventually) and U (until). For example,
G[5,7](P (λαt

(x(t)) < 0) > 0.8) is a formula indicating that
the stochastic function λαt(x(t)) must be less than zero with
0.8 confidence for all times in the interval t ∈ [5, 7].

The satisfaction of each temporal or propositional formula
is then defined as follows:

(ξ, t) |= λεtαt
⇔ P (λαt

(ξ(t)) < 0) > 1− εt
(ξ, t) |= ¬̃λεtαt

⇔ P (−λαt
(ξ(t)) < 0) > 1− εt

(ξ, t) |= ϕ ∧ ψ ⇔ (ξ, t) |= ϕ ∧ (ξ, t) |= ψ
(ξ, t) |= ϕ ∨ ψ ⇔ (ξ, t) |= ϕ ∨ (ξ, t) |= ψ
(ξ, t) |= G[a,b]ϕ ⇔ ∀t′ ∈ [t+ a, t+ b], (ξ, t′) |= ϕ
(ξ, t) |= F[a,b]ϕ ⇔ ∃t′ ∈ [t+ a, t+ b], (ξ, t′) |= ϕ
(ξ, t) |= ϕU[a,b] ψ ⇔ ∃t′ ∈ [t+ a, t+ b] s.t. (ξ, t′) |= ψ

∧∀t′′ ∈ [t, t′], (ξ, t′′) |= ϕ.

The PrSTL formulas can be treated as constraints in reced-
ing horizon optimization problems that synthesize safe con-
trollers. Also note that as the robot begins to traverse the

trajectory, it has the opportunity to observe new data and up-
date its beliefs over the parameters αt. Such evolution of
constraints allow the autonomous system to safely operate in
environment thats partially observed.

It is shown that given αt is drawn from a Gaussian dis-
tribution, the control synthesis problem under PrSTL con-
straints can be solved as a mixed integer semi-definite pro-
gram (MISDP). While solving an MISDP is NP-complete,
there exists a subset of PrSTL called Convex PrSTL that is
recursively defined over the predicates using only conjunc-
tions or the globally operator. As the name implies the op-
timization problem reduces to second order cone program-
ming (SOCP) and is convex. One of the advantages of the
framework proposed in this paper is that instead of solving
a general mission planning task as computationally intensive
PrSTL, it uses RRT* to decompose the problem into a se-
quence of simpler convex optimization tasks.

3 Approach
In this section, we detail our approach for the general scenario
where a robot is tasked with navigating from a start state to a
goal state and an incomplete map of the environment is avail-
able. This means that there might be additional obstacles and
other latent variables on the map, which are unknown in the
beginning but as the robot navigates, onboard sensors (nois-
ily) detect them.

The key idea in our approach is to first sample the configu-
ration space for valid points that satisfy the safety invariants,
and then seek for a safe path or trajectory that would connect
these sets of sampled points. Such safe trajectories are deter-
mined via safe control synthesis using the PrSTL framework.
Given the sampled points and the safe trajectories that con-
nect these, the framework finally chooses the shortest path
from the start to the goal which minimizes the cost criterion
of interest.

One big advantage of this framework is that the validity
test for random samples does not need a rigid logical spec-
ification and can be expressed as an imperative procedure.
Such imperative descriptions allows checking of fairly com-
plex safety conditions, which might be very hard to eval-
uate using PrSTL. For example, the boundaries of a flying
arena can be of arbitrary shape, and constraints on such non-
parametric boundaries cannot be easily expressed as logical
formulae. However, given a map of such arena it is easy to
check whether a sample is valid or not. Also note that the
PrSTL framework has the capability to embed an online pre-
dictor that can continuously monitor the environment. Conse-
quently, any obstacle or unsafe conditions not known a priori
can also be handled in a seamless manner.

Algorithm 1 details the main steps of our approach, which
we term as PRSTL-TREE. The algorithm requires a map
M of the environment which contains known obstacles and
also encodes rules-of-the-road like no-fly regions, a start state
sstart, a goal state sgoal, radius gradius which describes the goal
region centered around the goal state, the number of ver-
tices to be built into the sampling-based motion planner tree
nvertices at each planning cycle and the number of steps nsteps
that the robot will actually traverse each planning cycle.



Algorithm 1 PRSTL-TREE: Safe planning and control to goal.

Require: Map of known obstaclesM
Start state sstart
Goal state sgoal
Goal region radius gradius
Number of vertices in tree nvertices
Number of steps per planning cycle nsteps

Ensure: Path traversed to goal p = {sstart, s1, . . . , sgoal}
1: p = {}
2: scurrent = sstart
3: while dist(scurrent, sgoal) > gradius do
4: tree← BuildSafeTree(M, scurrent, sgoal, nvertices)
5: snearest ← FindNearestNeighbor(tree, sgoal)
6: pshortest ← ShortestPathToGoal(tree, scurrent, snearest)
7: (ptraversed, scurrent, obsv)← TakeNSteps(pshortest, nsteps)
8: p← p ∪ ptraversed
9: UpdateBelief(obsv)

10: end while

Initially the path taken by the robot is set to the empty se-
quence p = {} and the current state is set to scurrent (lines
1−2). While the robot is still more than gradius away from the
goal region the safe planner is invoked in a receding-horizon
style to find a safe path to goal (lines 3 − 10). In line 4
the function BuildSafeTree invokes a sampling-based motion
planner on the mapM of known obstacles. Suitable choices
for sampling-based motion planner include RRT [Lavalle and
Kuffner Jr, 2000] and RRT* [Karaman and Frazzoli, 2011].
This function creates a tree so that it has nvertices from the
current state scurrent of the robot towards the goal state sgoal.
Note that it is not a requirement for the tree to reach the goal
in nvertices. Approaches like RRT and RRT* build a tree to-
wards the goal state by sampling states at random, checking
that they lie in free space and then connecting the sampled
state to the nearest node{s} in the tree using a steering func-
tion which is responsible for producing dynamically feasible
trajectories. These trajectories are then checked for collision
and satisfaction of rules-of-the-road and then added to the
tree. In this work, we take the approach of constructing dy-
namically feasible and high-probability collision-free trajec-
tories for connecting states in the tree leveraging the PrSTL
[Sadigh and Kapoor, 2015] framework for synthesizing tra-
jectories. PrSTL takes sensor uncertainty and robot dynamics
into account to synthesize trajectories which are probabilisti-
cally safe up to user-specified confidence. If it is not feasible
to construct such a trajectory then the PrSTL routine returns
an empty trajectory and the sampled state is rejected. So in
line 4 the returned tree has edges (trajectories) which are safe
by construction.

In line 5 the nearest state snearest in the tree to the goal state
is found by an efficient nearest neighbor search. Then the
shortest path in the tree from root (scurrent) to snearest is com-
puted using A* [Hart et al., 1968] or Dijkstra’s shortest path
algorithm [Dijkstra, 1959] in line 6 to give a path pshortest.

In line 7 the robot executes nsteps of pshortest and ends up
in a new current state scurrent. Along the way it makes obser-

vations using its onboard (noisy) sensors which then can be
used to update the obstacle classifier embedded in the PrSTL
framework. If the robot is not in the goal region at this time,
it builds a safe tree again using its updated beliefs from its
current state.

PRSTL-TREE mitigates the chief limitation of using
PRSTL alone for long-horizon mission planning with arbi-
trarily complicated obstacle maps and rules-of-the-road: it
eliminates the use of mixed-integer constraints which are
necessary for accounting for obstacles and sequential way-
points in PRSTL. Since mixed-integer SOCPs or SDPs are
NP-hard [Papadimitriou and Steiglitz, 1982] these are usually
solved sub-optimally by branch-and-bound based algorithms
and have large runtimes for non-trivial problem sizes. By rel-
egating this difficult task of modeling known obstacles and
waypoints to a sample-based planner, only the convex subset
of PRSTL is needed which gives rise to SOCPs which are
convex and can be solved optimally in polynomial time.

In section 4 we show via two examples in simulation the
large speedup in time obtained by using PRSTL-TREE as op-
posed to PRSTL.

4 Case Study: Experiment with Autonomous
Robot Obstacle Avoidance

In this section, we study safe control of an autonomous
ground robot under known obstacles and uncertain envi-
ronments. We let the dynamics of the robot be a simple
point-mass model, where the state of the robot is: x =
[x y θ v]>. Here, x and y are the coordinates of the
robot, θ is the heading angle , and v is the speed. The control
input of this robot is u = [u1 u2], where u1 is the steering
angle and u2 is the acceleration. Then, given m is the mass
of the ground robot, the dynamics model of the robot is:

ẋ = v cos(θ) ẏ = v sin(θ)

θ̇ =
v

m
u1 v̇ = u2

(2)

Our goal in this case study is to find control inputs for the
ground robot so it reaches a final goal while avoiding obsta-
cles and staying within the road boundaries. Figure 1a shows
the initial setting of our experiment. The red car represents
our ground vehicle that must stay within the boundaries of
the circular road. The orange triangles represent the obstacles
present in this scenario. The robot is constrained to travel on
the road while avoiding the orange triangles. These obstacles
can either be known a priori or only known locally based on
uncertainties arising from classifiers.

In this case study, we compare two techniques for solving
the safe controller synthesis problem: (i) Using receding hori-
zon controller synthesis methods with PrSTL constraints for
reaching the goal state as in [Sadigh and Kapoor, 2015]. (ii)
Using our proposed method, PrSTL-Tree, which allows RRT
planning as well as applying safe control for connecting the
nodes of the tree.

In our experiments, we make this comparison between the
two methods for both cases with known and unknown obsta-
cles. Known obstacles refer to when the coordinates of all ob-
stacles in the environment are known a priori, while unknown
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(a) Initial state of the robot.
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(b) Final state of the robot.

Figure 1: Autonomous robot reaching a final goal while avoiding
obstacles. Here, the red car on the road shows the autonomous robot.
The robot’s goal is to travel on the circular road while avoiding ob-
stacles and staying within boundaries. The orange triangles repre-
sent the obstacles on the road. The green line on both figures shows
the computed future trajectory of the robot for the next horizon. The
blue line in 1b shows the trajectory computed and taken by the robot
to reach its goal.

obstacles correspond to when we run Bayesian classifiers to
construct a belief of where the obstacles are located at in the
safe trajectory planning.

4.1 Known Obstacles
We first consider the case when all the obstacles are known
a priori. We represent avoiding each triangle constraint in
Figure 1, by stating that the robot must stay outside of the
triangle, which is equivalent to staying on one side of each
face of the triangle. Note, obstacle avoidance is a non-convex
property, which requires disjunction of properties that state
the robot must stay on one side of a hyperplane.

Let p and q denote the coordinates of the two corners of a
side of an obstacle as shown in Figure 2(a). We compute ~n,
the normal vector to the hyperplane represented by pq. Then,
to specify that the coordinates of a state r = [x y]

> must be
exactly on one side of the hyperplane pq is equivalent to the
following linear constraint:

~n · (r− p) ≤ 0 (3)

This constraint specifies that the inner product of the normal
vector and the vector of ~pr must be negative meaning that r
is in the yellow region in Figure 2(a), which is outside the
obstacle.

Then, the PrSTL formula that represents avoiding each tri-
angle is a disjunction of staying on one side of each hyper-
plane of the triangle for all time steps:

G[0,∞]

∨
i∈1,2,3

( ~ni · (r− pi) ≤ 0) (4)

Here, i is an index for sides of each triangle.
In addition to obstacle avoidance, the robot must stay

within the boundaries of the road. Remaining inside the outer
boundary is a convex property:

G[0,∞)(|| [x y]
> ||2) ≤ Rout, (5)

which indicates that the coordinates of the robot must stay
within an outer radius Rout. We represent remaining outside
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Figure 2: Obstacle avoidance by staying on one side of a hyper-
plane. p and q are the corners of an obstacle. We calculate ~n as
the unit normal to this hyperplane. For a state with coordinates r to
be in the yellow region, the dot product of ~n and vector ~px must
be negative. In (b), we show fitting a polygon to the inner circle in
order to enforce staying out of the inner road boundary.

-5 0 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

(a) The RRT generated for
reaching the goal.
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(b) Reaching the final state by
following the tree.

Figure 3: Using PrSTL-Tree approach for reaching the final goal
while staying safe. Here, all the obstacles are known a priori.

of the inner boundary by approximating the inner circle as a
polygon as shown in Figure 2. Then, to enforce being outside
of the inner circle is equivalent to enforce being outside of
each edge of the polygon. Each of such constraints is simi-
lar to equation (3), which specifies staying on one side of a
hyperplane. In our experiments, we approximated the inner
circle with a 20-sided polygon, which was sufficient for the
robot to stay on the road.

We then compute the trajectory that travels a quarter of
the circular road shown in Figure 1b solely by using reced-
ing horizon optimization with obstacle avoidance properties
as in equation (4). The blue trajectory in Figure 1b shows
the trajectory computed by this method, and the green line
represents the computed trajectory for the next horizon. The
solution to this optimization is found in 20.9898 seconds.

Using our PrSTL-Tree method, we create an RRT as shown
in Figure 3a, and use the safe controller synthesis method
with PrSTL constraints to connect nodes of this tree. How-
ever, the RRT planning will handle remaining within road
boundaries and obstacle avoidance as all obstacles and the
road boundaries are known. Consequently, all the non-convex
properties are handled through RRT without being consid-



ered as part of the safe control method. This hierarchical
approach removes all the non-convex properties, and signifi-
cantly speeds up the controller synthesis algorithm. The final
trajectory using this approach is shown in green in Figure 3b,
and finding this solution took 1.4175 seconds. This is ap-
proximately 15 times faster than using receding horizon op-
timization with PrSTL constraints.

4.2 Unknown Obstacles
Although we have shown significant timing improvement for
the case of known obstacles, our PrSTL-Tree approach shows
its complete power for scenarios that involve uncertainty. Un-
certain scenarios, such as noisy range finders or imperfect
classifiers allow us to take advantage of the expressibility of
PrSTL. For this case study, we consider the same driving sce-
nario as shown in Figure 1 with the difference that all the
inner obstacles are not known a priori. This is shown in Fig-
ure 4, where the pink obstacles are the unknown obstacles
whose location is learned online.

We then use a mesh of points around the robot that act as
range finders that can detect obstacles. Using linear Gaussian
Processes [Rasmussen and Williams, 2006], we are able to
predict if a point in the space is an obstacle or not based on
the learned Gaussian distribution. Therefore, the problem of
obstacle avoidance translates to probabilistic constraints as
follows:

G[0,∞)

(
Pr(v · [x y 1]

> ≤ 0) ≥ 1− ε
)

(6)

Here, v is a Gaussian vector learned by linear Gaussian
Processes, and (x, y) are the coordinates of the robot. The in-
ner product of v and [x y 1]

> represents the current belief
of coordinates (x, y) being in an obstacle or not. We would
like to enforce that the coordinates are outside of obstacles
with high probability 1 − ε at all times t ∈ [0,∞). For our
experiments, we chose ε = 0.5, which allows an easier fit of
a prediction line to triangular shaped obstacles. Although ε is
large, the resulting trajectories in Figure 4 do not collide with
any obstacles.

Note, in this case, the probabilistic constraints can equiv-
alently be written as semi-definite programs which makes
the constraints corresponding to uncertain obstacles convex.
However, the known obstacles and the boundary conditions
of the road are still non-convex constraints. Using the re-
ceding horizon safe control technique, we compute the op-
timal trajectory of traveling a quarter of the circular road in
16.9848 seconds. This is shown in Figure 4a, where the blue
line shows the trajectory computed and taken by the robot
and the green line is the next horizon’s planned trajectory.
The computation time for this example is smaller than the
same example with known obstacles. Obstacle avoidance un-
der uncertainty results in convex properties, which can help
lowering the computation time by reducing the number of dis-
junctions in the formula.

Using our method of PrSTL-Tree, we were able to find
the controller in 2.1339 seconds. This value is again sig-
nificantly (approximately 8 times) smaller than only us-
ing the optimization based method with PrSTL constraints.
Note, this computation time is larger than the same scenario
but with all known obstacles. This is because, the safe control
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(a) Reaching the final state by
receding horizon optimization
for PrSTL under uncertainty.
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(b) Reaching the final state
by following PrSTL-Tree un-
der uncertainty.

Figure 4: Comparing receding horizon optimization for safe con-
trol on the left and PrSTL-Tree approach on the right for reaching
the same final goal while staying safe. Here, the orange triangles
represent the known obstacles and the pink ones represent the un-
known obstacles.

optimization that connects the nodes in the graph has to solve
a more complex problem including obstacle avoidance under
uncertainty.

5 Conclusion
We propose a framework for efficiently computing mission
plans that are safe even under uncertain environments. The
core idea of the proposed approach is to combine recent tech-
niques in controller synthesis via Probabilistic logical spec-
ifications with sampling based mission planners. In particu-
lar, the proposed method gets around the computational and
semantic limitations of PrSTL by embedding into an RRT*
sampling strategy. We demonstrate the framework on the task
of autonomous driving and quadrotor scenarios. Future work
includes application of this work to other domains including
airline flight planning and other robotic tasks.
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