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Abstract
Parallel and distributed systems rely on intricate protocols
to manage shared resources and synchronize, i.e., to man-
age how many processes are in a particular state. Effective
verification of such systems requires universal quantification
to reason about parameterized state and cardinalities track-
ing sets of processes, messages, failures to adequately cap-
ture protocol logic. In this paper we present #Π, an auto-
matic invariant synthesis method that integrates cardinality-
based reasoning and universal quantification. The resulting
increase of expressiveness allows #Π to verify, for the first
time, a representative collection of intricate parameterized
protocols.

Keywords Concurrency, verification, parametric systems,
cardinalities

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Rea-
soning about Programs; C.2.4 [Computer-Communication
Networks]: Distributed Systems

1. Introduction
Parallel and distributed systems rely on intricate protocols
to manage shared resources and synchronize, i.e., to man-
age how many processes are in a particular state [Burrows
2006; Hunt et al. 2010; Ongaro and Ousterhout 2014; Mic
2015]. Verification tools can support development of prov-
ably correct parallel and distributed systems by inferring
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and/or checking correctness arguments [Newcombe et al.
2015; Hawblitzel et al. 2015b; Lamport 2015; Hawblitzel
et al. 2015a; Sergey et al. 2015], while offering various de-
grees of expressiveness and automation. In this paper we aim
at advancing expressiveness of fully automatic invariant syn-
thesis for the verification of parallel and distributed systems.

Verifying systems parameterized by the number of exe-
cuted processes requires dealing with global (system) states
modeled by arrays of local (process) states. Universally
quantified assertions over such arrays provide a commonly
adopted and used language to symbolically represent pa-
rameterized state spaces, where quantifiers range over pro-
cess identifiers. Tools for automatic inference of quantified
array invariants can significantly reduce the manual anno-
tation burden [Abdulla et al. 2007; Monniaux and Alberti
2015; Sanchez et al. 2012; Alberti et al. 2014a,b, 2015]. Un-
fortunately, universal quantifiers alone are not sufficient to
express proofs of even modestly complex protocols.

Consider a lemma from a mutual exclusion proof for n
processes extracted from a standard textbook [Herlihy and
Shavit 2008, page 30]:

For j between 0 and n − 1, there are at most n − j
threads at level j.

It imposes a symbolic bound on the cardinality of a par-
ticular set of threads, which is an essential protocol invari-
ant. Similarly, many protocol descriptions and correspond-
ing correctness proofs routinely refer to cardinality of sets
of processes (messages, links or failures) [Kotla et al. 2007;
Lamport 2015; Hawblitzel et al. 2015a; Zave 2015]. When
verifying parallel and distributed systems, cardinality-based
reasoning is just as important as universal quantification.
Tools for automatic inference of what to count [Farzan et al.
2014] and tools that discover invariants over manually spec-
ified auxiliary counters [Basler et al. 2009a; Ganjei et al.
2015; Pnueli et al. 2002b] can contribute towards automation
of cardinality-based verification. Unfortunately, these tools
do not support universally quantified invariants, and can only
deal with a finite collection of auxiliary counters. Note that



even our simple textbook example refers to n cardinalities,
one for each level.

In this paper we present #Π,1 an invariant synthesis
method that integrates cardinalities and universal quantifi-
cation. #Π can synthesize invariants tracking relations be-
tween 1) scalars, 2) cardinalities of sets represented using
predicates over scalars and arrays, and 3) universally quan-
tified array assertions. This powerful combination facilitates
fully automatic proofs of parameterized systems that were
out of reach for automatic tools until now, as presented by
examples in Section 7.

Our approach builds upon an observation that update
statements in parameterized systems make only point-wise
updates to the system state, i.e., just one thread moves at a
time. We present an axiomatization of cardinality that is tai-
lored to such updates. It allows #Π to reason about relations
between cardinalities of sets defined by assertions over ar-
rays by reducing reasoning about cardinalities to reasoning
about quantified array assertions. In order to provide formal
guarantees on the precision of our axiomatization, we show
that our axiomatization of point-wise updates is relatively
complete with respect to difference bound constraints.

We implemented #Π by relying on emerging Horn con-
straint solving technology [Grebenshchikov et al. 2012;
Hoder and Bjørner 2012; Kahsai et al. 2015; Hojjat et al.
2012; Kroening and Lewis 2014; Terauchi and Unno 2015;
Unno and Terauchi 2015]. We applied it on a collection of
parameterized systems, including mutual exclusion, consen-
sus, and garbage collection. The evaluation shows that #Π
pursues a viable approach. It efficiently synthesized expres-
sive cardinality-based universally quantified invariants for
intricate protocols. All but one of them were verified fully
automatically for the first time. We observed that #Π can
even outperform existing semi-automatic tools for parame-
terized verification that require manually specified counters.

In order to demonstrate that the ability of #Π to deal with
cardinality does not incur any overhead when cardinality
reasoning is not required, we compare #Π to state-of-the-art
tools on parameterized systems whose proofs are cardinality
free. Our experiments show that #Π performs as least as
well, and often better.

In summary, this paper contributes an automatic method
for synthesizing cardinality-based universally quantified in-
variants of parallel and distributed systems together with its
implementation and experimental evaluation.

2. Motivating examples
In this section, we discuss three examples that highlight dif-
ferent challenges in verifying parametrized protocols: com-
bination of cardinalities and universal quantification, reason-
ing with array of counters, and reasoning with synchronous
composition of processes.

1 Pronounced as “sharpie”.

ticket lock
global int t = 0;
global int s = 0;
local m = −1;
void lock() {

1: atomic {m = t; t = t+ 1;}
2: while (m > s){}
3: }
4: void unlock() {
5: if (m ≤ s) {s = s+ 1;}
6: }

end

Figure 1: Ticket lock.

Ticket lock Figure 1 contains code for the classic ticket
lock mutual exclusion protocol. This protocol makes use of a
global ticket counter t and a global service counter s. When-
ever a thread wants to enter the critical section it draws a
ticket by assigning t to a local variablem. It then increments
t and spins until the service counter has reached the value of
its previously drawn ticket stored in m. Upon leaving the
critical section, the thread increments s in order to allow
the next thread to enter. For this example, we want to prove
mutual exclusion, i.e. we want to show that the number of
threads at location 3 is bounded by 1. For this, #Π synthe-
sizes the following invariant which states that the number of
threads that are either ready to enter the critical section or
already inside the critical section is bounded by 1.

#{t | m(t) ≤ s ∧ pc(t) = 2}+ #{t | pc(t) = 3} ≤ 1

Additionally, it discovers the following invariant stating that
tickets are unique.

∀t, t′ : m(t) = m(t′)→ t = t′

Despite its apparent simplicity, this example requires both
quantification and cardinalities which highlights the fact that
an automated method for verifying parametrized protocols
needs to be able deal with both.

Filter lock This example expands on the protocol dis-
cussed in the introduction. Figure 2 shows a code fragment
that implements the filter lock, a well-known mutual exclu-
sion protocol [Herlihy and Shavit 2008]. We model this pro-
tocol using a cardinality constraint, in line 5. The protocol is
based on the following idea:

• There are n− 1 “waiting rooms” called levels.
• Threads try to increase their level in order to acquire the

lock, which corresponds to reaching level n− 1.



global int n;
global int [] lv ;
assume (n ≥ 2);
void lock() {

1: local int me = ThreadID.get();
2: local int i = 0;
3: while (i < n− 1) {
4: atomic {
5: if (#{t | lv(t) > i} = 0 || #{t | lv(t) = i} ≥ 2) {
6: i++; lv(me) = i;
7: }
8: }
9: }

10: }

Figure 2: Filter lock.

• For each level, at least one thread trying to enter the
level succeeds. This is guaranteed by the condition #{t |
lv(t) > i} = 0 in the if-statement in line 5 that allows
a thread to enter the next level if there are no threads at
higher levels.

• If there are threads on higher levels, exactly one thread
that enters a given level gets blocked, i.e. continues wait-
ing at that level. This is enforced though the condi-
tion #{t | lv(t) = i} ≥ 2 in line 5, which allows a
thread to raise its level only if there is at least one other
thread at its current level.

• Since n threads participate in the protocol, at most one
thread at a time can reach level n − 1, which ensures
mutual exclusion.

#Π automatically synthesizes the following quantified in-
variant which formalizes this argument.

∀l : 0 ≤ l ≤ n− 1→ #{t | lv(t) ≥ l} ≤ n− l

This invariant states that the number of threads that have
reached a given level l is bounded by n − l. This implies
that there is at most one thread at level n − 1, from which
the mutual exclusion property follows.

In this example, cardinalities and quantifiers do not ap-
pear in isolation, but the cardinality constraint shows up un-
der a quantifier. This means that rather than keeping track of
a fixed number of cardinalities, the method needs to track an
unbounded number of cardinalities. This highlights the fact
that cardinalities and quantifiers cannot be treated in isola-
tion but require a close integration such as the one provided
in our method.

One-third rule Figure 3 shows code for the one-third
rule [Drăgoi et al. 2014; Charron-Bost and Schiper 2009],

protocol oneThird
1: instantiation x := v0 with v0 ≥ 0 ; res := −1;
2: round r:
3: send x to all processes
4: if #HO(r) > 2n/3 then
5: x = the smallest most often received value
6: if more than 2n/3 values rec. equal x then
7: res = x;

end
end

Figure 3: One-third rule consensus protocol.

which implements a simple consensus protocol. The proto-
col is executed by a number of processes, where each pro-
cess starts the protocol with an initial value vo and the goal of
the protocol is for the processes to agree on one of the initial
values as a common output. We specify the algorithm in the
heard-of model [Charron-Bost and Schiper 2009] which cap-
tures benign failures, (i.e., transmission-, but not Byzantine
failures). This is a synchronous, round-based model where
each processes gets assigned a set of processes from which
it received messages in a given round. For round r, we de-
note this set by HO(r).

A process starts a round by sending its local candidate
value x to all other processes. If it received messages from
more than two-thirds of the total number of processes n, the
process updates its local candidate value x with the smallest,
most often received value. Finally, if more than two-thirds
of all processes sent the previously selected value x as their
candidate, the process decides on x by assigning it to res .

#Π automatically verifies the following properties of this
protocol:

• Agreement: whenever two processes have reached a de-
cision, the values they have decided on must be equal.

• (Weak) validity: if all processes propose the same initial
value, they must decide on that value.

• Irrevocability: if a process has decided on a value it does
not revoke its decision later.

To prove the above properties, our method synthesizes the
following invariant.

∀p : res(p) ≥ 0→ #{t | x(t) = x(p)} > 2n
3

∧ x(p) = res(p)

This invariant states that if a process has decided on a value
res , then that value must be equal to its local candidate and
more than two-thirds of the processes must have proposed
the same value.

This example highlights the need to address different
models of communication such as synchronous and asyn-
chronous communication. In our method, we achieve this by



relying on logic as a means to encode models rather then a
priori committing to a particular one.

3. Informal overview
In this section we illustrate the main ideas behind our
method through a simple example. Consider the following
program in which an unbounded number of threads incre-
ment a global variable a which is initialized to 0.

global int a;
1: a++;
2:

The property we want to prove about this program is that
whenever there is a thread at location 2, variable a must be
larger that zero.

For this, we represent the program by the following log-
ical assertions representing initial states, transition relation,
and a safety property. We model the program counter pc as
an array, where each position in the array corresponds to the
program counter of a single thread. Assertion next uses t′ to
denote the identifier of an arbitrary thread that increments a.

init(a, pc) def
= (∀t : pc(t) = 1) ∧ a = 0

next(a, pc, a′, pc′) def
= ∃t′ :

 pc(t′) = 1 ∧
pc′ = pc[t′ ← 2] ∧

a′ = a+ 1


safe(a, pc) def

= (∃t : pc(t) > 1)→ a > 0

The verification conditions are given by the following Horn
constraints which ensure that inv is a safe inductive invariant.
We assume that each clause is implicitly universally quanti-
fied.

∃inv(a, pc) :

(a) init(a, pc) → inv(a, pc)

(b) inv(a, pc) ∧ next(a, pc, a′, pc′)→ inv(a′, pc′)

(c) inv(a, pc) → safe(a, pc)

The following invariant is a solution to the above con-
straints. It states that a is greater than or equal to the number
of threads at position 2.

inv(a, pc) def
= #{t | pc(t) ≥ 2} ≤ a

Finding such invariants automatically is our goal. However,
for simplicity, we first show how such an invariant can be
checked, if already given. We then show how our synthesis
procedure discovers this invariant.

Invariant checking Checking validity of the above invari-
ant (if already given) requires the ability to reason about car-
dinalities of sets defined over uninterpreted functions. In #Π,

we achieve this in a two-step process: in a first step, we re-
place applications of the cardinality operator by fresh vari-
ables, and in a second step instantiate cardinality axioms in
order to regain lost information. We now describe this pro-
cess for the above example.

For clause (a), we replace #{t | pc(t) ≥ 2} by the fresh
variable k, and instantiate an axiom stating that if pc(t) ≥ 2
does not hold for any thread t, then the cardinality of the
set defined by this predicate must by zero. Substituting and
instantiating yields the following formula.

(∀t : pc(t) = 1)

∧ ((∀t : pc(t) ≤ 1)→ k = 0)

∧ a = 0

→ k ≤ a
This formula contains universal quantification, however,
since it falls into the array property fragment [Bradley et al.
2006], the quantifiers can be eliminated. In order to prove
validity for clause (b), we crucially need the ability to track
how function updates affect cardinalities. We achieve this
by instantiating an axiom that relies on the following ob-
servation. An update pc′ = pc[t ← v] changes the func-
tion value of pc only at position t. This means that to track
the overall effect of this update, it is enough to consider the
changes at position t. In our example, updating the program
counter from 1 to 2 moves a new thread into the set and
hence the axiom strengthens the second clause with the for-
mula k′ = k + 1, where k′ is the fresh variable introduced
for the cardinality after the update. For clause (c), we instan-
tiate an axiom stating that, if there is at least one element in
the set, the cardinality of the set is greater than zero.

Instantiation and quantifier elimination yields a quantifier
and cardinality free formula whose validity can be efficiently
checked by off-the-shelf SMT solvers.

Invariant synthesis To synthesise the above invariant, we
restrict the search space to invariants of the following shape.

(#{t | s(pc(t), a)} = k) ∧ inv0(pc, a, k)

This restriction requires the invariant to be composed of
a set defined by an unknown predicate s(pc(t), a) whose
cardinality is bound to a variable k and a cardinality-free part
inv0(pc, a, k) which relates k to other program variables. As
in the checking case, our method removes all occurrence
of the cardinality operator from the clauses and instantiates
cardinality axioms. For clause (a) this yields

(∀t : pc(t) = 1) ∧
∧ ((∀t : ¬s(pc(t), a))→ k = 0) ∧ . . .
→ inv0(pc, a, k)

where the dots represent additional omitted instances of car-
dinality axioms. Eliminating quantifiers yields

pc(t) = 1 ∧ (¬s(pc(t), a)→ k = 0) ∧ . . .
→ inv0(pc, a, k) .



The resulting clauses are cardinality- and quantifier-free
which allows us to apply existing Horn clause solvers. Pass-
ing the clauses to a solver returns the solution

s(pc(t), a) def
= (pc(t) ≥ 2)

inv0(pc, a, k) def
= (k ≤ a) .

4. Preliminaries
In this section, we define our notion of parametrized sys-
tems. We first discuss the asynchronous case. Let l be a tu-
ple of local variables, g be a tuple of global variables, and L
denote a function that maps each thread identifier t to a tuple
of its local variables l. Then, a parametric system is given by
three constraints: init(g, L), nextT(g, l, g′, l′), and safe(g, L).
Constraints init(g, L) and safe(g, L) define initial states and
a safety property. These constraints can have arbitrary quan-
tifier structure, however, cardinalities are restricted to occur
in the quantifier-free part. Constraint nextT(g, l, g′, l′) de-
fines a local transition relation that describes how a single
thread evolves the system. For this, it relates globals and lo-
cals to their primed versions, which represent the program
state after the transition. We assume nextT(g, l, g′, l′) to be
quantifier-free.

Let L[t← l] denote the result of updating L at position t
with l. Then, we define the global transition relation next as
follows.

next(g, L, g′, L′) def
= ∃t :

(
nextT(g, L(t), g′, l′) ∧
L′ = L[t← l′])

)
(1)

This transition relation picks an arbitrary thread t, lets it
evolve locals and globals, and finally updates the function L.
The transition relation preserves locality in the sense that
a thread can only update its own locals. We exploit this
property in Section 5 where it enables tracking the influence
of array updates on cardinalities.

For the synchronous case, where threads move in lock-
step, the setting remains the same, however the quantifier in
Equation 1 turns into a universal quantification.

We assume a standard semantics of computations, where
a computation is defined as a sequence of states that starts
from an initial state and is constructed by following the
global transition relation. We say that a state is reachable,
if and only if there exists a computation leading up to that
state. A parametrized system is safe, if and only if only safe
states are reachable.

The above definition allows us to apply a standard
proof rule for safety to describe a safe, inductive invariant
inv(g, L) for the parameterized system. Since an instance of
this proof rule is already shown in Section 3, here we only
revisit that the invariant needs to 1) hold on initial states, 2)
be inductive under the transition relation next and 3) imply
the safety condition.

Def (k) = #{t | ϕ}
∆ Def (l) = #{t | ϕ′}
((∀t : ϕ→ ϕ′)→ k ≤ l) ∧ ∆

(a) Rule CARD≤.

Def (k) = #{t | ϕ}
∆ Def (l) = #{t | ϕ′}

(

(
∀t : ϕ→ ϕ′∧
(∃t : ¬ϕ ∧ ϕ′)

)
→ k < l) ∧ ∆

(b) Rule CARD<.

Def (k) = #{t | ϕ(t)}
Def (l) = #{t | ϕ′(t)}

g = f [j ← _] occurs in ∆

∆ ϕ′ = ϕ[g/f ](
1(ϕ′(j), δ+) ∧ 1(ϕ(j), δ−) ∧

(l = k + δ+ − δ−)

)
∧∆

(c) Rule CARD-UPD.

Figure 4: Rewriting rules for instantiating cardinality ax-
ioms.

5. Cardinality Axioms
Consider the combined theory of linear integer arithmetic
and arrays, i.e., the theory of linear arithmetic extended with
the interpreted functions ·(·) for array reads and ·[· ← ·] for
array updates (see e.g. [Bradley et al. 2006] for more details).
In order to extend this theory to incorporate cardinalities we
distinguish variables of two sorts: variables of sort thread
identifier that are used to index into arrays and variables of
sort integer that are used to model data. Thread identifiers
only support equality and inequality comparisons whereas
integer variables support standard arithmetic operators. Let
ϕ be a quantifier-free formula in that theory such that ϕ does
not contain the update function. Then, for thread identifier t
and integer variable k, we call an expression #{t | ϕ} = k
a cardinality constraint. Let Ψ be a cardinality free formula.
Then, in this paper, we consider formulas of the form

#{t | ϕ1} = k1 ∧ · · · ∧#{t | ϕn} = kn ∧Ψ .

In order to efficiently handle the cardinality free part Ψ, we
assume that quantification is restricted in a way to ensure
that a complete instantiation for the universal quantifiers
can be efficiently computed (e.g., the formula falls into the
array property fragment [Bradley et al. 2006] which admits



guarded universal statements). We note, however, that our
axiomatization is sound in the case where Ψ is unrestricted.
In order to avoid reasoning about infinite cardinalities, we
assume that the set of all threads {t | true} is of arbitrary
but fixed size.

EXAMPLE 1. The formulas

(∀t : f(t) = 1) ∧ #{t | f(t) ≥ 2} = k ∧ k ≥ 1

and

#{t | f(t) = 2} = k ∧#{t | g(t) = 2} = l ∧ f(j) = 1 ∧
g = f [j ← 2] ∧ l ≤ k

are formulas in the combined theory of arithmetic, arrays
and cardinality constraints. �

5.1 Elimination procedure
We now describe our instantiation procedure ELIMCARD
which soundly eliminates cardinality constraints through
a reduction to arithmetic and array reasoning. For a for-
mula ∆, our procedure first replaces all cardinality con-
straints by fresh variables, where the procedure maintains
a bookkeeping function Def (·) that maps fresh variables to
cardinalities. We assume that this function has a designated
entry Def (0) = #{t | false} which represents the empty
set. The procedure then instantiates a number of axioms that
recover information about the previously eliminated cardi-
nalities. Finally, ELIMCARD eliminates universal quanti-
fiers, thus yielding a quantifier-, and cardinality-free formula
whose validity can be checked by an SMT-solver.

Figure 4 shows rewriting rules for instantiating cardinal-
ity axioms. Each rule specifies a re-writing of a formula ∆
which strengthens the formula through a cardinality axiom.
The right-hand side of the rule contains a number of pre-
conditions that need to be satisfied in order for the rule to be
applicable. Our axiomatization consists of three rules. We
now describe the individual axioms in more detail.

• Rule CARD≤ instantiates a rule tracking non-strict in-
equalities between cardinalities.

• Rule CARD< instantiates a rule tracking inequalities be-
tween cardinalities.

• Rule CARD-UPD models how cardinalities evolve
through array updates. This rule makes use of the lo-
cality of parametric systems mentioned in Section 6.1,
which ensures that each transition only updates one ar-
ray entry at a time. This allows to characterize the effect
of an array update on cardinality in the following way.
When updating an array at position j, the cardinality of a
set referring to j is decremented if the value at j was part
of the set before the update, and incremented if the value
at j is part of the set after the update. This is formalized
through an indicator relation 1. For a constraint ϕ and

variable k, we define 1 as follows.

1(ϕ, k) def
= (ϕ ∧ k = 1) ∨ (¬ϕ ∧ k = 0)

The rule CARD-UPD can only be applied if defining for-
mulas ϕ and ϕ′ are equal, except for the use of array f
and g respectively. Moreover, we require that arrays in ϕ
and ϕ′ may only be indexed by the variable bound in the set-
comprehension. These conditions ensure that the only differ-
ence in the cardinality of both sets stems from the function
update.

EXAMPLE 1 (continued). Consider again the formula

(∀t : f(t) = 1) ∧ #{t | f(t) ≥ 2} = k ∧ k ≥ 1 .

Let Def (k) = #{t | f(t) ≥ 2}, then, instantiating the
axiom CARD≤ for a comparison with the empty set yields
the following formula

(∀t : f(t) = 1) ∧
((∀t : f(t) ≥ 2→ false)→ k ≤ 0) ∧ k ≥ 1

which we simplify (for readability) into

(∀t : f(t) = 1) ∧ (∃t : f(t) ≥ 2 ∨ k ≤ 0) ∧ k ≥ 1 .

Instantiating the quantifiers produces the following equiva-
lent formula that can be easily checked by an SMT solver.

f(t) = 1 ∧ (f(t) ≥ 2 ∨ k ≤ 0) ∧ k ≥ 1 .

For the formula

#{t | f(t) = 2} = k ∧ #{t | g(t) = 2} = l

∧ f(j) = 1 ∧ g = f [j ← 2] ∧ l ≤ k

instantiating axiom CARD-UPD yields

l = k + δ+ − δ− ∧ 1(g(j) = 2, δ+) ∧ 1(f(j) = 2, δ−) ∧
f(j) = 1 ∧ g = f [j ← 2] ∧ l ≤ k

which simplifies to

l = k + 1 ∧ f(j) = 1 ∧ g = f [j ← 2] ∧ l ≤ k

�

Soundness Our axioms are sound, which in turn underpins
the soundness of #Π.

THEOREM 1 (Soundness). Axioms CARD≤, CARD<, and
CARD-UPD are sound, i.e. the assertion under the line in
Figure 4(a,b,c) is a logical consequence of ∆.



Derived Properties of CARD≤ and CARD< The follow-
ing useful properties follow from Axioms CARD≤ and
CARD<.

• CARD≥0: cardinalities are always non-negative. That is
for k ∈ dom(Def ) we have k ≥ 0.

• CARD∅: if there is no element in a set, the cardinality of
that set is zero. For Def (k) = #{t | ϕ} the following
holds.

(∀t : ¬ϕ)→ k = 0

• CARD>0: if there is at least one element in a set,
the cardinality of that set is greater than zero. That is
for Def (k) = #{t | ϕ} the following holds.

(∃t : ϕ)→ k > 0

Relative completeness of CARD-UPD We now prove that
the update axiom preserves difference bound constraints. A
difference bound constraint, is a conjunction of inequalities
of the form k ≤ l + c, where c is a numeric constant and k
and l are variables. The following theorem states that instan-
tiating the axiom CARD-UPD preserves difference bound
constraints over cardinalities. That is, if a function update
induces a relationship between the cardinalities of two sets
and that relationship can be expressed as a difference bound
constraint, then our update axiom captures that relationship.

THEOREM 2 (Relative completeness CARD-UPD ). Let ∆
be an arbitrary formula in the combined theory of cardinal-
ity constraints, arrays and arithmetic. We let Ψ denote a for-
mula containing the cardinality of two sets related through
an update statement.

Ψ def
= (#{t | ϕ} = k) ∧ (#{t | ϕ′} = l) ∧

g = f [j ← _] ∧ ∆

where ϕ′ = ϕ[g/f ]. Moreover, we require that arrays in ϕ
and ϕ are indexed by only t. Let θ denote the same formula
after the instantiation of the update axiom.

θ def
= (l = k + δ+ − δ−) ∧ 1(ϕ′, δ+) ∧ 1(ϕ, δ−) ∧ ∆

Then, if Ψ is satisfiable, the following holds for all difference
bound constraints ρ(k, l).

Ψ→ ρ(k, l) if and only if θ → ρ(k, l)

For the proof of Theorem 2, we make use of the following
proposition stating that equality constraints are maximal in
the following sense: whenever an arbitrary formula implies
an equality constraint, this equality constraint implies all
difference bound constraints that are consequences of the
formula.

PROPOSITION 1. For all Ψ such that Ψ is satisfiable for-
mula in any theory that includes arithmetic, and for all dif-
ference constraints ρ(k, l) and constants c, if

Ψ→ l = k + c and Ψ→ ρ(k, l)

hold then l = k + c→ ρ(k, l) .

PROOF 1 (Theorem 2). The “right-to-left” direction fol-
lows from the fact that Ψ→ θ holds. For the “left-to-right”
direction assume that Ψ→ ρ(k, l) and θ hold, then we need
to show ρ(k, l). By case splitting over truth valuations for ϕ,
and ϕ′, we get θ → l = k+c, for some c. Then, from Ψ→ θ,
we can deduce that Ψ → l = k + c, and by Proposition 1,
we get that l = k+c→ ρ(k, l) from which ρ(k, l) follows. �

REMARK 1. If for all cardinalities #{t | ϕ}, we restrict
occurrences of t in ϕ to direct array reads, all axiom instan-
tiations fall into the array-property fragment, and we can
therefore efficiently compute a complete instantiation for the
universal quantifiers. We note that this is the case for all our
examples.

5.2 Venn decomposition
While for all examples from the literature (i.e., those in Fig-
ure 7 and the upper table in Figure 6), the above axioms are
sufficient, some examples (i.e., those in the lower table in
Figure 6– in these examples comparison between cardinal-
ities go beyond order constraints), require a form of Venn
decomposition. For this, we assume that all cardinality con-
straints are of the form #{t | ϕ} = k, where ϕ is con-
junctive (this applies to all inferred sets in our examples).
Let P denote the set of predicates (conjuncts) occurring in
set comprehensions. Then, we decompose the universal set
into regions corresponding to truth valuations of these pred-
icates. For this purpose, we associate with each set Q ∈ 2P

a region region(Q), which we define as follows.

region(Q) def
= {t |

∧
p∈Q

p ∧
∧

p∈(P\Q)

¬p}

Then, for each predicate p ∈ P , we add the following
equation.

#{t | p} =
∑
{ #region(Q) | Q ∈ 2P and p ∈ Q }

Finally, we add a decomposition of the universal
set Ω def

= {t | true} through the following equation.

#Ω =
∑
{ #region(Q) | Q ∈ 2P }

EXAMPLE 2. Consider the following constraint, which il-
lustrates an argument in the verification of the one-third pro-
tocol presented in Section 2. This constraint is unsatisfiable,
however the axioms of Section 5.1 are not strong enough to
derive a contradiction.

#{t | f(t) = 1} ≥ 2n
3 ∧#{t | g(t) = 1} ≥ 2n

3 ∧
#Ω = n ∧#{t | f(t) = 1 ∧ g(t) = 1} = 0

The set of predicates is given by P def
= {f(t) = 1, g(t) =

1} def
= {a, b}. The Venn-decomposition produces the follow-



ing equations.

#{t | a} = #{t | a ∧ ¬b}+ #{t | a ∧ b}
#{t | b} = #{t | ¬a ∧ b}+ #{t | a ∧ b}
#Ω = #{t | a ∧ ¬b}+ #{t | ¬a ∧ b} +

#{t | a ∧ b}+ #{t | ¬a ∧ ¬b}

From these equations, and the facts that #{t | a ∧ b} = 0,
and #Ω = n we can derive the following equality.

n = #{t | a}+ #{t | b}+ #{t | ¬a ∧ ¬b}

Then from #{t | a} ≥ 2n
3 ∧#{t | b} ≥ 2n

3 the contradiction
follows. �

5.3 Limitations
Currently, the main limitation of our axiomatization with
respect to the considered logic fragment is that we only
support a limited form of case splits over thread identifiers.
This support comes in the form of our update axiom, which
encodes a case split in the following sense: an update g =
f [j ← v] can be translated into the following formula,
which encodes a case split over the position j and all other
positions.

g(j) = v ∧ (∀t : t 6= j → g(t) = f(t))

We now provide two examples of formulas which include
case splits that induce relations between the cardinalities of
sets that cannot be captured by our axiomatization.

EXAMPLE 3. Consider the following formula describing ar-
rays f and g which have the same value for all positions
except for positions i and j where their values are swapped.

i 6= j ∧
(∀t : t 6= i ∧ t 6= j → f(t) = g(t) ∧ g(t) = 1) ∧
f(i) = 1 ∧ g(i) = 2 ∧
f(j) = 2 ∧ g(j) = 1

Assuming the above formula, it holds that

#{t | f(t) = 1} = #{t | g(t) = 1}

however the formulas

∀t : f(t) = 1→ g(t) = 1

and
∀t : g(t) = 1→ f(t) = 1

do not hold, and hence rule CARD≤ cannot be used to
infer the above equality. Similarly, the following formula
describes arrays f and g which have the same value on all

positions except for i and j, however both positions are 2 for
f and 1 for g.

i 6= j ∧
(∀t : t 6= i ∧ t 6= j → f(t) = g(t) ∧ g(t) = 1) ∧
f(i) = 2 ∧ f(j) = 2 ∧
g(i) = 1 ∧ g(j) = 1 .

Assuming the above formula, it holds that #{t | f(t) =
1} ≤ #{t | g(t) = 1} + 2, however our axioms are not
strong enough to derive this fact. �

While our limited support for case splits prevents our
method from inferring certain relationships between cardi-
nalities of sets, it allows us to avoid the potential blowup
such a treatment would incur and hence ensures effective-
ness of our method. We also note that none of the intricate
reasoning patterns above occur in the examples in our eval-
uation.

6. The method #Π
In this section, we describe our method #Π which computes
invariants for parametric systems by computing a solution to
a set of Horn clauses in the combined theory of arithmetic,
arrays and cardinalities. Our method relies on the following
main steps.

• Defining the search space In this step, we restrict the
search space for the invariant. For this, we provide a
shape template which specifies the number of sets whose
cardinality the invariant may refer to, as well as the num-
ber of quantifiers used in the invariant (Section 6.1).

• Quantifier elimination We then eliminate universal quan-
tifiers that occur in the invariant. For this, we rely on ex-
isting methods [Hojjat et al. 2014; Bjørner et al. 2013].

• Cardinality elimination In this step, we eliminate cardi-
nalities from the clauses. For this, we replace all occur-
rences of cardinalities by fresh variables and recover rela-
tions between the freshly introduced variables by instan-
tiating axioms as described in Section 5.

• Solving Finally, we rely on existing solvers (such as
[Grebenshchikov et al. 2012; Kahsai et al. 2015; Hoder
and Bjørner 2012; Beyene et al. 2013]) to compute a so-
lution for the resulting clauses. This yields the desired
invariant.

6.1 Defining the search space
In order to define a search space for invariants, we require
the user to provide a shape template that fixes the number
of cardinality expressions and universal quantifiers that are
allowed to occur in the invariant. For an invariant inv with n
quantifiers and m cardinality expressions, this defines an
assertion Shape(inv) of the following form, where inv0 is an
unknown quantifier-free assertion that relates cardinalities



algorithm #Π

input C, Q, Shape
output Σ – solution function
local

function ELIMCARD – Cardinality elimination
functions INSTQ – Quantifier instantiation
functions SOLVE – Horn clause solver

begin
1: foreach p ∈ dom(Shape) and c ∈ C do
2: c← c[Shape(p)/p]

3: c← INSTQ(Shape(p), c)

4: end
5: C ← ELIMCARD(C)

return SOLVE(C,Q)

end
end

Figure 5: Algorithm #Π.

with program data, and s1, . . . , sm are unknown assertions
defining the respective sets.

∀q1, . . . , qn : #{t | s1} = k1 ∧ · · · ∧#{t | sm} = km

∧ inv0

EXAMPLE 4. In the filter-lock example, we search for an in-
variant with 1 quantifier and 1 cardinality expression defin-
ing an expression Shape(inv) def

= ∀q : #{t | s} ∧ inv0. �

6.2 Algorithm #Π

Figure 5 shows method #Π. Its input is a set of clauses C, a
set of existentially quantified predicatesQ that we refer to as
queries and a shape template function Shape . #Π returns a
solution function Σ that maps each query to a constraint such
that all clauses in C are valid if one substitutes each query
by its solution. Function INSTQ(ψ, c) takes as input a quan-
tified formula ψ and a clause c. It produces an instantiated
clause as output. Function ELIMCARD(C) takes as input a
set of clauses and produces a set of cardinality-free clauses
using the procedure described in Section 5.

The algorithm starts by plugging in shape templates for
queries, and instantiating the universal quantifiers in the
templates in lines 1-4 using function INSTQ. It then invokes
function ELIMCARD which instantiates cardinality axioms
for the unknown assertions defining the sets. The resulting
clauses are passed to a Horn solver, which returns a solution
function.

EXAMPLE 5. Consider again clause (a) from the example in
Section 3 which we restate for convenience.

init(a, pc)→ inv(a, pc)

Plugging in the shape template yields

init(a, pc)→ #{t | s(pc(t), a)} = k ∧ inv0(pc, a, k) .

Function INSTQ leaves the clause unchanged as the
shape template does not contain universal quantification.
Procedure ELIMCARD subsequently instantiates cardinal-
ity axioms for the unknown assertion s(pc(t), a) which
yields the following clause where we expanded the defini-
tion for init(a, pc). For simplicity we only instantiate the
rule CARD≥0.(

(∀t : pc(t) = 1) ∧ a = 0 ∧
(∀t : ¬s(pc(t), a))→ k = 0

)
→ inv0(pc, a, k)

Since the formula in the body of the clause falls into the ar-
ray property fragment, ELIMCARD can use the complete in-
stantiation procedure form [Bradley et al. 2006] to instanti-
ate quantifiers which yields the following clause in which we
rewrote the implication in the bottom line as a disjunction.(

(pc(t) = 1) ∧ a = 0 ∧
(s(pc(t), a)) ∨ k = 0)

)
→ inv0(pc, a, k)

This clause can be transformed into the two equivalent
clauses (

pc(t) = 1 ∧ a = 0 ∧
s(pc(t), a)

)
→ inv0(pc, a, k)

and

a = 0 ∧ pc(t) = 1 ∧ k = 0→ inv0(pc, a, k) .

Finally, the procedure passes the resulting clauses together
with the clauses that result from running the algorithm on (b)
and (c) to a Horn solver which returns the desired solution.

�

7. Evaluation
In this section we evaluate our method which we have imple-
mented in a research prototype #Π. We use a 1.3 Ghz Intel
Core i5 computer with 4 GB of RAM for our experiments.

7.1 Cardinality-based reasoning
Table 6 summarises our results for reasoning with cardi-
nalities. We use shape templates that specify the required
number of quantifiers and set comprehension predicates as
marked in the table.

Examples from [Farzan et al. 2014] The upper table
shows result on examples taken from [Farzan et al. 2014].
We are not able to compare timings as, to the best of our
knowledge, the technique has not yet been implemented. The
examples consist of a simple running example intro, a sim-
plified version of a bluetooth device driver bluetooth, and a



Program Card Property Inferred cardinalities Time

intro [Farzan et al. 2014] X (∃t : pc(t) = 2)→ b < a #{t | pc(t) = 2} 1.2s

bluetooth [Farzan et al. 2014] X (∃t : pc(t) = 2)→ st = 0 #{t | pc(t) = 2} 1.6s

tree traverse [Farzan et al. 2014] × leaves = nodes + 1 – 4.2s

cache [Yongjian] X #{t | pc(t) = 3} ≤ 1 #{t | pc(t) ≥ 3} 0.7s

garbage collection X #{t | 2 ≤ pc(t) ≤ 4} ≤ 1 ∧ m = 1 #{t | 2 ≤ pc(t) ≤ 4} 10.1s

Program Property Inferred cardinalities Time

ticket lock [Farzan et al. 2014] #{t | pc(t) = 3} ≤ 1 #{t | m(t) ≤ s ∧ pc(t) = 2},
#{t | pc(t) = 3}, 20.9s

#{t | m(t) = q}
filter lock [Herlihy and Shavit 2008] #{t | lv(t) = n− 1} ≤ 1 #{t | lv(t) ≥ q} 27.5s

one-third rule [Drăgoi et al. 2014; Charron-Bost and Schiper 2009] see Section 2 #{t | x(t) = x(q)} 0.8s

Figure 6: Applying #Π to cardinality-based reasoning. The column Card indicates whether or not cardinalities were used in
the proof. Except ticket lock, all examples were automatically verified for the first time.

Program Card Correct Property Inferred cardinalities Time Time [Ganjei et al. 2015]

max [Ganjei et al. 2015] ∃t : pc(t) = 5→ prev ≤ max #{t | pc(t) ≤ 2}, 4.2s 192s
X X #{t | pc(t) ≤ 3},

#{t | pc(t) ≥ 5}
max-nobar [Ganjei et al. 2015] - × ∃t : pc(t) = 5→ prev ≤ max - 7.2s 24s

reader/writer [Ganjei et al. 2015] × X readcount > 0→ writing = −1 - 0.4s 38s

reader/writer-bug [Ganjei et al. 2015] - × readcount > 0→ writing = −1 - 0.5s 11s

parent/child [Ganjei et al. 2015] X X ∃t : pc(t) = 3→ alloc = 1 #{t | 2 ≤ pc(t) ≤ 3} 1.2s 73s

parent/child-nobar [Ganjei et al. 2015] - × ∃t : pc(t) = 3→ alloc = 1 - 1.8s 3s

simp-bar [Ganjei et al. 2015] X X ∃t : pc(t) = 5→ fl = 1 #{t | pc(t) ≤ 3} 26.7s 93s

#{t | pc(t) ≤ 2}
#{t | pc(t) = 5}

simp-nobar [Ganjei et al. 2015] - × ∃t : pc(t) = 5→ fl = 1 - 4.2s 13s

dyn-barrier [Ganjei et al. 2015] X X #{t | pc(t) ≤ 2} ≤ 0 #{t | pc(t) ≤ 2}, 1.3s 8s

#{t | pc(t) ≥ 4}
dyn-barrier-nobar [Ganjei et al. 2015] - × #{t | pc(t) ≤ 2} ≤ 0 - 1.4s 3s

as-many [Ganjei et al. 2015] X X c1 = c2 #{t | pc(t) ≥ 2}, 0.5s 62s

as-many-bug [Ganjei et al. 2015] - × c1 = c2 - 0.7s 2s

Figure 7: Comparison to [Ganjei et al. 2015]. [Ganjei et al. 2015] maintains counters for each possible program location rather
then inferring what to count. The column Correct indicates whether or not the program meets is specification. #Π outperforms
[Ganjei et al. 2015] on all examples. We attribute this to the fact that #Π infers a suitable subset of relevant cardinalities.

tree traversal routine tree traverse. The bluetooth driver con-
sists of a single stopping thread and an arbitrary number of
worker threads. The property we prove is that whenever a
worker thread is still active, the stopping process has not yet
been completed. For the tree traversal example, we found
that a simple invariant containing one universal quantifier is
enough to prove the intended property.

Case studies The example cache consists of a simple
model of a cache-coherence protocol taken from [Yongjian],
for which we prove mutual exclusion. This is enforced by a
cardinality constraint requiring that the critical section con-
tains at most one thread. The lower part of Table 6 contains
the case studies from Section 2. We note that the ticket ex-

ample 2 from [Abdulla et al. 2007] is a simplification of our
example as their formulation contains universally quantified
guards in the transitions system which allows a direct en-
coding of the fact that a ticket is minimal among all threads.
Farzan et al. analyze the same example in [Farzan et al.
2014], however, it is not possible to express mutual exclu-
sion directly in their formalism which requires proving a
stronger property from which mutual exclusion follows via
a manual argument.

Garbage collection The benchmark garbage collection,
consists of a simple model of a tri-colour mark-and-sweep
garbage collector for which we provide code in Figure 8.

2 For ticket, we represented the uniqueness constraint of Section 2 through a
cardinality constraint stating that for each ticket, there is at most one thread
holding it.



This garbage collector partitions memory locations (nodes)
into three disjoint sets: black nodes that are reachable and
hence in use, white nodes that are candidates for deletion,
and grey nodes that are known to be reachable but whose
descendants have not yet been marked. The algorithm pro-
ceeds by picking a node in the grey set, marking all its suc-
cessors as grey, and finally moving the node into the black
set. If the grey set is empty, all white nodes are unreachable
and can be deleted. We model this algorithms through an ar-
bitrary number of mutator-threads (function ArrWrite) that
non-deterministically move nodes from the white into the
grey set, and a single marker-thread (function ArrMark) that
first sweeps the address space to non-deterministically move
nodes from the white into the grey set (which models explor-
ing successors), and in a second pass moves all nodes from
the grey into the black set. Access to the nodes is regulated
through a simple lock.

An important invariant of this algorithm is that nodes can
only be set to a darker colour, i.e., once a node has been
shown to be reachable, it cannot be re-considered for elim-
ination. We model this property via an auxiliary variable.
Proving monotonicity depends on the fact that mutual ex-
clusion between mutators and the sweeper thread is main-
tained. Hence, this example highlights that our method can
efficiently deal with the interplay of safety properties and
cardinalities.

Comparison with [Ganjei et al. 2015] Table 7 contains the
results of a comparison with benchmarks taken from [Gan-
jei et al. 2015]. The benchmarks consist of a number of sim-
ple barriers and locks. For each example, the benchmarks
contain a buggy version of the example, where barriers have
been removed, or other bugs have been introduced. We run
buggy benchmarks with the same templates that were used
to prove correctness of the original program. The compari-
son with timings taken from [Ganjei et al. 2015] shows that
our method outperforms [Ganjei et al. 2015] on all examples.
We attribute this to the fact that #Π automatically discovers
what to count and hence only tracks a small number of cardi-
nalities, while cardinalities in [Ganjei et al. 2015] are tracked
eagerly for each abstract state previously computed in a sep-
arate predicate abstraction phase. Our method benefits from
templates which specify the number of cardinalities needed
to complete the proof and which we assume are given as in-
put for our method. We note however that for all examples,
this number varies between one and three, and as a conse-
quence it is easy to spawn a search space over it.

7.2 Cardinality-free reasoning
The ability to synthesize quantified invariants allows us to
handle examples of cardinality-free reasoning from the liter-
ature. We compare #Π to the methods from [Abdulla et al.
2007] and [Sanchez et al. 2012]. Table 9 summarises the re-
sults. We use shape templates that do not use cardinalities

global Lock L;
void ArrWrite(int addr) {

1: acquire(L);
2: if (ArrC(addr) == WHITE)
3: ArrC(addr) = GRAY;
4: release(L);

}
void ArrMark() {

1: addr = lo;
2: while (addr < hi) {
3: acquire(L);
4: if ( * && ArrC(addr) == WHITE)
5: ArrC(addr) := GRAY;
6: release(L);
7: addr = addr+1;
8: }
9: addr := lo;

10: while (addr < hi) {
11: acquire(L);
12: if (ArrC(addr) == GRAY)
13: ArrC(addr) = BLACK;
14: release(L);
15: addr = addr+1;

}
}

Figure 8: Code for the benchmark garbage collection.

of sets and that use the number of quantifiers marked in col-
umn Q.

Benchmarks in [Abdulla et al. 2007] consist of a number
of mutual-exclusion protocols that require invariants with
two universal quantifiers. In our experiments, we provide
templates that specify the number of required quantifiers
(only). We find that #Π performance is on par with [Abdulla
et al. 2007] when using a solver over the reals and slightly
faster when solving over integers. Examples from [Sanchez
et al. 2012] consist of two variants of memory barrier im-
plementations, a work stealing algorithm for processing ar-
rays, the dining philosophers protocol, and a model of robot
swarm on a fixed-sized grid. Columns I, P, and O, show tim-
ings from [Sanchez et al. 2012] for interval, polytope and
octagon domains, respectively. Sanchez et al. provide tim-
ings for several abstraction schemes, however, we show only
timings from the interference abstraction scheme as these are
most favorable. We observe that #Π is out-performed by the
interval abstraction, however, its performance is on par with
the polytope domain, and scales better that the octagon do-
main. The reduced performance with respect to the interval
domain can be seen as the penalty of generality since our



method can find invariants consisting of arbitrary, (disjunc-
tive) linear arithmetic formulas.

Time
Program Q #Π Real Integer

Simplified Bakery 2 0.4s 0.8s 0.3s

Lamport’s Bakery 2 0.5s 2.1s 2s

Bogus Bakery 2 0.6s 0.8s 11s

Ticket Mutex 2 0.5s 0.3s 1.6s

Time
Program Q #Π I P O

barrier 1 0.4s 0.1s 0.1s 0.1s

central barrier 1 0.4s 0.1s 1.1s 6.2s

work stealing 1 0.5s 0.1s 0.1s 6.2s

dining philosophers 0 8.2s 0.1s 6.3s 20s

robot 2x2 2 2.8s 0.2s 5.8s 1m45s

robot 2x3 2 16.1s 0.5s 16s 5m20s

robot 3x3 2 34.0s 0.9s 52s 19m28s

robot 4x4 2 TO 3.2s 5m3s TO

Figure 9: Cardinality-free reasoning: Results of comparing
#Π to [Abdulla et al. 2007] and [Sanchez et al. 2012]. The
column Q shows the number of universal quantifiers in the
synthesized invariant.

8. Related Work
We broadly divide the related work into logics that support
cardinality reasoning, verification methods for parameter-
ized systems that rely on cardinality arguments, and meth-
ods that rely on universally quantified invariants. The main
contribution of #Π in comparison with the following meth-
ods is the ability to reason about and synthesize assertions
that combine cardinality with universal array assertions.

Quantitative Logics The logic of Boolean algebra and
Presburger arithmetic (BAPA) is studied in [Kuncak et al.
2005] and generalized to multi-sets and fractional collec-
tions in [Piskac and Kuncak 2008a,b] and direct and inverse
function/relation images in [Yessenov et al. 2010]. This logic
is however not suitable for our purposes, as sets are uninter-
preted. Hence the logic cannot be used for reasoning about
set which are explicitly defined through predicates over the
program state, such as {t | pc(t) ≥ 2}. The examples we
considered require this ability when constructing invariants.

[v. Gleissenthall et al. 2015] proposes a method for quan-
titative interpolation in the theory of linear arithmetic and
employs this method for the verification of programs en-
coded as Horn constraints. In contrast, our method focuses
on the treatment of uninterpreted functions which are used
to encode the state of individual processes in the parametric
system.

[Fredrikson and Jha 2014] introduces the problem of
model-counting satisfiability which, given an SMT formula

that contains a number of parameters, requires finding as-
signments to the parameters such that the resulting formula
satisfies a given cardinality constraint. [Fredrikson and Jha
2014] is not directly applicable to our setting as it focuses
on checking correctness arguments rather than synthesising
them. Moreover [Fredrikson and Jha 2014] requires a model
counting procedure. To the best of our knowledge, no such
procedure exists in a theory containing uninterpreted func-
tions.

Dragŏi et al. propose a logic that contains cardinality
constraints over uninterpreted functions as well as limited
quantifier alternation in [Drăgoi et al. 2014]. This logic is
geared towards the verification of consensus protocols such
as Paxos [Lamport 1998] in the heard-of model [Charron-
Bost and Schiper 2009] which allows for benign (communi-
cation) faults. While the logic is similar in spirit to our ap-
proach, [Drăgoi et al. 2014] focuses on satisfiability check-
ing in an expressive subset of first order logic with the pri-
mary intent of checking inductive correctness arguments,
whereas our focus lies on synthesizing such arguments au-
tomatically (in a more restricted setting).

[Ganjei et al. 2015] presents a logic that allows asser-
tions on the number of threads that are at a particular pro-
gram location. The paper presents a verification method for
this logic that relies on predicate-, and counter-abstraction,
however, the method does not take into account universal
quantification. One important implication of this restriction
is that [Ganjei et al. 2015] is not able to discover proofs that
require relating locals of more than one thread. Algorithmi-
cally, our approach tightly integrates the discovery of what
to count and the construction of the invariant that uses the
count. This is in contrast to [Ganjei et al. 2015] where first
a finite state abstraction is created, then, a counter is given
to each abstract state and finally invariants over counters are
discovered.

The abstract interpretation based approach presented
in [Gulwani et al. 2009] can track memory partition sizes
to infer memory usage properties. It relies on size tracking
domain operations and can reason about data structures do-
mains. An extension of such operations with tracking quan-
tified array properties could lead to a viable alternative to the
direct axiomatization.

While the focus of this paper lies on automating the dis-
covery of invariants for parametrized systems that contain
cardinality constraints, we think that studying the complex-
ity of underlying logic fragments is an important research di-
rection. Recently, [Alberti et al. 2016] proposed an extension
of the flat-array segment with cardinality constraints and
showed its decidability. As the algorithm for checking sat-
isfiability of the logic can lead to a substantial blow-up due
to a form of Venn decomposition, [Alberti et al. 2016] iden-
tifies a sub-fragment for which checking can be efficiently
automated, and applies this method to check invariants for
safety properties of distributed algorithms. The restriction of



this sub-fragment coincides with our restriction made in Re-
mark 1, i.e., that the variable bound in the set comprehension
can only be used to directly index into arrays. In our setting,
this restriction ensures that all axiom instances fall into the
array property fragment.

Quantitative verification of parametric systems A clas-
sic example of the use of quantitative abstractions for para-
metric system is [Pnueli et al. 2002a], where a number of
bounded auxiliary counters for predefined sets of states are
used to prove liveness of parametric protocols. The CIRC
extension [Henzinger et al. 2004a] of Blast [Henzinger et al.
2002, 2004b] shows how auxiliary counters can be inferred
under predicate abstraction. [Basler et al. 2009b] shows how
counter updates can be inserted in a context-dependant way
during model checking thus reducing the burden of tracking
large numbers of cardinalities. Our method avoids the need
to track large numbers of a priori defined cardinalities by
automatically synthesizing descriptions of the required sets.
Moreover, these methods do not support the combination of
cardinalities with quantifiers.

Recently, Farzan et. al [Farzan et al. 2014] proposed a
method to infer auxiliary counters which they formalized in
the framework of counting automata, and which they em-
ployed in the context of verifying parametric systems. This
method is based on an encoding of conditions on a suit-
able counting automaton as an SMT problem over arithmetic
and uninterpreted functions. In contrast, our method directly
refers to cardinalities of (defined) sets, and thus avoids rea-
soning about auxiliary variables. Moreover [Farzan et al.
2014] does not support the combination of counters with uni-
versal quantification.

Qualitative verification of parametric systems We now
discuss methods for cardinality-free reasoning about para-
metric systems and limit ourselves to methods over infinite
domains. The invisible invariants method [Balaban et al.
2005; Fang et al. 2006] relies on small instantiation to gen-
erate candidates for universally quantified array invariants
and proposes fragments where checking these candidates
can be done effectively, even in the presence of complex
communication topologies [Balaban et al. 2006]. Our ap-
proach computes quantifier instantiation as a part of the in-
ference process. In [Kaiser et al. 2014] the authors intro-
duce inter-thread predicates that can express dependencies
between the local variables of one thread and all local vari-
ables of another thread together with a mechanism to en-
sure monotonicity of boolean programs that arise from com-
puting an abstraction with such predicates. This allows ex-
pressing properties such as: “variable m of this thread is
smaller than the variable m of all other threads”, which en-
ables verifying the protocols like the ticket lock. In contrast,
our method can often avoid tracking such dependencies by
referring to the cardinality of the set of threads at a given
location. [Sanchez et al. 2012] proposes the notion of reflec-
tive abstractions. In this framework, a proof is constructed

by instantiating the transition system with a finite number
of threads and modeling the effect of the remaining threads
through a mirror thread. The method then uses abstract in-
terpretation to infer an invariant for the instantiated system.
[Abdulla et al. 2007] introduces a formalism that allows
to express global conditions which relate local variables of
different threads, and uses backward reachability to verify
safety properties. [Farzan et al. 2015] explores the notion of
proof spaces, in which a finite number of Hoare triples is
combined through a fixed set of rules in order to prove prop-
erties about parametrized systems. Both [Farzan et al. 2014]
and [Farzan et al. 2015] are based on the language-theoretic
approach to program correctness introduced in [Heizmann
et al. 2009]. The use of data flow graphs in [Farzan and
Kincaid 2012] allows to separate reasoning about data and
control and thus enables inferring invariants that holds for
arbitrary many threads. Our approach relies on transition re-
lations, however, it may be interesting to adopt the data flow
graph perspective.

9. Conclusion
Parameterized systems model core protocols of software in-
frastructures. Their verification often resorts to cardinality-
based arguments as a concise and effective reasoning
tool. Unfortunately, the problem of automatic inference of
cardinality-based invariants was under-studied and viable
tool support scarce. This paper presented #Π, a method for
the automatic inference of invariants that track cardinalities
of assertions in the combined theory of scalars and arrays un-
der universally quantified constraints. The axiomatization of
cardinality we devised for #Π yielded an effective tool that
is capable of verifying intricate parameterized systems using
cardinality arguments. At the same time #Π is competitive
or even outperforms the existing verifiers for parameterized
systems that do not require cardinality arguments. As of to-
day, our approach has the following main limitations, which
we consider callenges for future work.

• We do not consider heap allocated data structures. (Uni-
versal quantification in #Π could provide some informa-
tion, following [Gulwani et al. 2008], but this is currently
not explored.)

• We do not investigate the effectiveness of #Π for modular
reasoning in the presence of procedures. (Targeting the
case when procedures coincide with transactions [Qadeer
et al. 2004] appears to be a promising direction to con-
sider.)
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