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Abstract. Finding invariants is an important step in automated pro-
gram analysis. Discovery of precise invariants, however, can be very dif-
ficult in practice. The problem can be simplified if one has access to a
candidate set of predicates (or annotations) and the search for invariants
is limited over the space defined by these annotations.

We present an approach that infers program annotations automatically
by leveraging the history of verifying related programs. Our algorithm
extracts high-quality annotations from previous verification attempts,
and then applies them for verifying new programs. We present a case
study where we applied our techniques to Microsoft’s Static Driver Ver-
ifier (SDV). SDV currently uses manually-tuned heuristics for obtaining
a set of annotations. Our techniques can not only replace the need for
this manual effort, they even out-perform these heuristics and improve
the performance of SDV overall.

1 Introduction

The performance of program verifiers depends on the discovery of precise in-
variants or procedure pre/post conditions. The task of finding invariants is often
broken down into finding a set of candidate facts, or annotations, and then using
these facts to establish inductive invariants. For example, predicate-abstraction-
based tools such as SLAM [3] or BLAST [12] rely on predicate discovery. Tools
such as UFO [1] and Duality [19] rely on interpolation to generate candidates
for procedure summaries. Each of these techniques, however, infer annotations
by analyzing only the program to be verified.

We propose a complementary approach of inferring program annotations au-
tomatically by exploiting information available from prior verification runs. We
build on the insight that annotations useful for verifying a particular program
are often already observed earlier during the verification of related programs. For
instance, programs that use the same API probably require similar annotations
for verifying contracts of that API. We keep track of the verification history by
accumulating a set of programs and the annotations required to construct their
respective proofs. We leverage this history to generate a small set of annotations
that are useful for subsequent (unseen) programs.



There are two key challenges in making this approach work. First, annota-
tions are formulas over program variables, thus, tied to program-specific variable
names. We abstract away from program-specific names by working with abstract
annotations, which are arbitrary formulas with holes. Abstract annotations are
concretized to a program by filling the holes with the program’s variables.

The set of all (abstract) annotations in the verification history has the nice
property that it is sufficient to establish the correctness of all programs ob-
served in the history. However, this set is likely to be very large, making the
verifier spend a significant amount of time just discarding invalid annotations.
Our second challenge is to keep the set of inferred annotations small. We design
a minimization algorithm that computes a set of abstract annotations such that:
(1) it is enough to establish correctness proofs of all programs in the history, and
(2) no smaller subset (or syntactically simpler set, in a sense that we formalize
later) is enough to establish all correctness proofs.

Our primary motivation behind these ideas is to improve the performance
of Microsoft’s Static Driver Verifier (SDV) [2]. SDV is an industrial-strength
tool for formal verification of Windows device drivers. SDV checks that drivers
conform to certain properties (called rules) that establish correct usage of the
kernel API. SDV currently uses manually-tuned heuristics for obtaining a set of
annotations that are passed to a program verifier. Using a repository of small
in-house drivers, our techniques can not only replace the need for this manual
effort, they even out-perform these heuristics and improve the performance of
SDV overall.

We summarize our contributions as follows:

– We present an algorithm for inferring an optimal set of abstract annotations
from past verification efforts.

– We apply the algorithm to SDV and experimentally show that inferring
annotations from past verification efforts can potentially generate better
annotations than ones provided by a human expert. The set of abstract
annotations inferred by our algorithm can improve the verification times by
22% on average and reduce inconclusive results by 47%.

2 Overview

This section illustrates our framework for learning useful annotations. If f is a
procedure and φ is a formula, we use [φ]@f to denote that φ is a valid postcon-
dition of f. If f has a loop starting at location L then the notation [φ]@f@L
denotes that φ is a valid loop invariant for L. We model assertion failures as
setting of a special ok bit to false. For a global variable x, let old(x) refer
to the value of x at the beginning of the procedure or loop, depending on the
context in which it is used. For instance, [(x == old(x)+ 1) ∨¬ok]@f means
that the execution of f either increments the value of x or it fails an assertion.
In other words, if f doesn’t fail then it increments x. [x == old(x)]@f@L
means that the loop at location L of procedure f preserves the value of x across



var depth: int;

procedure init() {
depth := 0;

}

procedure Acquire() {
depth := depth + 1;

}

procedure Release() {
depth := depth - 1;

}

procedure d_exit()
{

assert depth == 0;
}

procedure Pn()
{ cal l init(); cal l dispatchPn(); }

procedure dispatchPn() {
[call Acquire()]n;

L1: while(*)
{ cal l Acquire(); cal l Release(); }
[call Release()]n; cal l d_exit();

}

procedure Q()
{ cal l init(); cal l dispatchQ(); }

procedure dispatchQ() {
L2: while(*)

{ cal l Acquire(); cal l Release();
cal l dispatchQ(); }

cal l d_exit();
}

(a) (b)

Fig. 1. (a) An Acquire-Release API and (b) a family of programs exercising the API

arbitrary number of loop iterations. A proof of correctness of a program is sim-
ply a sequence of mutually-inductive postconditions of procedures or loops in
the program that imply ok==true at the end of the program. For simplicity
(and without loss of generality) we do not talk about procedure preconditions
in this paper.

Figure 1 shows a family of programs that exercise the same API. The API
and its contract is shown in Figure 1(a). The API models acquiring and releasing
a resource. The variable depth keeps track of the number of resources held. For
correct usage of the API, at certain points (when dispatch routines return)
the number of resources held is asserted to be zero. Entrypoints of programs that
exercise this API are Pn and Q. Pn is parameterized by the value of n. It calls the
routine dispatchPn where we use the notation [st]n to denote n occurrences
of the statement st.

Annotations and Proofs Figure 2 shows possible proofs for the programs of
Figure 1. Note that all postconditions in proof A of Pn do not depend on the
value of n, whereas proof B is specific to the value of n. Annotations are simply
formulas that serve as candidates for postconditions. Generation of invariants
from a given set of annotations (which we call annotation-based invariant gen-
eration) is much simpler than full-blown verification, often even decidable. One
may use, for example, predicate abstraction [4] to construct invariants that are
Boolean combinations of the given annotations. In our work, we use the Hou-
dini algorithm [8] to find conjunctive invariants: ones that are conjunctions of



// definitions
ψi ≡ depth− old(depth) == i
σn ≡ old(depth) == n⇒ depth == n
η ≡ (old(depth) == 0⇒ ok)
// Proof A of Pn

[depth == 0]@init, [ψ1]@Acquire, [ψ−1]@Release, [η]@d exit,
[ψ0]@dispatchPn@L1, [η]@dispatchPn

// Proof B of Pn

[depth == 0]@init, [ψ1]@Acquire, [ψ−1]@Release, [η]@d exit,
[σn]@dispatchPn@L1, [η]@dispatchPn

// Proof of Q
[depth == 0]@init, [ψ1]@Acquire, [ψ−1]@Release, [η]@d exit,
[ψ0 ∧ η]@dispatchQ@L2, [ψ0 ∧ η]@dispatchQ

Fig. 2. Possible proofs of correctness of the programs in Figure 1

some subset of the given annotations. This problem has a lower complexity than
predicate abstraction and is very fast in practice for small to medium number of
annotations. For example, given annotations {depth == 0, ψ−1, ψ0, ψ1, η} it is
very efficient to re-construct a proof for Pn using Houdini.

Minimal Repositories Our technique requires a repository of programs and
their proof of correctness. The proofs may be constructed manually or by using
proof-generating verifiers. We do not expect to control the proof-generation pro-
cess. Suppose we have programs Q and Pn for each n ∈ N , for some large set N ,
in our repository. Further, suppose we have proof of type B (Figure 2) for Pn

for all values of n, except n0, and Pn0
has a proof of type A.

This set of proofs produces a large number of annotations A =
{depth == 0, ψ−1, ψ0, ψ1, η, ψ0 ∧ η} ∪ {σn | n ∈ N − {n0}}. Retaining a large
set of annotations is inefficient, even for annotation-based invariant generation
techniques. Moreover, some of annotations are very specific to a program, e.g.,
σn is only useful for proving correctness of Pn.

Our technique minimizes A while retaining its invariant-generation power.
The “power” is captured using a cost metric based on the ability of a set of
annotations to prove a set of programs correct, given a fixed verifier. The cost is
∞ if some program cannot be proved, otherwise, it reflects the running time of
the verifier. Our algorithm simplifies A by dropping annotations or making them
syntactically simpler as long as the cost does not increase (or only increases by
a tolerable amount; the exact formulation can be found in Section 3).

For illustration, assume that the cost becomes ∞ as soon as the annotations
cannot establish some loop invariant or postcondition of a recursive procedure
(intuitively, because these are the critical parts of a proof), and is unit cost
otherwise. Starting with A, our algorithm drops depth == 0 and η from this
set because these are not important for the inductive argument; i.e., cost remains
unit after dropping them. Next, if it tries to drop ψ0, the cost becomes∞ because
the loop invariant of Pn0

is lost. Thus, ψ0 is retained in A. Next, each of the σn
annotations get dropped. Even though these annotations were loop invariants



in the original proofs, they can be replaced by the more general annotation ψ0

that is present in A. In this way, learning from a large set of proofs increases the
chances of finding annotations that generalize.

Finally, while ψ0 ∧ η cannot be dropped, our algorithm tries to simplify its
Boolean structure. The algorithm simplifies it to η: having annotations {ψ0, η}
is enough for annotation-based invariant generation to establish ψ0 ∧ η as an
invariant. At this point, the algorithm reaches a fixpoint where no annotation
can be dropped or simplified and it returns the set: {ψ−1, ψ0, ψ1, η}.

The algorithm is non-deterministic; it could have chosen to drop ψ0 ∧ η in
its first iteration because η was still present in A. In general, our algorithm
only guarantees a locally optimal solution with respect to a given cost metric.
Globally-optimal solutions are also possible to compute, but at a higher cost,
which was not justified in our experiments.

Although the programs considered here are simple, they are derived from
real-world code. The API is based on SDV’s SpinLockRelease property that
keeps track of multiple spinlocks held by a driver. The example programs are
derived from real drivers. The program Q illustrates an uncommon (but not rare)
scenario where recursion happens via kernel callbacks (driver code itself typically
does not exhibit recursion).

Abstract Annotations and a Shared Vocabulary Annotations are formulas
over program variables. In general, different programs have different variables.
To abstract away from program-specific variables, we introduce the concept of
an abstract annotation that is a formula over generic and shared variables.

We call the set of global variables common to all programs in the repository
as the shared vocabulary. We assume these variables serve a similar role in all
programs, e.g., the depth variable in our running example will be present in all
programs that exercise the acquire-release API. Shared variables, i.e., variables
in the shared vocabulary, can be freely used in annotations because they are
present in all programs.

Generic variables are not specific to any program. There are fours kinds of
generic variables: {Local,Global,FormalIn,FormalOut}. An annotation
is converted to an abstract annotation by replacing variables by generic variables
of the corresponding type. For example, consider the postcondition [x == y]@f
on a procedure f with formal input argument x and formal output argument
y. This will get converted to the abstract annotation ($fin == $fout) where
$fin and $fout are generic variables of type FormalIn and FormalOut,
respectively.

Abstract annotations are concretized when applied to a program. Let V be
the shared vocabulary. Let p be a program and proc a procedure in p. We
define a concretization function γp,proc,V as follows. For an abstract annota-
tion a, γp,proc,V (a) returns all annotations such that a generic variable of type
Global is substituted with some global variable of p, a generic variable of type
FormalIn is substituted with some formal-in parameter of proc, and similarly
for FormalOut and Local. γp,proc,V must return all such annotations.



The shared vocabulary V is used as an optimization to limit the number of
concretizations of an abstract annotation. V can be empty, in general, and our
technique will still apply.

3 Framework

We now formally present the annotation inference algorithm, but first we intro-
duce the necessary notation and definitions.

Language. We assume an imperative programming language with standard
features such as global variables, procedures, assume and assert statements,
assignments, etc. We also assume that programs in this language do not have
loops. Loops can be encoded using recursion. This allows our framework to only
concentrate on procedure postconditions for establishing proofs of correctness.

Given a program p, we denote the set of procedures in p with procs(p). Each
procedure can be annotated with any number of first order logic (FOL) formulas.
These formulas are defined over procedure parameter and global variables and
they don’t take part in program execution; they are used by program verifiers
as candidate postconditions for establishing program correctness.

Abstract annotations. Let V be a set of variables called the shared vo-
cabulary. All programs must contain V as global variables. Let G be a set of
generic variables. None of the programs contain a variable from G. An abstract
annotation a is a formula over variables in V ∪ G. Further, for every program
p and procedure proc ∈ procs(p), we assume a function γp,proc,V that maps an
abstract annotation to a set of concrete annotations. As defined in the previous
section, γp,proc,V substitutes generic variables with variables in scope of proc.

We call a finite set of abstract annotations t ∈ T a template. Given a pro-
gram p and a template t, annotate(p, t) returns p where each procedure proc ∈
procs(p) is annotated with the set of program annotations

⋃
a∈t γp,proc,V (a).

Verification. Given a fixed verifier, for a program p and a template t, we say
that proves(p, t) holds if the verifier can prove the correctness of annotate(p, t).
The verifier can use the procedure annotations as potential postconditions during
the verification. Also, we require that if proves(p, t) and t ⊆ t′, then proves(p, t′)
must hold as well. In other words, if a set of abstract annotations is sufficient
for proving some program correct then all of its supersets are also.

3.1 Problem

Our annotation inference problem is defined using a notion of an objective rela-
tion. Such relations are used to encode what templates (and hence annotations)
are more desirable for the current application in mind.

Definition 1 (Objective relation for a program). We say →p: T × T is
an objective relation for a program p iff (1) it is well-founded and (2) for each
t ∈ dom(→p), the set {t′ | t→p t

′} is finite.



The objective relation is hence finite branching. One example of such a relation
is the proper subset relation, i.e., t →p t

′ iff t′ ⊂ t. Another example would be
the relation where t′ is a copy of t except that an annotation in t′ is a sub-
formula of the corresponding annotation in t. This relation roughly corresponds
to the syntactically simpler concept mentioned in Section 1. Section 4 presents
an objective relation used in our experiments with SDV.

We extend the objective relation to a set P of programs p1, . . . , pn:

Definition 2 (Objective relation for a set of programs). We define →P :
T × T, an objective relation for a set of programs P = {p1, . . . , pn} as a well
founded and finite branching relation t→P t′ ⇔ ⊕it→pi

t′.

The operator ⊕ is a reduction operator and examples include conjunction
∧

,
disjunction

∨
, etc.

We proceed by defining the notion of a minimal template that intuitively
stands for a locally optimal template. The locality is defined as a branching set
of a template induced by a given objective relation.

Definition 3 (Minimal program template). Given a program p, a template
t such that proves(p, t), and an objective relation →p, we say t′ is a minimal
template iff:

1. proves(p, t′)
2. there exists no t′′ such that t′ →p t

′′ and proves(p, t′′)

The definition states that a minimal template must prove a given program and
none of its immediate (→p) successors do. We point out that, in the above
definition, t only ensures that p is correct and this definition establishes no
relationship between a minimal template and t. However, the results computed
by the implementations for finding minimal templates can be dependent on t.

Our inference algorithm is built around the notion of a minimal template.
We hence define the problem of finding a minimal template for a given program.

Problem 1 (Computing minimal template). Given a program p, a template t
such that proves(p, t), and an objective relation →p, the problem of computing
a minimal template is finding a formula t′ that is minimal subject to p and the
ordering →p.

We define a program repository as R = [(p1, t1), ..., (pn, tn)] where
proves(pi, ti) for 1 ≤ i ≤ n. Repositories capture verification histories. The
set of programs in the repository R is denoted by PR. The actual technique used
for proving the correctness of pi can be arbitrary. However, we envision that in
practice, a verifier will be fixed for the whole repository. We now define a locally
optimal template for a verification history.

Definition 4 (Minimal repository template). Given a program repository
R = [(p1, t1), ..., (pn, tn)] where proves(pi, ti) for all 1 ≤ i ≤ n, and an objective
relation →PR

, we say that T is a minimal repository template (subject to →PR
)

iff the following holds



1. proves(pi, T ) for all 1 ≤ i ≤ n
2. there exists no T ′ such that T →PR

T ′ and proves(pi, T
′) for all 1 ≤ i ≤ n

We are now ready to formally state the problem of inferring program annotations
from past verification runs.

Problem 2 (Inferring program annotations). Given a program repository R =
[(p1, t1), ..., (pn, tn)] where proves(pi, ti) for all 1 ≤ i ≤ n, and an objective
relation→PR

, the problem of inferring program annotations is to find a template
T that is a minimal repository template subject to →PR

.

In the sequel, we suppress the subscripts of the → relations for brevity. We
now show algorithms for solving the problems of computing minimal templates.

3.2 Solution

We start with the solution for Problem 1 shown in Algorithm 1. The
MinTemplate algorithm assumes that a given template t is sufficient to es-
tablish correctness of p and that → is an objective relation. We start by consid-
ering t as a minimal template candidate (line 2). We continue by enumerating
all immediate successors of t by → (line 4). Then, the algorithm checks if any
of successors can prove p (line 5). If so, then the algorithm sets such a successor
as a candidate minimal template and repeats the whole process (lines 6 and 7).
Otherwise, the minimal candidate is returned as the solution (line 8).

Theorem 1. Let p be a program, t a template, and → an objective relation. If
proves(p, t), then Algorithm 1 computes a minimal template for p, t, and →.

The complexity of the algorithm depends on→ relation and implementation
of proves. Assuming proves has unit complexity, the running time of Alg. 1 is
O(l ·m), where l is the longest well-founded chain of → and m is the maximum
size of the branching sets max{|{t′ | t→ t′}| | t ∈ dom(→)}. However, proving a
program correct is undecidable in general and asymptotically takes exponential
time even for decidable cases. Further, annotating a program p given a template t
can also be expensive if for proc ∈ procs(p), the concretization function γp,proc,V
has a large image; t can then potentially be instantiated with a large number
of concretizations. This high complexity of the algorithm can be remedied in
practice by choosing γp,proc,V with smaller images and exploiting the structure
of → if the relation is known beforehand.

Algorithm 2 computes a minimal repository template by building on Algo-
rithm 1. First, we find the minimum template for each program in the repository
and store it in mints (lines 3- 5). Next, the minimal repository template is set
to the empty set of clauses (line 6). The outer loop (lines 7- 14) has the in-
variant that after the ith iteration C is a minimal repository template for the
sub-repository [(p1, t1), . . . , (pi, ti)]. The inner loop checks if an immediate suc-
cessor of C can prove the correctness of the programs p1, . . . , pi. If so, then C is
updated to that successor template.



Algorithm 1 Computing a minimal
program template

Require: proves(p, t) and → is an ob-
jective relation

1: procedure MinTemplate(p, t,→)
2: mint← t
3: loop
4: for all t′ ∈ {t′ | t→ t′} do
5: if proves(p, t′) then
6: mint← t′

7: goto 3

8: return mint

Algorithm 2 Computing a minimal
repository template

Require: proves(pi, ti) for all (pi, ti) ∈ R
Require: → is an objective relation
1: procedure MinRepoTemplate(R,→)
2: mints← [ ]
3: for all i ∈ [1, ..., |R|] do
4: (p, t) = R[i]
5: mints[i] = MinTemplate(p, t,→)

6: C = ∅
7: for all i ∈ [1, . . . , |R|] do
8: C = C ∪mints[i]
9: for all t ∈ {t′ | C →{p1,...,pi} t

′} do
10: b = true
11: for all j ∈ [1, . . . , i] do
12: b = b ∧ proves(pj , t)
13: if b then
14: C = t
15: return C

One possible optimization is to cache the clauses under which a program
can/cannot be proved. Therefore, if proves(p, t) is in the cache and we later
make a query proves(p, t′) where t ⊆ t′, then, we can return true. Similarly, if
¬proves(p, t) is in the cache and we make a query proves(p, t′) where t′ ⊆ t,
then, we can return false.

Theorem 2. Let R be a program repository and → an objective relation. If
proves(p, t) for all (p, t) ∈ R, then Algorithm 2 computes a minimal repository
template for R and →.

We also point out that loop starting at line 7 is in fact not necessary for opti-
mality. The algorithm can immediately start with C as the union of all minimal
program templates stored in mints. However, such a C could become impracti-
cally large. In Algorithm 2, the size of C is kept moderate. Observe that minimal
templates computed using these two versions of the algorithm might not be the
same. This is because minimal templates are not unique.

Proofs of theorems 1 and 2 are given in Appendix A.

4 Application: Static Driver Verifier

The Static Driver Verifier (SDV) has been an important success story for verifi-
cation technology. It has utilized SLAM for over a decade with several upgrades



Fig. 3. An overview of SDV.

along the way [3], then further by switching to an SMT-based verifier called Cor-
ral [14] and upgrading again [15,16]. Showing further improvements truly builds
on the state-of-the-art in the area.

An overview of SDV [20] is shown in Figure 3. SDV accepts the source code
of a device driver as input and links it against a model of the kernel (called “OS
Model” in the figure). It then checks multiple rules that the driver must satisfy.
These rules and kernel contracts (encoded in the OS Model) are made known to
driver developers via MSDN4. Each driver and rule produces multiple programs
with assertion, called verification instances that must all verify.

Corral operates by lazily inlining procedures and utilizing an SMT solver
to search through a partially-inlined program. To help Corral, SDV uses
annotation-based invariant generation. Given a rule and a verification instance,
SDV generates annotations and runs Houdini [8] to compute invariants over
the annotations. These invariants are injected back to the verification instance
as assume statements, which help Corral prune search without compromising
soundness.

Much work has been put into fine-tuning the annotation generation inside
SDV. One can view the generator as a table lookup; SDV maintains a template
for each rule that has been tuned over the years. We refer to such templates
as “Manual Templates”. We compare the minimal templates inferred by our
technique (called the “Inferred Templates”) against these manually-provided
ones, based on SDV’s performance with either set of templates.

Corral has four possible outcomes, as mentioned in Figure 3. Corral uses
over-approximations (refined by invariants inferred by Houdini), hence it can
prove correctness and return “proof”. Corral stops search when it hits an inter-
nal coverage bound [17] and returns “bound”. Although this is an inconclusive
verdict, it is still considered more useful than a Timeout because the latter does
not guarantee any coverage.

Training and Test Suites. For internal testing, SDV uses a set of toy
drivers, collectively called the Rule Test Suite (RTS) for quick “smoke testing”
of SDV. These drivers are small, often a few hundred lines of code (with relevant
part in tens of lines of code only). We use RTS as the program repository for
inferring a minimal repository template for each rule. The use of RTS as the
training set is quite natural as it allows us to leverage existing test cases to learn

4
https://msdn.microsoft.com/en-us/library/windows/hardware/ff552808(v=vs.85).aspx

https://msdn.microsoft.com/en-us/library/windows/hardware/ff552808(v=vs.85).aspx


and improve performance on real drivers. RTS consists of 304 drivers totaling
around 100KLOC.

Once we infer a template, we measure the performance of SDV using the
template on a set of real device drivers. We use 66 device drivers for this task,
totaling around 700KLOC.

SDV has hundreds of rules. For this paper, we concentrate on a collection
of 28 rules. Of these, 14 rules were selected because they were known to cause
performance issues for SDV. We added, randomly chosen, 14 other rules. These
28 rules on the 66 drivers produced a total of 1420 verification instances.

Obtaining Annotations. The RTS suite consists of fairly small drives that
are easy to prove manually. We, however, automated the entire process by run-
ning a proof-generating verifier. Our implementation uses Duality [19] but con-
ceptually we could have used tools such as SLAM and Yogi [5] as well.

Our objective is to learn a template specific to each rule. Thus, for each of
the 28 rules, we (1) form a repository of programs that assert the rule and their
corresponding correctness proofs and (2) define the shared vocabulary V to con-
sist of model variables of the rule as well as OS model variables. Every program
in a repository is guaranteed to include the corresponding shared vocabulary as
global variables.

We restrict abstract annotations to be clauses, i.e., a disjunction of formulas.
Conjunctions at the top level are broken down into multiple annotations, one for
each conjunct. For convenience, we think of a clause as a set of formulas where
disjunction is implied between the elements of the set. The empty set corresponds
to true. Given two annotations a1 and a2, by a1 ⊆ a2 we therefore designate
that the formulas of a1 are a subset of the formulas of a2. For a template t,
we define t̄ to be t consistently indexed by the set {1, ..., |t|}. In other words,
t̄ = {a1, ..., a|t|} where ai ∈ t ⇐⇒ ai ∈ t̄. For convenience, we define t̄[i] = ai.
Given two templates t1 and t2, we say t2 is simplified (or simpler) than t1, written
t2 E t1, iff (1) |t1| = |t2| and (2) t̄2[i] ⊆ t̄1[i] for all 1 ≤ i ≤ n. If t2 E t1 and
there exists i such that t̄2[i] ⊂ t̄1[i], we say t2 is strictly simpler than t1, written
t2 C t1. Finally, t2 C1 t1 holds iff t2 C t1 and |t̄1/t̄2| = 1. In other words, t2 is
strictly simpler than t1 but only at one abstract annotation; we then say t2 is
1-simpler than t1. For example, suppose a template t′ is t except that literal l is
in t̄[1] but not in t̄′[1]. Then we have t′ E t, t′ C t, and t′ C1 t.

Objective Relation. Given a program p and a template t, let h(p, t) be
the result of running Houdini on annotates(p, t). Further, let cperf (p, t) denote
the number of procedures that Corral inlined if it was able to prove correctness
of h(p, t), and −1 otherwise. cperf (p, t) measures the performance of Corral. We
use it as a proxy for the running time, which is independent of the machine
configuration. We now define the corral objective relation. Given a program p
and two templates t1 and t2, t1 →p t2 holds iff:

– t2 C1 t1
– 0 ≤ cperf (p, t2) ≤ 2 ∗ cperf (p, t1)

The above definitions encode our intention to find those templates that are struc-
turally simpler and smaller, if one views making a clause empty as removing it.



The reason why we chose 1-simpler relation instead of the general simplifica-
tion is that we want to keep branching sets of the objective relation tractable.
This way, we are sacrificing optimality for better inference times. Also note that
our objective relation allows the performance of Corral to get worse when using
t2. But Corral must still be able to prove correctness. We allow the degrade
in performance to allow more opportunities for the templates to get simplified.
However, we still restrict the performance to not get out of hand (not more than
a factor of 2). This allows us to kill the execution of Corral on h(p, t2) as soon as
it inlines twice as many procedures as on h(p, t1), without waiting for a verdict.

Lastly, we define a repository objective relation. For a set of programs P =
{p1, ..., pn} we define t1 →P t2 ⇐⇒

∧
i t1 →pi t2. In other words, we want to

infer templates that are consistently optimal for all repository programs, subject
to the objective relation →p.

We use Algorithm 2 in our experiments, with some improvements based on
the particular objective relation defined above. These improvements are men-
tioned in Appendix B. We set a timeout of 8 hours for the algorithm. If the
execution reaches a timeout, we simply return the current value of C. In prac-
tice, for SDV, the template inference needs to be performed just once in a release
cycle; hence, one can devote much more time for inference.

5 Evaluation

We implemented our algorithms in a tool called ProofMinimization. It accepts
a list of annotated programs written in Boogie [18] as input and computes the
minimal repository template. The shared vocabulary is automatically set to the
set of global variables common to all input programs5

We ran our experiments on a cluster of 6 identical server-class machines.
Each of the servers had Intel Xeon CPUs 1.8 GHz, 64 GB RAM and 16 logical
processors. The total CPU time of our experiments exceeded well over a month.
We relied on parallelism extensively to produce results in a reasonable amount
of time.

Training Modes. Our experiments evaluate two different ways of using
the inferred templates. In the first mode, called MT, the inferred templates only
augment the manual templates. This is achieved by adding the manual templates
to each (p, t) pair in our program repository and requiring our algorithm to never
throw out a manually-generated annotation. This mode of operation is more
controlled: it does not seek to replace existing manual effort, but rather to just
augment it.

The second mode of operation, called NT, does not use manual templates at
all. This simulates the scenario when no manually-generated templates had been
added to SDV. It answers how much of the manual effort behind the design of
manual templates can be automated using our techniques.

5 Implementation is available open-source https://github.com/boogie-org/
corral/tree/master/AddOns/ProofMinimization

https://github.com/boogie-org/corral/tree/master/AddOns/ProofMinimization
https://github.com/boogie-org/corral/tree/master/AddOns/ProofMinimization


Clearly, the quality of inferred templates will depend on the quality of the
training set, i.e., the repository used for inferring a minimal repository template.
Because it was never intended to use RTS for inferring templates, the training
sets are sometimes inadequate for our approach. For instance, for a few rules,
RTS only contains buggy drivers. (Inferring annotations from buggy programs
is an interesting problem, but outside the scope of this paper.) Thus, we also
evaluate expanding our training set by sampling a randomly-chosen fraction of
the 66 real drivers and including them in the training set. The test set, i.e., the
set of unseen drivers over which we evaluate the inferred templates then shrinks
to the remaining drivers.

Let Train(f%,m), where 0 ≤ f ≤ 100 and m is either MT or NT, refer to
the experiment where the training set consisted of all RTS drivers and f percent
of the real drivers, and the inference was done in mode m. An exception is the
special case of Train(100%,MT ) which denotes that all drivers were used in the
training set as well as the test set. We use Train(100%,MT ) as a limit study
on the quality of annotations that we can infer.

Results. For the experiment Train(0%, NT), the running time of
ProofMinimization is shown in Figure 4. It takes just a couple of minutes
for some rules while it timeouts after 8 hours for five rules. Not including the
rules for which ProofMinimization times out, it takes roughly 2.5 hours on
average to compute the result.

Fig. 4. Annotation inference times for the
28 rules.

The results with various different
training modes are reported in Ta-
bles 1 and 2. Each of the tables com-
pare three versions of SDV. Version
called “None” does not use any tem-
plates and captures the performance
of Corral without any annotations.
“Manual” refers to using manual tem-
plates, which is the currently-shipping
production system. “Inferred” refers
to using the set of annotations in-
ferred by our tool. Each of the tables
measure performance in terms of the
number of timeouts (#TO), number
of times the coverage bound was hit
(#Bnd), the number of bugs reported
(#Bugs), the average running time of

Houdini+Corral (Avg), and the average running time of just Houdini (Houd).

Table 1(left) compares performance for Train(0%, MT). In this mode, our
inferred set of annotations was empty for 12 of the 28 rules. The inferred set can
be empty when the RTS wasn’t rich enough, or because the manual templates
were sufficient. In this case, the performance of “Inferred” matches with that of
“Manual”. Table 1 compares performance on the remaining 16 rules where we
did infer annotations. These results demonstrate that our extra set of annota-



Time (sec)
Config #TO #Bnd #Bugs Avg Houd

None 77 228 46 94.3 0
Manual 27 88 46 71.9 10.0
Inferred 24 37 46 51.6 12.1

Time (sec)
Config #TO #Bnd #Bugs Avg Houd

None 112 265 64 104.3 0
Manual 50 91 64 70.5 10.1
Inferred 46.6 41 64 59.4 14.6

Table 1. Left: Results for Train(0%, MT) on a total of 16 rules with 873 verification
instances. Right: Results for Train(30%, MT), averaged across three runs, on a total
of 25 rules with 1002 verification instances.

Time (sec)
Config #TO #Bnd #Bugs Avg Houd

None 143 342 104 98.1 0
Manual 55 123 108 58.4 9.3
Inferred 45 25 108 46.1 16.2

Time (sec)
Config #TO #Bnd #Bugs Avg Houd

None 143 342 104 98.1 0
Manual 55 123 108 58.44 9.3
Inferred 59 92 108 56.5 9.1

Table 2. Left: Results for Train(100%, MT) on a total of 28 rules with 1420 verifi-
cation instances. Right: Results for Train(0%, NT) on a total of 28 rules with 1420
verification instances.

tions are useful. The number of timeouts come down a fraction and the number
of times the coverage bound was hit comes down significantly. All of these previ-
ously inconclusive cases, 54 in number, convert to a proved verdict. In summary,
the total number of inconclusive answers drops down by 47%. Moreover, even
though Houdini ran slower because of the extra annotations, the performance
improvement in Corral made the overall system much faster (22%).

For Train(30%, MT), we did three runs, each time sampling a different frac-
tion of the drivers. The results for “Inferred” were averaged across the three runs
and are shown in Table 1 (right). It is interesting that performance is similar to
Train(0%, MT). Using a fraction of drivers did not provide much new infor-
mation. However, the results of Train(100%, MT) shown in Table 2 (left) do
indicate that drivers potentially carry information not present in RTS. Learning
over all drivers increased the quality of inferred annotations significantly (even
though the running time of Houdini is highest in this setting).

Table 2 (right) shows results of Train(0%, NT). With no help from manual
templates, Corral’s performance depends even more significantly on the inferred
set of annotations. We were able to achieve a similar quality of results compared
to using manual templates. There was a near-equal split between rules on which
inferred annotations do better and ones on which manual templates do better.
In consultation with the SDV team, we realized that the exercise of setting up
manual templates often borrowed annotations across rules, where annotations
useful for one rule would be generated for similar rules as well. In our setting,
we did not explore sharing information between rules.

The number of abstract annotations per template, on average, was 12.78 for
the manual templates. The Train(0%, MT) experiment produced 13.63 anno-
tations per template, on average. The Train(100%, MT) experiment produced
16.6 annotations per template, on average. The Train(0%, NT) experiment pro-
duced 3.3 annotations per template, on average, which is significantly smaller



than the manual templates. We discuss some examples of useful annotations that
our technique was able to infer, but were missed by manual effort, in Appendix C.

To summarize, Train(0%, MT) results show that we can significantly im-
prove the performance of a production system by augmenting existing manual
effort. The results for Train(0%, NT) show that as new rules are developed and
test cases are added to RTS, we can automatically generate useful annotations
avoiding the need for further manual effort in coming up with new templates.

6 Related Work

This work falls into the category of predicting program properties from code-
bases. For example, JSNice learns from Javascript repositories on GitHub and
predicts more legible identifier names and (unverified) type annotations [23]. In
contrast, this work is the first attempt at inferring annotations from verification
histories and demonstrating their use in an industrial-scale verification setting.
Other approaches use codebases to predict different program properties rather
than annotations [21,22,24]. For instance, work presented in [22] applies Bayesian
optimization on existing codebases to learn a strategy for deciding for which part
of an unseen program a static analyzer should sacrifice time for precision while
performing the analysis.

There are verification and testing approaches that leverage previous version
of a program under analysis. For example, [10] improves performance of test gen-
eration for a program by leveraging existing tests belonging to a previous version.
Regression verification verifies the equivalence of two successive versions of a pro-
gram [11]. For similar programs, [11] argues that this verification task is easier
than our goal here, i.e., formal verification of a stand alone program. A recent
generalization of regression verification is differential assertion checking where a
verifier checks that a bug is not introduced in going from one program version to
another [13]. Techniques in [7] extrapolate from predicates used for verifying a
program under sequential consistency to verify the same program under relaxed
memory model. Our work performs inference using different programs sharing a
common vocabulary instead of the previous versions of a given program.

The techniques described in this paper can be used to infer invariants using
verification histories. Previous approaches to invariant inference perform analysis
only over the program under consideration. These include invariant inference
using static analysis [6] or learning from concrete executions [9,25]. Our work is
complementary to these.

7 Conclusion

We present a framework for inferring a small set of useful program annotations
from a repository of past verification runs. Our algorithm uses minimization
techniques to come up with a small set of annotations that apply broadly to
many programs. Using our algorithm, we infer useful annotations that improve
the performance of SDV. By utilizing the inferred annotations, we reduce the



number of inconclusive answers by 47% while running 22% faster on average,
even for a heavily-optimized system.
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A Proofs

Proof of Theorem 1.

Proof. We refer to Algorithm 1. Since → is finite branching, we have that in-
ner loop at line 4 terminates. From the fact that → is well-founded, it follows
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that outer loop at line 3 also terminates. Since lines 4 and 5 simply follow the
definition of a minimal template, we have that the returned template is minimal.

Proof of Theorem 2.

Proof. We refer to Algorithm 2. For every subrepository Ri =
[(p1, t1), . . . , (pi, ti)] the relation →Ri

is well-founded and finite branching
for any chosen reduction operator. Since the body of the loop at line 9 follows
the definition of a minimal repository template, then at the end of each iteration
of the loop at line 7 C is a minimal template for Ri, as pointed out earlier. The
result then follows from the case when i = |R|.

B Further Improvements to the Algorithm

We use a slightly modified version of Algorithm 2 for computing a minimal repos-
itory template. We describe the algorithm by only explaining the modifications
that we introduced.

We first note that the corral objective relation has to be computed by actually
running Corral. While performing a greedy descent, we simply enumerate all 1-
simplified templates and run Corral on each of them. This run tells us whether
the program can be proved and the number of inlined procedures, if any. Also,
we enumerate first those annotations where the corresponding simplified clause
is empty. Then, we enumerate annotations where the simplified clause has one
literal, and then when it has two, and so forth, until we have enumerated all
1-simplified templates. This way, we are heuristically choosing the well-founded
chains of smaller lengths while searching for a minimal template.

The second modification we introduce has the purpose of keeping C small in
Algorithm 2. While computing a minimal template for a single program, we first
check whether any of the previously computed minimal templates is perhaps
minimal for the new program. If so then we continue by analyzing the next pro-
gram. As a result, the number of distinct minimal templates in mints reduces,
and so does the size of C. Further, due to the definition of γproc,p,V , our algo-
rithm can produce the same annotated program for different templates. In that
case, the result of running Houdini+Corral for the first template is same as the
result of running them on the other template. We therefore use the concretized
annotations to cache Corral’s outcome and reuse the results when possible.

C Supplemental Discussion on the Evaluation

In this section, we highlight some of our experience with inferring useful annota-
tions. SDV rules verify kernel API usage; in many cases this does not require deep
reasoning over data structures or the heap. Consequently, we find that annota-
tions solely over scalar variables, such as model variables of the rule and the OS
model (which is also our shared vocabulary for annotations), help significantly
in establishing proofs of correctness.



Irql-based rules. An Interrupt Request Level (IRQL) quantifies the priority
associated with a task. Tasks with higher IRQL cannot be interrupted by tasks
with a lower IRQL. Drivers often raise IRQL level to perform critical activity
uninterrupted, but are required not to spend too much time at a high IRQL.
SDV checks that drivers do not call certain kernel APIs when at a high IRQL6.

Figure 5 shows IRQL modeling and usage. OS model variable sdv -
irql current maintains the current IRQL value. APIs KeRaiseIrql7 and
KeLowerIrql change the IRQL value. Proving correctness of main requires
a loop invariant that the value of sdv irql current is unchanged across
loop iterations, which in turn requires that the value of loc is maintained
across iterations. The former annotation is generally useful and was present
in the manual template, however, the latter was not. We infer the annotation
$floc == old($floc) where $floc is a generic variable of type Local (see
Section 2). This allows us to establish the invariant that certain loops do not
change the value of certain local variables across loop iterations. Inferring this
annotation helped SDV significantly.

Multi-variable correlations. Some SDV rules define and manipulate sev-
eral model variables. Manual templates mostly have single-variable annotations
that capture the effect a procedure’s execution on a single variable. However,
these are insufficient to capture inter-variable relationships. We infer several an-
notations over multiple variables which helped significantly with some rules.

6 https://msdn.microsoft.com/en-us/library/windows/hardware/
ff547747(v=vs.85).aspx

7 https://msdn.microsoft.com/en-us/library/windows/hardware/
ff553079(v=vs.85).aspx

https://msdn.microsoft.com/en-us/library/windows/hardware/ff547747(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff547747(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff553079(v=vs.85).aspx
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// DRIVER
procedure main() {

var loc: int;
cal l init();
cal l loc := KeRaiseIrql(2);
while(*) {

cal l KeLowerIrql(loc);
cal l do_work_at_low_irql();
cal l loc := KeRaiseIrql(2);

}
cal l KeLowerIrql(loc);

}

// RULE
procedure do_work_at_low_irql()
{ assert sdv_irql_current == 0; }

// OS MODEL and RULE
var sdv_irql_current: int;

procedure init()
{ sdv_irql_current := 0; }

procedure KeRaiseIrql(new_irql: int)
returns (old_irql: int) {
old_irql := sdv_irql_current;
sdv_irql_current := new_irql;

}

procedure KeLowerIrql(new_irql: int)
{ sdv_irql_current := new_irql; }

Fig. 5. IRQL modeling and usage
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